Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ...Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.展开更多
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p...Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies.展开更多
Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorit...Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorithms.In this paper,we chose e-healthcare systems for efficient decision-making and data classification,especially in data security,data handling,diagnostics,laboratories,and decision-making.Federated Machine Learning(FML)is a new and advanced technology that helps to maintain privacy for Personal Health Records(PHR)and handle a large amount of medical data effectively.In this context,XAI,along with FML,increases efficiency and improves the security of e-healthcare systems.The experiments show efficient system performance by implementing a federated averaging algorithm on an open-source Federated Learning(FL)platform.The experimental evaluation demonstrates the accuracy rate by taking epochs size 5,batch size 16,and the number of clients 5,which shows a higher accuracy rate(19,104).We conclude the paper by discussing the existing gaps and future work in an e-healthcare system.展开更多
Objective To observe the value of artificial intelligence(AI)models based on non-contrast chest CT for measuring bone mineral density(BMD).Methods Totally 380 subjects who underwent both non-contrast chest CT and quan...Objective To observe the value of artificial intelligence(AI)models based on non-contrast chest CT for measuring bone mineral density(BMD).Methods Totally 380 subjects who underwent both non-contrast chest CT and quantitative CT(QCT)BMD examination were retrospectively enrolled and divided into training set(n=304)and test set(n=76)at a ratio of 8∶2.The mean BMD of L1—L3 vertebrae were measured based on QCT.Spongy bones of T5—T10 vertebrae were segmented as ROI,radiomics(Rad)features were extracted,and machine learning(ML),Rad and deep learning(DL)models were constructed for classification of osteoporosis(OP)and evaluating BMD,respectively.Receiver operating characteristic curves were drawn,and area under the curves(AUC)were calculated to evaluate the efficacy of each model for classification of OP.Bland-Altman analysis and Pearson correlation analysis were performed to explore the consistency and correlation of each model with QCT for measuring BMD.Results Among ML and Rad models,ML Bagging-OP and Rad Bagging-OP had the best performances for classification of OP.In test set,AUC of ML Bagging-OP,Rad Bagging-OP and DL OP for classification of OP was 0.943,0.944 and 0.947,respectively,with no significant difference(all P>0.05).BMD obtained with all the above models had good consistency with those measured with QCT(most of the differences were within the range of Ax-G±1.96 s),which were highly positively correlated(r=0.910—0.974,all P<0.001).Conclusion AI models based on non-contrast chest CT had high efficacy for classification of OP,and good consistency of BMD measurements were found between AI models and QCT.展开更多
AIM:To explore whether unilateral herpes simplex keratitis(HSK)can cause morphological changes of bilateral meibomian glands(MGs)based on artificial intelligence(AI)analytical system.METHODS:In the retrospective study...AIM:To explore whether unilateral herpes simplex keratitis(HSK)can cause morphological changes of bilateral meibomian glands(MGs)based on artificial intelligence(AI)analytical system.METHODS:In the retrospective study,29 patients with unilateral HSK and 29 participants matched in terms of age and sex were included as control group.Meibographic images of the upper eyelid using Keratograph 5M and assessed ocular surface parameters including tear meniscus height and tear break-up time.MG density and vagueness values were automatically analyzed and calculated using an AI analytical system.We compared the differences between the affected and the contralateral unaffected eyes in HSK patients,and the normal control eyes.We employed either the paired t-test or the Wilcoxon signed-rank test to compare significant difference between the affected and unaffected eyes in HSK patients or between the HSK group and control group.RESULTS:The MG density was 0.19±0.09 in the HSKaffected eye and 0.18±0.07 in contralateral unaffected eye,which had no significant difference(P=0.616).The MG density between the affected eye with HSK and the normal control group was statistically significant(P=0.028).There was a significant difference in MG density between the contralateral unaffected eye and the normal control group(P=0.012).However,no significant difference in vagueness value was observed between the eye with HSK and the control group or between HSK eye and contralateral eye.CONCLUSION:The MG density between the HSKaffected eye and the contralateral unaffected eye don’t significantly differ,whereas there is a significant decrease in the HSK group compared to that of the normal participants.Unilateral HSV keratitis may suffer from bilateral changes of MG morphology indicating bilateral dry eye.Therefore,the fellow eye of patients with unilateral HSK should be considered a potential case of MG dysfunction,necessitating early treatment for bilateral dry eye in the clinic.展开更多
While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),...While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features.展开更多
