期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进概率Petri网的分层电网故障诊断 被引量:2
1
作者 曲丽萍 刘冲杰 +1 位作者 路赵 何昌龙 《北华大学学报(自然科学版)》 CAS 2020年第1期118-126,共9页
将改进的概率Petri网应用到电力系统故障诊断中,在保证通用性的同时提高了故障诊断结果的准确性.为避免网络末端保护误动作引起的误断,在概率Petri网中引入"非"逻辑关系模型;为降低建模难度和计算复杂度,依据故障报警信息将... 将改进的概率Petri网应用到电力系统故障诊断中,在保证通用性的同时提高了故障诊断结果的准确性.为避免网络末端保护误动作引起的误断,在概率Petri网中引入"非"逻辑关系模型;为降低建模难度和计算复杂度,依据故障报警信息将故障分为3种类型:简单故障、单一复杂故障和多重复杂故障,分别建立相应的诊断模型.综合考虑电力系统继电保护和相应断路器动作的可靠性和灵敏性、多重故障的复杂性以及故障警报信息的不确定性,在基于改进概率Petri网电网故障诊断模型的基础上分析输入弧权值,以增强诊断效果.对于多重复杂故障,为了避免输电网络线众多引起模型过于繁杂的问题,建立元件的各方向诊断模型和综合诊断模型,用吉林省四平地区电力系统故障实例对本文选取的方法进行仿真测试.仿真结果证明,本文方法能够准确有效地识别故障元件,并能在信息不完备的情况下给出正确的诊断结果,具有良好的通用性与容错性. 展开更多
关键词 概率Petri网 分层诊断 有向弧权值 “非”逻辑模型 参数改进
下载PDF
Traffic Forecasting Model Based on Takagi-Sugeno Fuzzy Logical System
2
作者 王维工 李征 程美玲 《Journal of Donghua University(English Edition)》 EI CAS 2005年第1期129-132,共4页
The local multiple regression fuzzy(LMRF)model based on Takagi-Sugeno fuzzy logical system and its application in traffic forecasting is proposed. Besides its prediction accuracy is testified and the model is proved m... The local multiple regression fuzzy(LMRF)model based on Takagi-Sugeno fuzzy logical system and its application in traffic forecasting is proposed. Besides its prediction accuracy is testified and the model is proved much better than conventional forecasting methods. According to the regional traffic system, the model perfectly states the complex non-linear relation of the traffic and the local social economy. The model also efficiently deals with the system lack of enough data. 展开更多
关键词 T-S model traffic forecasting LMRF model.
下载PDF
PARAMETRIC AND NON-PARAMETRIC COMBINATION MODEL TO ENHANCE OVERALL PERFORMANCE ON DEFAULT PREDICTION 被引量:1
3
作者 LI Jun PAN Liang +1 位作者 CHEN Muzi YANG Xiaoguang 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第5期950-969,共20页
The probability of default(PD) is the key element in the New Basel Capital Accord and the most essential factor to financial institutions' risk management.To obtain good PD estimation,practitioners and academics h... The probability of default(PD) is the key element in the New Basel Capital Accord and the most essential factor to financial institutions' risk management.To obtain good PD estimation,practitioners and academics have put forward numerous default prediction models.However,how to use multiple models to enhance overall performance on default prediction remains untouched.In this paper,a parametric and non-parametric combination model is proposed.Firstly,binary logistic regression model(BLRM),support vector machine(SVM),and decision tree(DT) are used respectively to establish models with relatively stable and high performance.Secondly,in order to make further improvement to the overall performance,a combination model using the method of multiple discriminant analysis(MDA) is constructed.In this way,the coverage rate of the combination model is greatly improved,and the risk of miscarriage is effectively reduced.Lastly,the results of the combination model are analyzed by using the K-means clustering,and the clustering distribution is consistent with a normal distribution.The results show that the combination model based on parametric and non-parametric can effectively enhance the overall performance on default prediction. 展开更多
关键词 Binary logistic regression combination model decision tree K-means clustering multiple discriminant analysis probability of default support vector machine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部