Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ...Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.展开更多
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of...Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.展开更多
To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from ...To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.展开更多
TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving i...TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving intrusion monitoring and interception.To address the challenges of data acquisition,real-world deployment,and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks,we propose an innovative swarm intelligencebased UAV pursuit-evasion control framework,namely“Boids Model-based DRL Approach for Pursuit and Escape”(Boids-PE),which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning(DRL).The Boids model,which simulates collective behavior through three fundamental rules,separation,alignment,and cohesion,is adopted in our work.By integrating Boids model with the Apollonian Circles algorithm,significant improvements are achieved in capturing UAVs against simple evasion strategies.To further enhance decision-making precision,we incorporate a DRL algorithm to facilitate more accurate strategic planning.We also leverage self-play training to continuously optimize the performance of pursuit UAVs.During experimental evaluation,we meticulously designed both one-on-one and multi-to-one pursuit-evasion scenarios,customizing the state space,action space,and reward function models for each scenario.Extensive simulations,supported by the PyBullet physics engine,validate the effectiveness of our proposed method.The overall results demonstrate that Boids-PE significantly enhance the efficiency and reliability of UAV pursuit-evasion tasks,providing a practical and robust solution for the real-world application of UAV pursuit-evasion missions.展开更多
To facilitate emerging applications and demands of edge intelligence(EI)-empowered 6G networks,model-driven semantic communications have been proposed to reduce transmission volume by deploying artificial intelligence...To facilitate emerging applications and demands of edge intelligence(EI)-empowered 6G networks,model-driven semantic communications have been proposed to reduce transmission volume by deploying artificial intelligence(AI)models that provide abilities of semantic extraction and recovery.Nevertheless,it is not feasible to preload all AI models on resource-constrained terminals.Thus,in-time model transmission becomes a crucial problem.This paper proposes an intellicise model transmission architecture to guarantee the reliable transmission of models for semantic communication.The mathematical relationship between model size and performance is formulated by employing a recognition error function supported with experimental data.We consider the characteristics of wireless channels and derive the closed-form expression of model transmission outage probability(MTOP)over the Rayleigh channel.Besides,we define the effective model accuracy(EMA)to evaluate the model transmission performance of both communication and intelligence.Then we propose a joint model selection and resource allocation(JMSRA)algorithm to maximize the average EMA of all users.Simulation results demonstrate that the average EMA of the JMSRA algorithm outperforms baseline algorithms by about 22%.展开更多
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ...Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.展开更多
The recent increase in the use of artificial intelligence has led to fundamental changes in the development of training and teaching methods for executive education. However, the success of artificial intelligence in ...The recent increase in the use of artificial intelligence has led to fundamental changes in the development of training and teaching methods for executive education. However, the success of artificial intelligence in regional centers for teaching and training professions will depend on the acceptance of this technology by young executive trainees. This article discusses the potential benefits of adopting AI in executive training institutions in Morocco, specifically focusing on CRMEF Casablanca Settat. Based on the Unified Theory of Acceptance and Use of Technology (UTAUT) (Venkatesh et al., 2003), this study proposes a model to identify the factors influencing the acceptance of artificial intelligence in regional centers for teaching professions and training in Morocco. To achieve this, a structural equation modeling approach was used to quantitatively describe the impact of each factor on AI adoption, utilizing data collected from 173 young executive trainees. The results indicate that perceived ease of use, perceived usefulness, trainer influence, and personal innovativeness influence the intention to use artificial intelligence. Our research provides managers of CRMEFs with a set of practical recommendations to enhance the implementation conditions of an artificial intelligence system. It aims to understand which factors should be considered in designing an artificial intelligence system within regional centers for teaching professions and training (CRMEFs).展开更多
Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper anal...Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper analyzes the cultivation demand of landscape architecture graduate students in the context of the new era,and identifies the problems by comparing the original professional graduate training mode.The new cultivation mode of graduate students in landscape architecture is proposed,including updating the target orientation of the discipline,optimizing the teaching system,building a“dualteacher”tutor team,and improving the“industry-university-research-utilization”integrated cultivation,so as to cultivate high-quality compound talents with disciplinary characteristics.展开更多
Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utili...Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utilized endoscopic images to train an AI model,challenging the traditional distinction between endoscopic and histological BE.This approach yielded remarkable results,with the AI system achieving an accuracy of 94.37%,sensitivity of 94.29%,and specificity of 94.44%.The study's extensive dataset enhances the AI model's practicality,offering valuable support to endoscopists by minimizing unnecessary biopsies.However,questions about the applicability to different endoscopic systems remain.The study underscores the potential of AI in BE detection while highlighting the need for further research to assess its adaptability to diverse clinical settings.展开更多
In a recent paper,Hong et al developed an artificial intelligence(AI)-driven predictive scoring system for potential complications following laparoscopic radical gastrectomy for gastric cancer patients.They demonstrat...In a recent paper,Hong et al developed an artificial intelligence(AI)-driven predictive scoring system for potential complications following laparoscopic radical gastrectomy for gastric cancer patients.They demonstrated that integrating AI with random forest models significantly improved the preoperative prediction and patient outcome management accuracy.By incorporating data from multiple centers,their model ensures standardization,reliability,and broad applicability,distinguishing it from the prior models.The present study highlights AI's potential in clinical decision support,aiding in the preoperative and postoperative management of gastric cancer patients.Our findings may pave the way for future prospective studies to further enhance AI-supported diagnoses in clinical practice.展开更多
Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for pre...Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature.展开更多
Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign La...Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign Language Recognition(CSLR)in the past 20 years.Hidden Markov Models(HMM),Support Vector Machines(SVM),and Dynamic Time Warping(DTW)were found to be the most commonly employed technologies among traditional identificationmethods.Benefiting from the rapid development of computer vision and artificial intelligence technology,Convolutional Neural Networks(CNN),3D-CNN,YOLO,Capsule Network(CapsNet)and various deep neural networks have sprung up.Deep Neural Networks(DNNs)and their derived models are integral tomodern artificial intelligence recognitionmethods.In addition,technologies thatwerewidely used in the early days have also been integrated and applied to specific hybrid models and customized identification methods.Sign language data collection includes acquiring data from data gloves,data sensors(such as Kinect,LeapMotion,etc.),and high-definition photography.Meanwhile,facial expression recognition,complex background processing,and 3D sign language recognition have also attracted research interests among scholars.Due to the uniqueness and complexity of Chinese sign language,accuracy,robustness,real-time performance,and user independence are significant challenges for future sign language recognition research.Additionally,suitable datasets and evaluation criteria are also worth pursuing.展开更多
Quadrotor unmanned aerial vehicles(UAVs)are widely used in inspection,agriculture,express delivery,and other fields owing to their low cost and high flexibility.However,the current UAV control system has shortcomings ...Quadrotor unmanned aerial vehicles(UAVs)are widely used in inspection,agriculture,express delivery,and other fields owing to their low cost and high flexibility.However,the current UAV control system has shortcomings such as poor control accuracy and weak anti-interference ability to a certain extent.To address the control problem of a four-rotor UAV,we propose a method to enhance the controller’s accuracy by considering underactuated dynamics,nonlinearities,and external disturbances.A mathematical model is constructed based on the flight principles of the quadrotor UAV.We develop a control algorithm that combines humanoid intelligence with a cascade Proportional-Integral-Derivative(PID)approach.This algorithm incorporates the rate of change of the error into the inputs of the cascade PID controller,uses both the error and its rate of change as characteristic variables of the UAV’s control system,and employs a hyperbolic