New oxometallides with the formula Ba5Y8-xMn4021-1.5x (x = 0, 1) are prepared through an atmosphere-controlled solid-state reaction. Two single-phase samples with Ba/Y/Mn atomic ratios 5/8/4 (Y8) and 5/7/4 (Y7)...New oxometallides with the formula Ba5Y8-xMn4021-1.5x (x = 0, 1) are prepared through an atmosphere-controlled solid-state reaction. Two single-phase samples with Ba/Y/Mn atomic ratios 5/8/4 (Y8) and 5/7/4 (Y7) are obtained. The crystal structures and the physical properties of the compounds are investigated by X-ray powder diffraction, magnetization, conductivity, and dielectricity measurements. The Ba5Y8-xMn4021-1.5x compound is demonstrated to be a Y-deficient solid solution. The solid solution compound Ba5Y8-xMn4021-1.5x crystallizes into tetragonal symmetry with the space group I4/m. Detailed structure analysis by Rietveld refinement of the X-ray powder diffraction data reveals that the Y vacancies occur preferentially at the Y(2) site. Thermal magnetization measurements indicate the presence of antiferromagnetic interaction between Mn ions in the compounds, and temperature-dependent resistivity measurements show that insulator-semiconductor transitions occur around 175 K and 170 K for the Y8 and Y7 samples, respectively. Strong frequency dependences of the dielectric constant are observed above -175 K for the two compounds.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50872148 and 51072225)the National Basic Research Program of China (Grant No. 2007CB925003)
文摘New oxometallides with the formula Ba5Y8-xMn4021-1.5x (x = 0, 1) are prepared through an atmosphere-controlled solid-state reaction. Two single-phase samples with Ba/Y/Mn atomic ratios 5/8/4 (Y8) and 5/7/4 (Y7) are obtained. The crystal structures and the physical properties of the compounds are investigated by X-ray powder diffraction, magnetization, conductivity, and dielectricity measurements. The Ba5Y8-xMn4021-1.5x compound is demonstrated to be a Y-deficient solid solution. The solid solution compound Ba5Y8-xMn4021-1.5x crystallizes into tetragonal symmetry with the space group I4/m. Detailed structure analysis by Rietveld refinement of the X-ray powder diffraction data reveals that the Y vacancies occur preferentially at the Y(2) site. Thermal magnetization measurements indicate the presence of antiferromagnetic interaction between Mn ions in the compounds, and temperature-dependent resistivity measurements show that insulator-semiconductor transitions occur around 175 K and 170 K for the Y8 and Y7 samples, respectively. Strong frequency dependences of the dielectric constant are observed above -175 K for the two compounds.