Although the pediatric perioperative pain management has been improved in recent years,the valid and reliable pain assessment tool in perioperative period of children remains a challenging task.Pediatric perioperative...Although the pediatric perioperative pain management has been improved in recent years,the valid and reliable pain assessment tool in perioperative period of children remains a challenging task.Pediatric perioperative pain management is intractable not only because children cannot express their emotions accurately and objectively due to their inability to describe physiological characteristics of feeling which are different from those of adults,but also because there is a lack of effective and specific assessment tool for children.In addition,exposure to repeated painful stimuli early in life is known to have short and long-term adverse sequelae.The short-term sequelae can induce a series of neurological,endocrine,cardiovascular system stress related to psychological trauma,while long-term sequelae may alter brain maturation process,which can lead to impair neurodevelopmental,behavioral,and cognitive function.Children’s facial expressions largely reflect the degree of pain,which has led to the developing of a number of pain scoring tools that will help improve the quality of pain mana-gement in children if they are continually studied in depth.The artificial inte-lligence(AI)technology represented by machine learning has reached an unprecedented level in image processing of deep facial models through deep convolutional neural networks,which can effectively identify and systematically analyze various subtle features of children’s facial expressions.Based on the construction of a large database of images of facial expressions in children with perioperative pain,this study proposes to develop and apply automatic facial pain expression recognition software using AI technology.The study aims to improve the postoperative pain management for pediatric population and the short-term and long-term quality of life for pediatric patients after operational event.展开更多
Esophageal squamous cell carcinoma(ESCC)is the most common histological type of esophageal cancer with a poor prognosis.Early diagnosis and prognosis assessment are crucial for improving the survival rate of ESCC pati...Esophageal squamous cell carcinoma(ESCC)is the most common histological type of esophageal cancer with a poor prognosis.Early diagnosis and prognosis assessment are crucial for improving the survival rate of ESCC patients.With the advancement of artificial intelligence(AI)technology and the proliferation of medical digital information,AI has demonstrated promising sensitivity and accuracy in assisting precise detection,treatment decision-making,and prognosis assessment of ESCC.It has become a unique opportunity to enhance comprehen-sive clinical management of ESCC in the era of precision oncology.This review examines how AI is applied to the diagnosis,treatment,and prognosis assessment of ESCC in the era of precision oncology,and analyzes the challenges and potential opportunities that AI faces in clinical translation.Through insights into future prospects,it is hoped that this review will contribute to the real-world application of AI in future clinical settings,ultimately alleviating the disease burden caused by ESCC.展开更多
Artificial Intelligence (AI) has progressively impacted healthcare around the world. The increasing need for readily available mental health services, coupled with the swift advancement of novel technologies, prompts ...Artificial Intelligence (AI) has progressively impacted healthcare around the world. The increasing need for readily available mental health services, coupled with the swift advancement of novel technologies, prompts conversations over the viability of psychotherapy approaches using engagements with AI. Despite the positive impacts, there are recognizable drawbacks associated with the application of AI in psychotherapy. Establishing a therapeutic alliance is difficult for non-human entities. Psychotherapy is a task too complex for limited artificial intelligence. AI appears capable of handling jobs that are clearly defined and relatively straightforward. Besides, AI malfunctions, data confidentiality, informed consent, and risk of bias are potential concerns. We present a literature update of possible solutions to overcome these concerns.展开更多
In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear s...In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.展开更多
Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineeri...Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.展开更多
With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generat...With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generative AI technology and its potential in personalized learning,interactive content creation and adaptive assessment in education were introduced firstly.Then,the application case of generative AI tools in teaching content creation,scenario-based teaching content development,visual teaching content development,complex concept deconstruction and analogy,student-led application practice and other aspects in the teaching of Building Decoration Materials was discussed.Through the teaching experiment and effect evaluation,the positive influence of generative AI technology on the improvement of students'learning effect and teaching efficiency was verified.Finally,some thoughts and inspirations on the combination of educational theory and generative AI technology,the integration of teaching design and generative AI technology,and the practice cases and effect evaluation were put forward,and the importance of teacher role transformation and personalized learning path design was emphasized to provide theoretical and practical support for the innovative development of higher education.展开更多