tangent function to improve the outer-loop control.The result is a double closed-loop intelligent PID(DCLIPID)control algorithm.Through MATLAB numerical simulation tests,it is found that the DCLIPID algorithm reduces the rise time by 0.5 s and the number of oscillations by 2 times compared to the string PID algorithm when a unit step signal is used as input.A UAV flight test was designed for comparison with the serial PID algorithm,and it was found that when the UAV planned the trajectory autonomously,the errors in the X-,Y-,and Z-directions were reduced by 0.22,0.21,and 0.31 m,respectively.Under the interference environment of artificial wind about 3.6 m·s-1,the UAV hovering error in X-,Y-,and Z-directions are 0.24,0.42,and 0.27 m,respectively.The simulation and experimental results show that the control method of humanoid intelligence and cascade PID can improve the real-time,control accuracy and anti-interference ability of the UAV,and the method has a certain reference value for the research in the field of UAV control.展开更多
This paper aims to formalize a general definition of intelligence beyond human intelligence. We accomplish this by re-imagining the concept of equality as a fundamental abstraction for relation. We discover that the c...This paper aims to formalize a general definition of intelligence beyond human intelligence. We accomplish this by re-imagining the concept of equality as a fundamental abstraction for relation. We discover that the concept of equality = limits the sensitivity of our mathematics to abstract relationships. We propose a new relation principle that does not rely on the concept of equality but is consistent with existing mathematical abstractions. In essence, this paper proposes a conceptual framework for general interaction and argues that this framework is also an abstraction that satisfies the definition of Intelligence. Hence, we define intelligence as a formalization of generality, represented by the abstraction ∆∞Ο, where each symbol represents the concepts infinitesimal, infinite, and finite respectively. In essence, this paper proposes a General Language Model (GLM), where the abstraction ∆∞Ο represents the foundational relationship of the model. This relation is colloquially termed “The theory of everything”.展开更多
Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further...Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further study.This study aims to analyze the impact of the installation and application of industrial robots on labor demand in the context of the Chinese economy.First,from the theoretical logic and the economic development law,this study gives the prior judgment and research hypothesis that industrial intelligence will increase jobs.Then,based on the panel data of 269 cities in China from 2006 to 2021,we use the two-way fixed effect model,dynamic threshold model,and two-stage intermediary effect model.The objective is to investigate the impact of industrial intelligence on enterprise labor demand and its path mechanism.Results show that the overall effect of industrial intelligence on the labor force with the installation density index of industrial robots as the proxy variable is the“creation effect”.In other words,advanced digital technology has created additional jobs,and the overall supply of employment in the labor market has increased.The conclusion is still valid after the endogeneity identification and robustness test.In addition,the positive effect has a nonlinear effect on the network scale.When the installation density of industrial robots exceeds a particular threshold value,the division of labor continues to deepen under the combined action of the production efficiency and compensation effects,which will cause enterprises to increase labor demand further.Further research showed that industrial intelligence can increase employment by promoting synergistic agglomeration and improving labor price distortions.This study concludes that in the digital China era,the introduction and installation of industrial robots by enterprises can affect the optimal allocation of the labor market.This phenomenon has essential experience and reference significance for guiding industrial digitalization and intelligent transformation and promoting the high-quality development of people’s livelihood.展开更多
This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influe...This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influencing driver behavior and assisting transportation agencies in achieving safe and efficient traffic movement. However, the psychological and behavioral effects of displaying fatality numbers on DMS remain poorly understood;hence, it is important to know the potential impacts of displaying such messages. The Iowa Department of Transportation displays the number of fatalities on a first screen, followed by a supplemental message hoping to promote safe driving;an example is “19 TRAFFIC DEATHS THIS YEAR IF YOU HAVE A SUPER BOWL DON’T DRIVE HIGH.” We employ natural language processing to decode the sentiment and undertone of the supplementary message and investigate how they influence driving speeds. According to the results of a mixed effect model, drivers reduced speeds marginally upon encountering DMS fatality text with a positive sentiment with a neutral undertone. This category had the largest associated amount of speed reduction, while messages with negative sentiment with a negative undertone had the second largest amount of speed reduction, greater than other combinations, including positive sentiment with a positive undertone.展开更多
