In order to find the main factors that influence the urban traffic structure,a relational model between the travelers' characteristics and the trip mode choice is built.The data of urban residents' characteristics a...In order to find the main factors that influence the urban traffic structure,a relational model between the travelers' characteristics and the trip mode choice is built.The data of urban residents' characteristics are obtained from statistical data,while the trip mode split data is collected through a trip survey in Bengbu.In addition,the discrete choice model is adopted to build the functional relationship between the mode choice and the travelers' personal characteristics,as well as family characteristics and trip characteristics.The model shows that the relationship between the mode split and the personal,as well as family and trip characteristics is stable and changes little as the time changes.Deduced by the discrete model,the mode split result is relatively accurate and can be feasibly used for trip mode structure forecasts.Furthermore,the proposed model can also contribute to find the key influencing factors on trip mode choice,and restructure or optimize the urban trip mode structure.展开更多
To improve the prediction accuracy of chaotic time series, a new methodformed on the basis of local polynomial prediction is proposed. The multivariate phase spacereconstruction theory is utilized to reconstruct the p...To improve the prediction accuracy of chaotic time series, a new methodformed on the basis of local polynomial prediction is proposed. The multivariate phase spacereconstruction theory is utilized to reconstruct the phase space firstly, and on its basis, apolynomial function is applied to construct the prediction model, then the parameters of the modelaccording to the data matrix built with the embedding dimensions are estimated and a one-stepprediction value is calculated. An estimate and one-step prediction value is calculated. Finally,the mean squared root statistics are used to estimate the prediction effect. The simulation resultsobtained by the Lorenz system and the prediction results of the Shanghai composite index show thatthe local polynomial prediction errors of the multivariate chaotic time series are small and itsprediction accuracy is much higher than that of the univariate chaotic time series.展开更多
Cold-inducible RNA-binding protein(CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first clon...Cold-inducible RNA-binding protein(CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first cloned from mammals. On the contrary, there are little reports in teleosts. In this study, the Po CIRP gene of the Japanese flounder was cloned and sequenced. The genomic sequence consists of seven exons and six introns. The putative Po CIRP protein of flounder was 198 amino acid residues long containing the RNA recognition motif(RRM). Phylogenetic analysis showed that the flounder Po CIRP is highly conserved with other teleost CIRPs. The 5' flanking sequence was cloned by genome walking and many transcription factor binding sites were identified. There is a Cp Gs region located in promoter and exon I region and the methylation state is low. Quantitative real-time PCR analysis uncovered that Po CIRP gene was widely expressed in adult tissues with the highest expression level in the ovary. The m RNA of the Po CIRP was maternally deposited and the expression level of the gene was regulated up during the gastrula and neurula stages. In order to gain the information how the protein interacts with m RNA, we performed the modeling of the 3D structure of the flounder Po CIRP. The results showed a cleft existing the surface of the molecular. Taken together, the results indicate that the CIRP is a multifunctional molecular in teleosts and the findings about the structure provide valuable information for understanding the basis of this protein's function.展开更多
The fundamental law for protein folding is the thermodynamic principle.The amino acid sequence of a protein determines its native structure and the native structure has the minimum Gibbs free energy.Lacking of a Gibbs...The fundamental law for protein folding is the thermodynamic principle.The amino acid sequence of a protein determines its native structure and the native structure has the minimum Gibbs free energy.Lacking of a Gibbs free energy formula is the reason that all ab initio protein structure prediction only empirical and various empirical energy surfaces or landscapes are introduced to fill the gap.We make a quantum mechanics derivation of the Gibbs free energy formula G(X)using quantum statistics for a single conformation X.For simplicity,only monomeric self folding globular proteins are considered.展开更多
The prestress developing of tensile cable-net structures is a state transforming process from the initial unstressed state to the final prestressed state, and it is rather complicated because the elastic deformation i...The prestress developing of tensile cable-net structures is a state transforming process from the initial unstressed state to the final prestressed state, and it is rather complicated because the elastic deformation is normally coupled with the kinematic mechanism movement. Firstly, the basic equations of prestress developing by moving boundary joint are derived from the total potential energy equation. Secondly, the presumed initial tension is proposed to impose into the elements and avoid the singularity of global stiffness matrix. And the self-stress mode which is calculated from the equilibrium matrix with singular vMue decomposition is employed as basically presumed initial tension. By applying boundary movement increment, an iterative computation is developed to calculate the updating geometric configuration and tension evolution. Finally, the MATLAB program is coded from the presented method, and numerical examples indicate that this computational method is effective and has theoretical significance and valuable guide to design and construction of tensile cable-net structure.展开更多
基金The National Natural Science Foundation of China (No.50738001,51078086)
文摘In order to find the main factors that influence the urban traffic structure,a relational model between the travelers' characteristics and the trip mode choice is built.The data of urban residents' characteristics are obtained from statistical data,while the trip mode split data is collected through a trip survey in Bengbu.In addition,the discrete choice model is adopted to build the functional relationship between the mode choice and the travelers' personal characteristics,as well as family characteristics and trip characteristics.The model shows that the relationship between the mode split and the personal,as well as family and trip characteristics is stable and changes little as the time changes.Deduced by the discrete model,the mode split result is relatively accurate and can be feasibly used for trip mode structure forecasts.Furthermore,the proposed model can also contribute to find the key influencing factors on trip mode choice,and restructure or optimize the urban trip mode structure.
