Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach t...Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach to foreground detection in dynamic backgrounds.It uses a history of recently pixel values to estimate background model.Besides,the adaptive threshold and spatial coherence are introduced to enhance robustness against false detections.Experimental results indicate that our approach achieves better performance in dynamic backgrounds compared with several approaches.展开更多
In this paper, we introduce the notion of a (2+1)-dimenslonal differential equation describing three-dimensional hyperbolic spaces (3-h.s.). The (2+1)-dimensional coupled nonlinear Schrodinger equation and its...In this paper, we introduce the notion of a (2+1)-dimenslonal differential equation describing three-dimensional hyperbolic spaces (3-h.s.). The (2+1)-dimensional coupled nonlinear Schrodinger equation and its sister equation, the (2+1)-dimensional coupled derivative nonlinear Schrodinger equation, are shown to describe 3-h.s, The (2 + 1 )-dimensional generalized HF model:St=(1/2i[S,Sy]+2iσS)x,σx=-1/4i tr(SSxSy), in which S ∈ GLc(2)/GLc(1)×GLc(1),provides another example of (2+1)-dimensional differential equations describing 3-h.s. As a direct con-sequence, the geometric construction of an infinire number of conservation lairs of such equations is illustrated. Furthermore we display a new infinite number of conservation lairs of the (2+1)-dimensional nonlinear Schrodinger equation and the (2+1)-dimensional derivative nonlinear Schrodinger equation by a geometric way.展开更多
We present a semiclassical (SC) approach for quantum dissipative dynamics, constructed on basis of the hierarchical-equation-of-motion (HEOM) formalism. The dynamical components considered in the developed SC-HEOM...We present a semiclassical (SC) approach for quantum dissipative dynamics, constructed on basis of the hierarchical-equation-of-motion (HEOM) formalism. The dynamical components considered in the developed SC-HEOM are wavepackets' phase-space moments of not only the primary reduced system density operator but also the auxiliary density operators (ADOs) of HEOM. It is a highly numerically efficient method, meanwhile taking into account the high-order effcts of system-bath couplings. The SC-HEOM methodology is exemplified in this work on the hierarchical quantum master equation [J. Chem. Phys. 131, 214111 (2009)] and numerically demonstrated on linear spectra of anharmonic oscillators.展开更多
The identification of Wiener systems has been an active research topic for years. A Wiener system is a series connection of a linear dynamic system followed by a static nonlinearity. The difficulty in obtaining a repr...The identification of Wiener systems has been an active research topic for years. A Wiener system is a series connection of a linear dynamic system followed by a static nonlinearity. The difficulty in obtaining a representation of the Wiener model is the need to estimate the nonlinear function from the input and output data, without the intermediate signal availability. This paper presents a methodology for the nonlinear system identification of a Wiener type model, using methods for subspaces and polynomials of Chebyshev. The subspace methods used are MOESP (multivariable output-error state space) and N4SID (numerical algorithms for subspace state space system identification). A simulated example is presented to compare the performance of these algorithms.展开更多
The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as ...The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations is analyzed to shed light oi1 the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differentii equations and their corresponding exact solutions with generalized separated variables.展开更多
In the calculation of the collision probability between space objects, the assumption of linear relative motion is generally adopted to simplify the problem because most encounters are at high relative velocity. Never...In the calculation of the collision probability between space objects, the assumption of linear relative motion is generally adopted to simplify the problem because most encounters are at high relative velocity. Nevertheless, the assumption is no longer valid for encounters at extremely low velocities, and a new algorithm is urgently needed for computing collision probability for space objects having nonlinear relative motion. In this particular case, the direction associated with relative velocity is reintroduced for integration. The different integral limits would lead to the variations of probability and integral time. Moreover, the application scope of this new algorithm is also presented. Since the nonlinear effect is only significant in some certain situations, the new algorithm needs to be considered only in such certain situations. More specifically, when space objects in circular orbits encounter with a tiny inclined angle (the extreme situation), the new algorithm can derive much more accurate collision probability than the linear method, that is to say, the linearity assumption involved in general collision probability formulation is not adequate anymore. In addition, the deviation of the probability derived by the linear method (linear collision probability) from that derived by the nonlinear method (nonlinear collision probability) also weakly depends on the relative distance and combined covariance, and essentially depends on their ratio.展开更多