The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates di...The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making.展开更多
As a service format to meet spiritual needs, fashion culture industry is often synchronized in its creation, production, dissemination, display and consumption. In order to explore how artificial intelligence provides...As a service format to meet spiritual needs, fashion culture industry is often synchronized in its creation, production, dissemination, display and consumption. In order to explore how artificial intelligence provides technical means, platforms, channels and space for intelligent formats in the field of communication, and how to provide intelligent services for cultural creation, communication, display and consumption. This paper discusses the application and innovation of artificial intelligence in all aspects of communication field, analyzes the problems and puts forward corresponding countermeasures and suggestions.展开更多
This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the ch...This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the challenges of accurately predicting insurance claim frequencies, severities, and overall loss reserves while accounting for inflation adjustments. Through comprehensive data analysis and model development, this research explores the effectiveness of ANN methodologies in capturing complex nonlinear relationships within insurance data. The study leverages a data set comprising automobile insurance policyholder information, claim history, and economic indicators to train and validate the ANN-based reserving model. Key aspects of the methodology include data preprocessing techniques such as one-hot encoding and scaling, followed by the construction of frequency, severity, and overall loss reserving models using ANN architectures. Moreover, the model incorporates inflation adjustment factors to ensure the accurate estimation of future loss reserves in real terms. Results from the study demonstrate the superior predictive performance of the ANN-based reserving model compared to traditional actuarial methods, with substantial improvements in accuracy and robustness. Furthermore, the model’s ability to adapt to changing market conditions and regulatory requirements, such as IFRS17, highlights its practical relevance in the insurance industry. The findings of this research contribute to the advancement of actuarial science and provide valuable insights for insurance companies seeking more accurate and efficient loss reserving techniques. The proposed ANN-based approach offers a promising avenue for enhancing risk management practices and optimizing financial decision-making processes in the automobile insurance sector.展开更多
BACKGROUND Medication errors,especially in dosage calculation,pose risks in healthcare.Artificial intelligence(AI)systems like ChatGPT and Google Bard may help reduce errors,but their accuracy in providing medication ...BACKGROUND Medication errors,especially in dosage calculation,pose risks in healthcare.Artificial intelligence(AI)systems like ChatGPT and Google Bard may help reduce errors,but their accuracy in providing medication information remains to be evaluated.AIM To evaluate the accuracy of AI systems(ChatGPT 3.5,ChatGPT 4,Google Bard)in providing drug dosage information per Harrison's Principles of Internal Medicine.METHODS A set of natural language queries mimicking real-world medical dosage inquiries was presented to the AI systems.Responses were analyzed using a 3-point Likert scale.The analysis,conducted with Python and its libraries,focused on basic statistics,overall system accuracy,and disease-specific and organ system accuracies.RESULTS ChatGPT 4 outperformed the other systems,showing the highest rate of correct responses(83.77%)and the best overall weighted accuracy(0.6775).Disease-specific accuracy varied notably across systems,with some diseases being accurately recognized,while others demonstrated significant discrepancies.Organ system accuracy also showed variable results,underscoring system-specific strengths and weaknesses.CONCLUSION ChatGPT 4 demonstrates superior reliability in medical dosage information,yet variations across diseases emphasize the need for ongoing improvements.These results highlight AI's potential in aiding healthcare professionals,urging continuous development for dependable accuracy in critical medical situations.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)and STEP(Grant No.2019QZKK0102)supported by the Korea Environmental Industry&Technology Institute(KEITI)through the“Project for developing an observation-based GHG emissions geospatial information map”,funded by the Korea Ministry of Environment(MOE)(Grant No.RS-2023-00232066).
文摘Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.