文摘To improve the prediction accuracy of chaotic time series, a new methodformed on the basis of local polynomial prediction is proposed. The multivariate phase spacereconstruction theory is utilized to reconstruct the phase space firstly, and on its basis, apolynomial function is applied to construct the prediction model, then the parameters of the modelaccording to the data matrix built with the embedding dimensions are estimated and a one-stepprediction value is calculated. An estimate and one-step prediction value is calculated. Finally,the mean squared root statistics are used to estimate the prediction effect. The simulation resultsobtained by the Lorenz system and the prediction results of the Shanghai composite index show thatthe local polynomial prediction errors of the multivariate chaotic time series are small and itsprediction accuracy is much higher than that of the univariate chaotic time series.
基金supported by the National High Technology R&D Program of China (2012AA10A402)the National Natural Science Foundation of China (31172385)
文摘Cold-inducible RNA-binding protein(CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first cloned from mammals. On the contrary, there are little reports in teleosts. In this study, the Po CIRP gene of the Japanese flounder was cloned and sequenced. The genomic sequence consists of seven exons and six introns. The putative Po CIRP protein of flounder was 198 amino acid residues long containing the RNA recognition motif(RRM). Phylogenetic analysis showed that the flounder Po CIRP is highly conserved with other teleost CIRPs. The 5' flanking sequence was cloned by genome walking and many transcription factor binding sites were identified. There is a Cp Gs region located in promoter and exon I region and the methylation state is low. Quantitative real-time PCR analysis uncovered that Po CIRP gene was widely expressed in adult tissues with the highest expression level in the ovary. The m RNA of the Po CIRP was maternally deposited and the expression level of the gene was regulated up during the gastrula and neurula stages. In order to gain the information how the protein interacts with m RNA, we performed the modeling of the 3D structure of the flounder Po CIRP. The results showed a cleft existing the surface of the molecular. Taken together, the results indicate that the CIRP is a multifunctional molecular in teleosts and the findings about the structure provide valuable information for understanding the basis of this protein's function.
文摘The fundamental law for protein folding is the thermodynamic principle.The amino acid sequence of a protein determines its native structure and the native structure has the minimum Gibbs free energy.Lacking of a Gibbs free energy formula is the reason that all ab initio protein structure prediction only empirical and various empirical energy surfaces or landscapes are introduced to fill the gap.We make a quantum mechanics derivation of the Gibbs free energy formula G(X)using quantum statistics for a single conformation X.For simplicity,only monomeric self folding globular proteins are considered.
基金the National Natural Science Foundation of China (Nos. 50878128 and 51278299)
文摘The prestress developing of tensile cable-net structures is a state transforming process from the initial unstressed state to the final prestressed state, and it is rather complicated because the elastic deformation is normally coupled with the kinematic mechanism movement. Firstly, the basic equations of prestress developing by moving boundary joint are derived from the total potential energy equation. Secondly, the presumed initial tension is proposed to impose into the elements and avoid the singularity of global stiffness matrix. And the self-stress mode which is calculated from the equilibrium matrix with singular vMue decomposition is employed as basically presumed initial tension. By applying boundary movement increment, an iterative computation is developed to calculate the updating geometric configuration and tension evolution. Finally, the MATLAB program is coded from the presented method, and numerical examples indicate that this computational method is effective and has theoretical significance and valuable guide to design and construction of tensile cable-net structure.