The number and variety of applications of artificial intelligence(AI)in gastr-ointestinal(GI)endoscopy is growing rapidly.New technologies based on machine learning(ML)and convolutional neural networks(CNNs)are at var...The number and variety of applications of artificial intelligence(AI)in gastr-ointestinal(GI)endoscopy is growing rapidly.New technologies based on machine learning(ML)and convolutional neural networks(CNNs)are at various stages of development and deployment to assist patients and endoscopists in preparing for endoscopic procedures,in detection,diagnosis and classification of pathology during endoscopy and in confirmation of key performance indicators.Platforms based on ML and CNNs require regulatory approval as medical devices.Interactions between humans and the technologies we use are complex and are influenced by design,behavioural and psychological elements.Due to the substantial differences between AI and prior technologies,important differences may be expected in how we interact with advice from AI technologies.Human-AI interaction(HAII)may be optimised by developing AI algorithms to minimise false positives and designing platform interfaces to maximise usability.Human factors influencing HAII may include automation bias,alarm fatigue,algorithm aversion,learning effect and deskilling.Each of these areas merits further study in the specific setting of AI applications in GI endoscopy and professional societies should engage to ensure that sufficient emphasis is placed on human-centred design in development of new AI technologies.展开更多
The Automated Actuarial Pricing and Underwriting Model has been enhanced and expanded through the implementation of Artificial Intelligence to automate three distinct actuarial functions: loss reserving, pricing, and ...The Automated Actuarial Pricing and Underwriting Model has been enhanced and expanded through the implementation of Artificial Intelligence to automate three distinct actuarial functions: loss reserving, pricing, and underwriting. This model utilizes data analytics based on Artificial Intelligence to merge microfinance and car insurance services. Introducing and applying a no-claims bonus rate system, comprising base rates, variable rates, and final rates, to three key policyholder categories significantly reduces the occurrence and impact of claims while encouraging increased premium payments. We have enhanced frequency-severity models with eight machine learning algorithms and adjusted the Automated Actuarial Pricing and Underwriting Model for inflation, resulting in outstanding performance. Among the machine learning models utilized, the Random Forest (RANGER) achieved the highest Total Aggregate Comprehensive Automated Actuarial Loss Reserve Risk Pricing Balance (ACAALRRPB), establishing itself as the preferred model for developing Automated Actuarial Underwriting models tailored to specific policyholder categories.展开更多
In recent years,the domain of machine translation has experienced remarkable growth,particularly with the emergence of neural machine translation,which has significantly enhanced both the accuracy and fluency of trans...In recent years,the domain of machine translation has experienced remarkable growth,particularly with the emergence of neural machine translation,which has significantly enhanced both the accuracy and fluency of translation.At the same time,AI also showed its tremendous advancement,with its capabilities now extending to assisting users in a multitude of tasks,including translation,garnering attention across various sectors.In this paper,the author selects representative sentences from both literary and scientific texts,and translates them using two translation software and two AI tools for comparison.The results show that all four translation tools are very efficient and can help with simple translation tasks.However,the accuracy of terminology needs to be improved,and it is difficult to make adjustments based on the characteristics of the target language.It is worth mentioning that one of the advantages of AI is its interactivity,which allows it to modify the translation according to the translator’s needs.展开更多
High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-per...High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-performing server systems pose an immense thermal challenge for cooling. The use of refrigerants as a direct-to-chip cooling method is investigated as a potential cooling solution for cooling AI chips. Using a vapor compression refrigeration system (VCRS), the coolant temperature will be sub-ambient thereby increasing the total cooling capacity. Coupled with the implementation of a direct-to-chip boiler, using refrigerants to cool AI server systems can materialize as a potential solution for current AI server cooling demands. In this study, a comparison of 8 different refrigerants: R-134a, R-153a, R-717, R-508B, R-22, R-12, R-410a, and R-1234yf is analyzed for optimal performance. A control theoretical VCRS model is created to assess variable refrigerants under the same operational conditions. From this model, the coefficient of performance (COP), required mass flow rate of refrigerant, work required by the compressor, and overall heat transfer coefficient is determined for all 8 refrigerants. Lastly, a comprehensive analysis is provided to determine the most optimal refrigerants for cooling applications. R-717, commonly known as Ammonia, was found to have the highest COP value thus proving to be the optimal refrigerant for cooling AI chips and high-performing server applications.展开更多