基金supported in part by the National Natural Science Foundation of China(82072019)the Shenzhen Basic Research Program(JCYJ20210324130209023)+5 种基金the Shenzhen-Hong Kong-Macao S&T Program(Category C)(SGDX20201103095002019)the Mainland-Hong Kong Joint Funding Scheme(MHKJFS)(MHP/005/20),the Project of Strategic Importance Fund(P0035421)the Projects of RISA(P0043001)from the Hong Kong Polytechnic University,the Natural Science Foundation of Jiangsu Province(BK20201441)the Provincial and Ministry Co-constructed Project of Henan Province Medical Science and Technology Research(SBGJ202103038,SBGJ202102056)the Henan Province Key R&D and Promotion Project(Science and Technology Research)(222102310015)the Natural Science Foundation of Henan Province(222300420575),and the Henan Province Science and Technology Research(222102310322).
文摘Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.
基金supported by the National Natural Science Foundation of China(41927801).
文摘To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.
文摘TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving intrusion monitoring and interception.To address the challenges of data acquisition,real-world deployment,and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks,we propose an innovative swarm intelligencebased UAV pursuit-evasion control framework,namely“Boids Model-based DRL Approach for Pursuit and Escape”(Boids-PE),which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning(DRL).The Boids model,which simulates collective behavior through three fundamental rules,separation,alignment,and cohesion,is adopted in our work.By integrating Boids model with the Apollonian Circles algorithm,significant improvements are achieved in capturing UAVs against simple evasion strategies.To further enhance decision-making precision,we incorporate a DRL algorithm to facilitate more accurate strategic planning.We also leverage self-play training to continuously optimize the performance of pursuit UAVs.During experimental evaluation,we meticulously designed both one-on-one and multi-to-one pursuit-evasion scenarios,customizing the state space,action space,and reward function models for each scenario.Extensive simulations,supported by the PyBullet physics engine,validate the effectiveness of our proposed method.The overall results demonstrate that Boids-PE significantly enhance the efficiency and reliability of UAV pursuit-evasion tasks,providing a practical and robust solution for the real-world application of UAV pursuit-evasion missions.
基金supported in part by the National Key R&D Program of China No.2020YFB1806905the National Natural Science Foundation of China No.62201079+1 种基金the Beijing Natural Science Foundation No.L232051the Major Key Project of Peng Cheng Laboratory(PCL)Department of Broadband Communication。
文摘To facilitate emerging applications and demands of edge intelligence(EI)-empowered 6G networks,model-driven semantic communications have been proposed to reduce transmission volume by deploying artificial intelligence(AI)models that provide abilities of semantic extraction and recovery.Nevertheless,it is not feasible to preload all AI models on resource-constrained terminals.Thus,in-time model transmission becomes a crucial problem.This paper proposes an intellicise model transmission architecture to guarantee the reliable transmission of models for semantic communication.The mathematical relationship between model size and performance is formulated by employing a recognition error function supported with experimental data.We consider the characteristics of wireless channels and derive the closed-form expression of model transmission outage probability(MTOP)over the Rayleigh channel.Besides,we define the effective model accuracy(EMA)to evaluate the model transmission performance of both communication and intelligence.Then we propose a joint model selection and resource allocation(JMSRA)algorithm to maximize the average EMA of all users.Simulation results demonstrate that the average EMA of the JMSRA algorithm outperforms baseline algorithms by about 22%.
基金National Natural Science Foundation of China(82274265 and 82274588)Hunan University of Traditional Chinese Medicine Research Unveiled Marshal Programs(2022XJJB003).
文摘Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.