The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient...The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient method, however, heavily restricted the use of conjugate gradient method for largescale nonlinear optimization. This is, to the great extent, due to the requirement of a relatively exact line search at each iteration and the loss of conjugacy property of the search directions in various occasions. On the contrary, the limited-memory BFGS method and the Barzilai-Bowein gradient method share the so-called asymptotical one stepsize per line-search property, namely, the trial stepsize in the method will asymptotically be accepted by the line search when the iteration is close to the solution. This paper will focus on the analysis of the subspace minimization conjugate gradient method by Yuan and Stoer(1995). Specifically, if choosing the parameter in the method by combining the Barzilai-Borwein idea, we will be able to provide some efficient Barzilai-Borwein conjugate gradient(BBCG) methods. The initial numerical experiments show that one of the variants, BBCG3, is specially efficient among many others without line searches. This variant of the BBCG method might enjoy the asymptotical one stepsize per line-search property and become a strong candidate for large-scale nonlinear optimization.展开更多
This paper is devoted to results on the Moser-Trudinger-Onofri inequality, or the Onofri inequality for brevity. In dimension two this inequality plays a role similar to that of the Sobolev inequality in higher dimens...This paper is devoted to results on the Moser-Trudinger-Onofri inequality, or the Onofri inequality for brevity. In dimension two this inequality plays a role similar to that of the Sobolev inequality in higher dimensions. After justifying this statement by recovering the Onofri inequality through various limiting procedures and after reviewing some known results, the authors state several elementary remarks.Various new results are also proved in this paper. A proof of the inequality is given by using mass transportation methods(in the radial case), consistently with similar results for Sobolev inequalities. The authors investigate how duality can be used to improve the Onofri inequality, in connection with the logarithmic Hardy-Littlewood-Sobolev inequality.In the framework of fast diffusion equations, it is established that the inequality is an entropy-entropy production inequality, which provides an integral remainder term. Finally,a proof of the inequality based on rigidity methods is given and a related nonlinear flow is introduced.展开更多
In the present article, He's fractional derivative, the ansatz method, the ( C / G)-expansion method, and the exp-function method are used to construct the exact solutions of nonlinear space-time fractional Kadomts...In the present article, He's fractional derivative, the ansatz method, the ( C / G)-expansion method, and the exp-function method are used to construct the exact solutions of nonlinear space-time fractional Kadomtsev-Petviashvili- Benjamin-Bona Mahony (KP-BBM). As a result, different types of exact solutions are obtained. Also we have examined the relation between the solutions obtained from the different methods. These methods are an efficient mathematical tool for solving fractional differential equations (FDEs) and it can be applied to other nonlinear FDEs.展开更多
In this paper, a semi-discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension is presented. In this method, we solve the nonlinear e...In this paper, a semi-discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension is presented. In this method, we solve the nonlinear equations with an added artificial viscosity term on a finite element grid and correct this solutions on the same grid using a linearized defect-correction technique. The stability and the error analysis are derived. The theory analysis shows that our method is stable and has a good convergence property.展开更多
kinematic Euclidean By using the moving frame method, the authors obtain a kind of asymmetric formulas for the total mean curvatures of hypersurfaces in the n-dimensional space
基金supported by Fund of National Science & Technology monumental projects under Grants No.61105015,NO.61401239,NO.2012-364-641-209
文摘Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach to foreground detection in dynamic backgrounds.It uses a history of recently pixel values to estimate background model.Besides,the adaptive threshold and spatial coherence are introduced to enhance robustness against false detections.Experimental results indicate that our approach achieves better performance in dynamic backgrounds compared with several approaches.
