期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
医用化学教学中采用“问题学习法”教学的初探
1
作者 张幸川 《医学理论与实践》 2002年第6期734-735,共2页
医用化学是一门理解性、记忆性要求较高的医学基础课,一直以其广度的多交叉性和深度的多层次性,广泛涉及到医学、生物领域.学生在学习医用化学过程中普遍感到概念多,理解内容、记忆内容多,头绪不清,压力较大.
关键词 医学教育 医用化学教学 “问题学习法”
下载PDF
麦克玛斯特大学“问题学习法” 被引量:155
2
作者 李泽生 冼利青 《复旦教育论坛》 2003年第3期85-88,共4页
本文从麦克玛斯特大学“问题学习法”(problem basedlearning)实施过程的各个方面 :教育目标、教学安排、教学活动、教学评价、教学资源等方面介绍了PBL的教学过程 ,总结了麦克玛斯特大学PBL课程设置以学生为本 ,培养学生的学习态度和... 本文从麦克玛斯特大学“问题学习法”(problem basedlearning)实施过程的各个方面 :教育目标、教学安排、教学活动、教学评价、教学资源等方面介绍了PBL的教学过程 ,总结了麦克玛斯特大学PBL课程设置以学生为本 ,培养学生的学习态度和终身学习的能力以及在教学过程中倡导以生物 心理 社会医学模式培养适合社会发展需要的医生的经验。 展开更多
关键词 麦克玛斯特大学 “问题学习法” 教学安排 教学评价 教学资源 加拿大
下载PDF
中外小学教学文献综述及实证方法分析——“问题发现学习法”的提出过程略谈 被引量:1
3
作者 朱凤金 《科技咨询导报》 2007年第5期183-183,共1页
本文对有关教学的几个基本概念进行文献综述,在此基础上对中国的教学方法提出自己的想法:“问题发现学习法”。
关键词 小学教学 教学目的 教学方 “问题发现学习法”
下载PDF
中外小学教学文献综述及实证方法分析——“问题发现学习法”的提出过程略谈
4
作者 朱凤金 《科技资讯》 2006年第36期236-236,共1页
本文对有关教学的几个基本概念进行文献综述,在此基础上对中国的教学方法提出自己的想法:“问题发现学习法”。
关键词 小学教学 教学目的 教学方 “问题发现学习法”
下载PDF
关注教学细节,构建高效课堂——“光合作用的过程”难点教学策略 被引量:1
5
作者 唐晓冰 《中学生物学》 2016年第8期19-21,共3页
通过分析“光合作用的过程”教学案例,探讨如何通过选择恰当的教学方法和适宜的教学手段突破学生学习难点,并在细节上精心构思,优化课堂结构,构建高效课堂。
关键词 教学案 “问题学习 合作学习 “模型”学习
下载PDF
Process optimization with consideration of uncertainties——An overview 被引量:6
6
作者 Ying Chen Zhihong Yuan Bingzhen Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第8期1700-1706,共7页
Optimization under uncertainty is a challenging topic of practical importance in the Process Systems Engineering.Since the solution of an optimization problem generally exhibits high sensitivity to the parameter varia... Optimization under uncertainty is a challenging topic of practical importance in the Process Systems Engineering.Since the solution of an optimization problem generally exhibits high sensitivity to the parameter variations, the deterministic model which neglects the parametric uncertainties is not suitable for practical applications. This paper provides an overview of the key contributions and recent advances in the field of process optimization under uncertainty over the past ten years and discusses their advantages and limitations thoroughly. The discussion is focused on three specific research areas, namely robust optimization, stochastic programming and chance constrained programming, based on which a systematic analysis of their applications, developments and future directions are presented. It shows that the more recent trend has been to integrate different optimization methods to leverage their respective superiority and compensate for their drawbacks. Moreover, data-driven optimization, which combines mathematical programming methods and machine learning algorithms, has become an emerging and competitive tool to handle optimization problems in the presence of uncertainty based on massive historical data. 展开更多
关键词 Optimization under uncertainty Robust optimization Stochastic programming Chance constrained programming Data-driven optimization
下载PDF
A novel policy iteration based deterministic Q-learning for discrete-time nonlinear systems 被引量:8
7
作者 WEI QingLai LIU DeRong 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第12期143-157,共15页
In this paper, a novel iterative Q-learning algorithm, called "policy iteration based deterministic Qlearning algorithm", is developed to solve the optimal control problems for discrete-time deterministic no... In this paper, a novel iterative Q-learning algorithm, called "policy iteration based deterministic Qlearning algorithm", is developed to solve the optimal control problems for discrete-time deterministic nonlinear systems. The idea is to use an iterative adaptive dynamic programming(ADP) technique to construct the iterative control law which optimizes the iterative Q function. When the optimal Q function is obtained, the optimal control law can be achieved by directly minimizing the optimal Q function, where the mathematical model of the system is not necessary. Convergence property is analyzed to show that the iterative Q function is monotonically non-increasing and converges to the solution of the optimality equation. It is also proven that any of the iterative control laws is a stable control law. Neural networks are employed to implement the policy iteration based deterministic Q-learning algorithm, by approximating the iterative Q function and the iterative control law, respectively. Finally, two simulation examples are presented to illustrate the performance of the developed algorithm. 展开更多
关键词 adaptive critic designs adaptive dynamic programming approximate dynamic programming Q-LEARNING policy iteration neural networks nonlinear systems optimal control
原文传递
Global optimality condition and fixed point continuation algorithm for non-Lipschitz ?_p regularized matrix minimization 被引量:1
8
作者 Dingtao Peng Naihua Xiu Jian Yu 《Science China Mathematics》 SCIE CSCD 2018年第6期1139-1152,共14页
Regularized minimization problems with nonconvex, nonsmooth, even non-Lipschitz penalty functions have attracted much attention in recent years, owing to their wide applications in statistics, control,system identific... Regularized minimization problems with nonconvex, nonsmooth, even non-Lipschitz penalty functions have attracted much attention in recent years, owing to their wide applications in statistics, control,system identification and machine learning. In this paper, the non-Lipschitz ?_p(0 < p < 1) regularized matrix minimization problem is studied. A global necessary optimality condition for this non-Lipschitz optimization problem is firstly obtained, specifically, the global optimal solutions for the problem are fixed points of the so-called p-thresholding operator which is matrix-valued and set-valued. Then a fixed point iterative scheme for the non-Lipschitz model is proposed, and the convergence analysis is also addressed in detail. Moreover,some acceleration techniques are adopted to improve the performance of this algorithm. The effectiveness of the proposed p-thresholding fixed point continuation(p-FPC) algorithm is demonstrated by numerical experiments on randomly generated and real matrix completion problems. 展开更多
关键词 lp regularized matrix minimization matrix completion problem p-thresholding operator globaloptimality condition fixed point continuation algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部