文摘The recent increase in the use of artificial intelligence has led to fundamental changes in the development of training and teaching methods for executive education. However, the success of artificial intelligence in regional centers for teaching and training professions will depend on the acceptance of this technology by young executive trainees. This article discusses the potential benefits of adopting AI in executive training institutions in Morocco, specifically focusing on CRMEF Casablanca Settat. Based on the Unified Theory of Acceptance and Use of Technology (UTAUT) (Venkatesh et al., 2003), this study proposes a model to identify the factors influencing the acceptance of artificial intelligence in regional centers for teaching professions and training in Morocco. To achieve this, a structural equation modeling approach was used to quantitatively describe the impact of each factor on AI adoption, utilizing data collected from 173 young executive trainees. The results indicate that perceived ease of use, perceived usefulness, trainer influence, and personal innovativeness influence the intention to use artificial intelligence. Our research provides managers of CRMEFs with a set of practical recommendations to enhance the implementation conditions of an artificial intelligence system. It aims to understand which factors should be considered in designing an artificial intelligence system within regional centers for teaching professions and training (CRMEFs).
基金University-level Graduate Education Reform Project of Yangtze University(YJY202329).
文摘Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper analyzes the cultivation demand of landscape architecture graduate students in the context of the new era,and identifies the problems by comparing the original professional graduate training mode.The new cultivation mode of graduate students in landscape architecture is proposed,including updating the target orientation of the discipline,optimizing the teaching system,building a“dualteacher”tutor team,and improving the“industry-university-research-utilization”integrated cultivation,so as to cultivate high-quality compound talents with disciplinary characteristics.
文摘Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utilized endoscopic images to train an AI model,challenging the traditional distinction between endoscopic and histological BE.This approach yielded remarkable results,with the AI system achieving an accuracy of 94.37%,sensitivity of 94.29%,and specificity of 94.44%.The study's extensive dataset enhances the AI model's practicality,offering valuable support to endoscopists by minimizing unnecessary biopsies.However,questions about the applicability to different endoscopic systems remain.The study underscores the potential of AI in BE detection while highlighting the need for further research to assess its adaptability to diverse clinical settings.
文摘In a recent paper,Hong et al developed an artificial intelligence(AI)-driven predictive scoring system for potential complications following laparoscopic radical gastrectomy for gastric cancer patients.They demonstrated that integrating AI with random forest models significantly improved the preoperative prediction and patient outcome management accuracy.By incorporating data from multiple centers,their model ensures standardization,reliability,and broad applicability,distinguishing it from the prior models.The present study highlights AI's potential in clinical decision support,aiding in the preoperative and postoperative management of gastric cancer patients.Our findings may pave the way for future prospective studies to further enhance AI-supported diagnoses in clinical practice.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2023-02-02385).
文摘Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature.
基金supported by National Social Science Foundation Annual Project“Research on Evaluation and Improvement Paths of Integrated Development of Disabled Persons”(Grant No.20BRK029)the National Language Commission’s“14th Five-Year Plan”Scientific Research Plan 2023 Project“Domain Digital Language Service Resource Construction and Key Technology Research”(YB145-72)the National Philosophy and Social Sciences Foundation(Grant No.20BTQ065).
文摘Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign Language Recognition(CSLR)in the past 20 years.Hidden Markov Models(HMM),Support Vector Machines(SVM),and Dynamic Time Warping(DTW)were found to be the most commonly employed technologies among traditional identificationmethods.Benefiting from the rapid development of computer vision and artificial intelligence technology,Convolutional Neural Networks(CNN),3D-CNN,YOLO,Capsule Network(CapsNet)and various deep neural networks have sprung up.Deep Neural Networks(DNNs)and their derived models are integral tomodern artificial intelligence recognitionmethods.In addition,technologies thatwerewidely used in the early days have also been integrated and applied to specific hybrid models and customized identification methods.Sign language data collection includes acquiring data from data gloves,data sensors(such as Kinect,LeapMotion,etc.),and high-definition photography.Meanwhile,facial expression recognition,complex background processing,and 3D sign language recognition have also attracted research interests among scholars.Due to the uniqueness and complexity of Chinese sign language,accuracy,robustness,real-time performance,and user independence are significant challenges for future sign language recognition research.Additionally,suitable datasets and evaluation criteria are also worth pursuing.
基金supported by the Scientific Research Projects of Higher Education Institutions in Hebei Province(Grant No.QN2023188)the project of Hebei University of Science and Technology(Grant No.1200752).