基金The project partially supported by National Natural Science Foundation of China
文摘In this paper, we introduce the notion of a (2+1)-dimenslonal differential equation describing three-dimensional hyperbolic spaces (3-h.s.). The (2+1)-dimensional coupled nonlinear Schrodinger equation and its sister equation, the (2+1)-dimensional coupled derivative nonlinear Schrodinger equation, are shown to describe 3-h.s, The (2 + 1 )-dimensional generalized HF model:St=(1/2i[S,Sy]+2iσS)x,σx=-1/4i tr(SSxSy), in which S ∈ GLc(2)/GLc(1)×GLc(1),provides another example of (2+1)-dimensional differential equations describing 3-h.s. As a direct con-sequence, the geometric construction of an infinire number of conservation lairs of such equations is illustrated. Furthermore we display a new infinite number of conservation lairs of the (2+1)-dimensional nonlinear Schrodinger equation and the (2+1)-dimensional derivative nonlinear Schrodinger equation by a geometric way.
基金supported by the National Natural Science Foundation of China(No.21373191,No.21573202,No.21633006,and No.21703225)the Fundamental Research Funds for the Central Universities(No.2030020028,No.2060030025,and No.2340000074)
文摘We present a semiclassical (SC) approach for quantum dissipative dynamics, constructed on basis of the hierarchical-equation-of-motion (HEOM) formalism. The dynamical components considered in the developed SC-HEOM are wavepackets' phase-space moments of not only the primary reduced system density operator but also the auxiliary density operators (ADOs) of HEOM. It is a highly numerically efficient method, meanwhile taking into account the high-order effcts of system-bath couplings. The SC-HEOM methodology is exemplified in this work on the hierarchical quantum master equation [J. Chem. Phys. 131, 214111 (2009)] and numerically demonstrated on linear spectra of anharmonic oscillators.
文摘The identification of Wiener systems has been an active research topic for years. A Wiener system is a series connection of a linear dynamic system followed by a static nonlinearity. The difficulty in obtaining a representation of the Wiener model is the need to estimate the nonlinear function from the input and output data, without the intermediate signal availability. This paper presents a methodology for the nonlinear system identification of a Wiener type model, using methods for subspaces and polynomials of Chebyshev. The subspace methods used are MOESP (multivariable output-error state space) and N4SID (numerical algorithms for subspace state space system identification). A simulated example is presented to compare the performance of these algorithms.
基金supported by the State Administration of Foreign Experts Affairs of China,National Natural Science Foundation of China (Grant Nos. 10971136,10831003,61072147,11071159)Chunhui Plan of the Ministry of Education of China,Zhejiang Innovation Project (Grant No. T200905)the Natural Science Foundation of Shanghai and the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations is analyzed to shed light oi1 the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differentii equations and their corresponding exact solutions with generalized separated variables.
基金supported by the National Natural Science Foundation of China (Grant No. 11203085)
文摘In the calculation of the collision probability between space objects, the assumption of linear relative motion is generally adopted to simplify the problem because most encounters are at high relative velocity. Nevertheless, the assumption is no longer valid for encounters at extremely low velocities, and a new algorithm is urgently needed for computing collision probability for space objects having nonlinear relative motion. In this particular case, the direction associated with relative velocity is reintroduced for integration. The different integral limits would lead to the variations of probability and integral time. Moreover, the application scope of this new algorithm is also presented. Since the nonlinear effect is only significant in some certain situations, the new algorithm needs to be considered only in such certain situations. More specifically, when space objects in circular orbits encounter with a tiny inclined angle (the extreme situation), the new algorithm can derive much more accurate collision probability than the linear method, that is to say, the linearity assumption involved in general collision probability formulation is not adequate anymore. In addition, the deviation of the probability derived by the linear method (linear collision probability) from that derived by the nonlinear method (nonlinear collision probability) also weakly depends on the relative distance and combined covariance, and essentially depends on their ratio.
