通过液相沉淀法制备球形Ni(OH)2,与Mn(NO3)2和CH3COOLi·2 H2O混合,经高温固相法制备富锂Li1+xNi0.5Mn0.5O2正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、电化学交流阻抗及恒流充放电测试对样品的结构、形貌和电化学性...通过液相沉淀法制备球形Ni(OH)2,与Mn(NO3)2和CH3COOLi·2 H2O混合,经高温固相法制备富锂Li1+xNi0.5Mn0.5O2正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、电化学交流阻抗及恒流充放电测试对样品的结构、形貌和电化学性能进行表征。结果表明,当x=0.2时制备的富锂材料,阳离子混排低、颗粒均匀,表现出最好的电化学性能。在2.0∽4.8 V之间,20 m A/g条件下最高放电比容量为201.4 m Ah/g,60 m A/g下放电比容量仍可达到113.1m Ah/g。展开更多
分别采用氢氧化物共沉淀、碳酸盐共沉淀、喷雾干燥的方法合成了层状α-Na Fe O2结构的富锂正极材料0.5Li2Mn O3·0.5Li(Ni1/3Co1/3Mn1/3)O2,通过X射线衍射分析(XRD)、扫描电子显微镜(SEM)和电化学性能测试对不同合成方法所得的样品...分别采用氢氧化物共沉淀、碳酸盐共沉淀、喷雾干燥的方法合成了层状α-Na Fe O2结构的富锂正极材料0.5Li2Mn O3·0.5Li(Ni1/3Co1/3Mn1/3)O2,通过X射线衍射分析(XRD)、扫描电子显微镜(SEM)和电化学性能测试对不同合成方法所得的样品进行了表征。实验结果表明:氢氧化物共沉淀合成的前驱体所制备的正极材料0.5Li2Mn O3·0.5Li(Ni1/3Co1/3Mn1/3)O2具有良好的电化学性能,0.05C倍率下首次放电容量可达247.1 m A·h/g,0.2C倍率条件下经过50次循环,容量保持率为98.7%。展开更多
文摘通过液相沉淀法制备球形Ni(OH)2,与Mn(NO3)2和CH3COOLi·2 H2O混合,经高温固相法制备富锂Li1+xNi0.5Mn0.5O2正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、电化学交流阻抗及恒流充放电测试对样品的结构、形貌和电化学性能进行表征。结果表明,当x=0.2时制备的富锂材料,阳离子混排低、颗粒均匀,表现出最好的电化学性能。在2.0∽4.8 V之间,20 m A/g条件下最高放电比容量为201.4 m Ah/g,60 m A/g下放电比容量仍可达到113.1m Ah/g。
文摘分别采用氢氧化物共沉淀、碳酸盐共沉淀、喷雾干燥的方法合成了层状α-Na Fe O2结构的富锂正极材料0.5Li2Mn O3·0.5Li(Ni1/3Co1/3Mn1/3)O2,通过X射线衍射分析(XRD)、扫描电子显微镜(SEM)和电化学性能测试对不同合成方法所得的样品进行了表征。实验结果表明:氢氧化物共沉淀合成的前驱体所制备的正极材料0.5Li2Mn O3·0.5Li(Ni1/3Co1/3Mn1/3)O2具有良好的电化学性能,0.05C倍率下首次放电容量可达247.1 m A·h/g,0.2C倍率条件下经过50次循环,容量保持率为98.7%。