文摘Quadrotor unmanned aerial vehicles(UAVs)are widely used in inspection,agriculture,express delivery,and other fields owing to their low cost and high flexibility.However,the current UAV control system has shortcomings such as poor control accuracy and weak anti-interference ability to a certain extent.To address the control problem of a four-rotor UAV,we propose a method to enhance the controller’s accuracy by considering underactuated dynamics,nonlinearities,and external disturbances.A mathematical model is constructed based on the flight principles of the quadrotor UAV.We develop a control algorithm that combines humanoid intelligence with a cascade Proportional-Integral-Derivative(PID)approach.This algorithm incorporates the rate of change of the error into the inputs of the cascade PID controller,uses both the error and its rate of change as characteristic variables of the UAV’s control system,and employs a hyperbolic tangent function to improve the outer-loop control.The result is a double closed-loop intelligent PID(DCLIPID)control algorithm.Through MATLAB numerical simulation tests,it is found that the DCLIPID algorithm reduces the rise time by 0.5 s and the number of oscillations by 2 times compared to the string PID algorithm when a unit step signal is used as input.A UAV flight test was designed for comparison with the serial PID algorithm,and it was found that when the UAV planned the trajectory autonomously,the errors in the X-,Y-,and Z-directions were reduced by 0.22,0.21,and 0.31 m,respectively.Under the interference environment of artificial wind about 3.6 m·s-1,the UAV hovering error in X-,Y-,and Z-directions are 0.24,0.42,and 0.27 m,respectively.The simulation and experimental results show that the control method of humanoid intelligence and cascade PID can improve the real-time,control accuracy and anti-interference ability of the UAV,and the method has a certain reference value for the research in the field of UAV control.
文摘This paper aims to formalize a general definition of intelligence beyond human intelligence. We accomplish this by re-imagining the concept of equality as a fundamental abstraction for relation. We discover that the concept of equality = limits the sensitivity of our mathematics to abstract relationships. We propose a new relation principle that does not rely on the concept of equality but is consistent with existing mathematical abstractions. In essence, this paper proposes a conceptual framework for general interaction and argues that this framework is also an abstraction that satisfies the definition of Intelligence. Hence, we define intelligence as a formalization of generality, represented by the abstraction ∆∞Ο, where each symbol represents the concepts infinitesimal, infinite, and finite respectively. In essence, this paper proposes a General Language Model (GLM), where the abstraction ∆∞Ο represents the foundational relationship of the model. This relation is colloquially termed “The theory of everything”.
文摘Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further study.This study aims to analyze the impact of the installation and application of industrial robots on labor demand in the context of the Chinese economy.First,from the theoretical logic and the economic development law,this study gives the prior judgment and research hypothesis that industrial intelligence will increase jobs.Then,based on the panel data of 269 cities in China from 2006 to 2021,we use the two-way fixed effect model,dynamic threshold model,and two-stage intermediary effect model.The objective is to investigate the impact of industrial intelligence on enterprise labor demand and its path mechanism.Results show that the overall effect of industrial intelligence on the labor force with the installation density index of industrial robots as the proxy variable is the“creation effect”.In other words,advanced digital technology has created additional jobs,and the overall supply of employment in the labor market has increased.The conclusion is still valid after the endogeneity identification and robustness test.In addition,the positive effect has a nonlinear effect on the network scale.When the installation density of industrial robots exceeds a particular threshold value,the division of labor continues to deepen under the combined action of the production efficiency and compensation effects,which will cause enterprises to increase labor demand further.Further research showed that industrial intelligence can increase employment by promoting synergistic agglomeration and improving labor price distortions.This study concludes that in the digital China era,the introduction and installation of industrial robots by enterprises can affect the optimal allocation of the labor market.This phenomenon has essential experience and reference significance for guiding industrial digitalization and intelligent transformation and promoting the high-quality development of people’s livelihood.
