The crystallization behavior and kinetics of CaO-MgO-Al2O3 SiO2(CMAS) glass with the Fe2O3 content ranging from zero to 5%were investigated by differential scanning calorimetry(DSC).The structure and phase analyse...The crystallization behavior and kinetics of CaO-MgO-Al2O3 SiO2(CMAS) glass with the Fe2O3 content ranging from zero to 5%were investigated by differential scanning calorimetry(DSC).The structure and phase analyses were made by Fourier transform infrared spectroscopy(FT-IR) and X-ray diffraction(XRD).The experiment results show that the endothermic peak temperature about 760℃ is associated with transition and the exothermic peak temperature about 1000℃ is associated with crystallization.The crystallization peak temperature decreases with increasing the Fe203 content.The crystallization mechanism is changed from two-dimensional crystallization to one-dimensional growth,and the intensity of diopside peaks becomes stronger gradually.There is a saltation for the crystallization temperature with the addition of 0.5%Fe2O3 due to the decomposition of Fe2O3.Si-O-Si,O-Si-O and T-O-T(T=Si,Fe,Al) linkages are observed in Fe2O3-CaO-MgO-Al2O3-SiO2 glass.展开更多
Fe3O4 catalyst supported on spherical γ-Al2O3 was prepared with and without ultrasonic treatment during the impregnation step,and the heterogeneous catalytic oxidation of dimethoate wastewater was conducted with Fent...Fe3O4 catalyst supported on spherical γ-Al2O3 was prepared with and without ultrasonic treatment during the impregnation step,and the heterogeneous catalytic oxidation of dimethoate wastewater was conducted with Fenton reagent.Then,the physical and chemical properties of the catalysts were analyzed by means of XRD,ICP-AES and SEM,especially the effect of Fe3O4 dispersity on γ-Al2O3.The results showed that the activity of the supported catalysts prepared with ultrasonic treatment for dimethoate was higher than those without ultrasonic treatment and the corresponding degradation rate doubled those of the catalyst obtained by impregnation.The probable cause was that for catalysts prepared with ultrasonic treatment,Fe3O4 was well dispersed on the catalyst surface with small particle size,or existed in non-crystalline amorphous state,and Fe content on the catalyst surface was higher than those without ultrasonic treatment.展开更多
基金Projects(51264023,51364020,U1202271)supported by the National Natural Science Foundation of ChinaProject(IRT1250)supported by the Program for Innovative Research Team in University of Ministry of Education of ChinaProject(2014HA003)supported by the Science and Technology Leading Talent of Yunnan Province,China
文摘The crystallization behavior and kinetics of CaO-MgO-Al2O3 SiO2(CMAS) glass with the Fe2O3 content ranging from zero to 5%were investigated by differential scanning calorimetry(DSC).The structure and phase analyses were made by Fourier transform infrared spectroscopy(FT-IR) and X-ray diffraction(XRD).The experiment results show that the endothermic peak temperature about 760℃ is associated with transition and the exothermic peak temperature about 1000℃ is associated with crystallization.The crystallization peak temperature decreases with increasing the Fe203 content.The crystallization mechanism is changed from two-dimensional crystallization to one-dimensional growth,and the intensity of diopside peaks becomes stronger gradually.There is a saltation for the crystallization temperature with the addition of 0.5%Fe2O3 due to the decomposition of Fe2O3.Si-O-Si,O-Si-O and T-O-T(T=Si,Fe,Al) linkages are observed in Fe2O3-CaO-MgO-Al2O3-SiO2 glass.
文摘Fe3O4 catalyst supported on spherical γ-Al2O3 was prepared with and without ultrasonic treatment during the impregnation step,and the heterogeneous catalytic oxidation of dimethoate wastewater was conducted with Fenton reagent.Then,the physical and chemical properties of the catalysts were analyzed by means of XRD,ICP-AES and SEM,especially the effect of Fe3O4 dispersity on γ-Al2O3.The results showed that the activity of the supported catalysts prepared with ultrasonic treatment for dimethoate was higher than those without ultrasonic treatment and the corresponding degradation rate doubled those of the catalyst obtained by impregnation.The probable cause was that for catalysts prepared with ultrasonic treatment,Fe3O4 was well dispersed on the catalyst surface with small particle size,or existed in non-crystalline amorphous state,and Fe content on the catalyst surface was higher than those without ultrasonic treatment.