基金supported by National Natural Science Foundation of China (Grant Nos. 81173633, 11401038 and 11331012)the Chinese Academy of Sciences Grant (Grant No. kjcx-yw-s7-03)+2 种基金National Natural Science Foundation of China for Distinguished Young Scientists (Grant No. 11125107)the Key Project of Chinese National Programs for Fundamental Research and Development (Grant No. 2015CB856000)the Fundamental Research Funds for the Central Universities (Grant No. 2014RC0904)
文摘The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient method, however, heavily restricted the use of conjugate gradient method for largescale nonlinear optimization. This is, to the great extent, due to the requirement of a relatively exact line search at each iteration and the loss of conjugacy property of the search directions in various occasions. On the contrary, the limited-memory BFGS method and the Barzilai-Bowein gradient method share the so-called asymptotical one stepsize per line-search property, namely, the trial stepsize in the method will asymptotically be accepted by the line search when the iteration is close to the solution. This paper will focus on the analysis of the subspace minimization conjugate gradient method by Yuan and Stoer(1995). Specifically, if choosing the parameter in the method by combining the Barzilai-Borwein idea, we will be able to provide some efficient Barzilai-Borwein conjugate gradient(BBCG) methods. The initial numerical experiments show that one of the variants, BBCG3, is specially efficient among many others without line searches. This variant of the BBCG method might enjoy the asymptotical one stepsize per line-search property and become a strong candidate for large-scale nonlinear optimization.
基金supported by the Projects STAB and Kibord of the French National Research Agency(ANR)the Project No NAP of the French National Research Agency(ANR)the ECOS Project(No.C11E07)
文摘This paper is devoted to results on the Moser-Trudinger-Onofri inequality, or the Onofri inequality for brevity. In dimension two this inequality plays a role similar to that of the Sobolev inequality in higher dimensions. After justifying this statement by recovering the Onofri inequality through various limiting procedures and after reviewing some known results, the authors state several elementary remarks.Various new results are also proved in this paper. A proof of the inequality is given by using mass transportation methods(in the radial case), consistently with similar results for Sobolev inequalities. The authors investigate how duality can be used to improve the Onofri inequality, in connection with the logarithmic Hardy-Littlewood-Sobolev inequality.In the framework of fast diffusion equations, it is established that the inequality is an entropy-entropy production inequality, which provides an integral remainder term. Finally,a proof of the inequality based on rigidity methods is given and a related nonlinear flow is introduced.
文摘In the present article, He's fractional derivative, the ansatz method, the ( C / G)-expansion method, and the exp-function method are used to construct the exact solutions of nonlinear space-time fractional Kadomtsev-Petviashvili- Benjamin-Bona Mahony (KP-BBM). As a result, different types of exact solutions are obtained. Also we have examined the relation between the solutions obtained from the different methods. These methods are an efficient mathematical tool for solving fractional differential equations (FDEs) and it can be applied to other nonlinear FDEs.
基金supported by National Natural Science Foundation of China (Grant No.10971166)the National Basic Research Program of China (Grant No. 2005CB321703)
文摘In this paper, a semi-discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension is presented. In this method, we solve the nonlinear equations with an added artificial viscosity term on a finite element grid and correct this solutions on the same grid using a linearized defect-correction technique. The stability and the error analysis are derived. The theory analysis shows that our method is stable and has a good convergence property.
基金supported by the National Natural Science Foundation of China(No.11271302)Chongqing Natural Science Foundation(No.cstc2011jj A00026)
文摘kinematic Euclidean By using the moving frame method, the authors obtain a kind of asymmetric formulas for the total mean curvatures of hypersurfaces in the n-dimensional space