文摘This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influencing driver behavior and assisting transportation agencies in achieving safe and efficient traffic movement. However, the psychological and behavioral effects of displaying fatality numbers on DMS remain poorly understood;hence, it is important to know the potential impacts of displaying such messages. The Iowa Department of Transportation displays the number of fatalities on a first screen, followed by a supplemental message hoping to promote safe driving;an example is “19 TRAFFIC DEATHS THIS YEAR IF YOU HAVE A SUPER BOWL DON’T DRIVE HIGH.” We employ natural language processing to decode the sentiment and undertone of the supplementary message and investigate how they influence driving speeds. According to the results of a mixed effect model, drivers reduced speeds marginally upon encountering DMS fatality text with a positive sentiment with a neutral undertone. This category had the largest associated amount of speed reduction, while messages with negative sentiment with a negative undertone had the second largest amount of speed reduction, greater than other combinations, including positive sentiment with a positive undertone.
文摘The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making.
文摘As a service format to meet spiritual needs, fashion culture industry is often synchronized in its creation, production, dissemination, display and consumption. In order to explore how artificial intelligence provides technical means, platforms, channels and space for intelligent formats in the field of communication, and how to provide intelligent services for cultural creation, communication, display and consumption. This paper discusses the application and innovation of artificial intelligence in all aspects of communication field, analyzes the problems and puts forward corresponding countermeasures and suggestions.
文摘This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the challenges of accurately predicting insurance claim frequencies, severities, and overall loss reserves while accounting for inflation adjustments. Through comprehensive data analysis and model development, this research explores the effectiveness of ANN methodologies in capturing complex nonlinear relationships within insurance data. The study leverages a data set comprising automobile insurance policyholder information, claim history, and economic indicators to train and validate the ANN-based reserving model. Key aspects of the methodology include data preprocessing techniques such as one-hot encoding and scaling, followed by the construction of frequency, severity, and overall loss reserving models using ANN architectures. Moreover, the model incorporates inflation adjustment factors to ensure the accurate estimation of future loss reserves in real terms. Results from the study demonstrate the superior predictive performance of the ANN-based reserving model compared to traditional actuarial methods, with substantial improvements in accuracy and robustness. Furthermore, the model’s ability to adapt to changing market conditions and regulatory requirements, such as IFRS17, highlights its practical relevance in the insurance industry. The findings of this research contribute to the advancement of actuarial science and provide valuable insights for insurance companies seeking more accurate and efficient loss reserving techniques. The proposed ANN-based approach offers a promising avenue for enhancing risk management practices and optimizing financial decision-making processes in the automobile insurance sector.
文摘BACKGROUND Medication errors,especially in dosage calculation,pose risks in healthcare.Artificial intelligence(AI)systems like ChatGPT and Google Bard may help reduce errors,but their accuracy in providing medication information remains to be evaluated.AIM To evaluate the accuracy of AI systems(ChatGPT 3.5,ChatGPT 4,Google Bard)in providing drug dosage information per Harrison's Principles of Internal Medicine.METHODS A set of natural language queries mimicking real-world medical dosage inquiries was presented to the AI systems.Responses were analyzed using a 3-point Likert scale.The analysis,conducted with Python and its libraries,focused on basic statistics,overall system accuracy,and disease-specific and organ system accuracies.RESULTS ChatGPT 4 outperformed the other systems,showing the highest rate of correct responses(83.77%)and the best overall weighted accuracy(0.6775).Disease-specific accuracy varied notably across systems,with some diseases being accurately recognized,while others demonstrated significant discrepancies.Organ system accuracy also showed variable results,underscoring system-specific strengths and weaknesses.CONCLUSION ChatGPT 4 demonstrates superior reliability in medical dosage information,yet variations across diseases emphasize the need for ongoing improvements.These results highlight AI's potential in aiding healthcare professionals,urging continuous development for dependable accuracy in critical medical situations.