Artificial Intelligence(AI)has increased as a potent tool in medicine,with promising oncology applications.The emergence of immunotherapy has transformed the treatment terrain for hepatocellular carcinoma(HCC),offerin...Artificial Intelligence(AI)has increased as a potent tool in medicine,with promising oncology applications.The emergence of immunotherapy has transformed the treatment terrain for hepatocellular carcinoma(HCC),offering new hope to patients with this challenging malignancy.This article examines the role and future of AI in forecasting the effectiveness of immunotherapy in HCC.We highlight the potential of AI to revolutionize the prediction of therapy response,thus improving patient selection and clinical outcomes.The article further outlines the challenges and future research directions in this emerging field.展开更多
This study explores the impact of generative artificial intelligence(AI)-enabled instruction on critical thinking in English essay writing among 1,050 first-year English majors across four colleges.Pedagogical strateg...This study explores the impact of generative artificial intelligence(AI)-enabled instruction on critical thinking in English essay writing among 1,050 first-year English majors across four colleges.Pedagogical strategies,including facilitating critical responses and emphasizing real-world application,are identified to enhance generative AI’s impact.Both qualitative and quantitative analyses reveal significant post-intervention improvements in critical thinking skills.This research contributes to understanding how generative AI can effectively foster critical thinking in educational settings.展开更多
This article proposes a comprehensive monitoring system for tunnel operation to address the risks associated with tunnel operations.These risks include safety control risks,increased traffic flow,extreme weather event...This article proposes a comprehensive monitoring system for tunnel operation to address the risks associated with tunnel operations.These risks include safety control risks,increased traffic flow,extreme weather events,and movement of tectonic plates.The proposed system is based on the Internet of Things and artificial intelligence identification technology.The monitoring system will cover various aspects of tunnel operations,such as the slope of the entrance,the structural safety of the cave body,toxic and harmful gases that may appear during operation,excessively high and low-temperature humidity,poor illumination,water leakage or road water accumulation caused by extreme weather,combustion and smoke caused by fires,and more.The system will enable comprehensive monitoring and early warning of fire protection systems,accident vehicles,and overheating vehicles.This will effectively improve safety during tunnel operation.展开更多
The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and ...The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and teaching,but it also prevents individuals from thinking independently and creatively.In the era of generative AI,the rapid development of technology and its significant impact on the field of education are inevitable.There are many educational issues related to it,such as teaching methods,student training goals,teaching philosophy and purposes,and other educational issues,that require re-conceptualization and review.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)and STEP(Grant No.2019QZKK0102)supported by the Korea Environmental Industry&Technology Institute(KEITI)through the“Project for developing an observation-based GHG emissions geospatial information map”,funded by the Korea Ministry of Environment(MOE)(Grant No.RS-2023-00232066).
文摘Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.
基金supported by the Capital’s Funds for Health Improvement and Research,No.2022-2-2072(to YG).
文摘Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies.
文摘Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorithms.In this paper,we chose e-healthcare systems for efficient decision-making and data classification,especially in data security,data handling,diagnostics,laboratories,and decision-making.Federated Machine Learning(FML)is a new and advanced technology that helps to maintain privacy for Personal Health Records(PHR)and handle a large amount of medical data effectively.In this context,XAI,along with FML,increases efficiency and improves the security of e-healthcare systems.The experiments show efficient system performance by implementing a federated averaging algorithm on an open-source Federated Learning(FL)platform.The experimental evaluation demonstrates the accuracy rate by taking epochs size 5,batch size 16,and the number of clients 5,which shows a higher accuracy rate(19,104).We conclude the paper by discussing the existing gaps and future work in an e-healthcare system.
文摘Objective To observe the value of artificial intelligence(AI)models based on non-contrast chest CT for measuring bone mineral density(BMD).Methods Totally 380 subjects who underwent both non-contrast chest CT and quantitative CT(QCT)BMD examination were retrospectively enrolled and divided into training set(n=304)and test set(n=76)at a ratio of 8∶2.The mean BMD of L1—L3 vertebrae were measured based on QCT.Spongy bones of T5—T10 vertebrae were segmented as ROI,radiomics(Rad)features were extracted,and machine learning(ML),Rad and deep learning(DL)models were constructed for classification of osteoporosis(OP)and evaluating BMD,respectively.Receiver operating characteristic curves were drawn,and area under the curves(AUC)were calculated to evaluate the efficacy of each model for classification of OP.Bland-Altman analysis and Pearson correlation analysis were performed to explore the consistency and correlation of each model with QCT for measuring BMD.Results Among ML and Rad models,ML Bagging-OP and Rad Bagging-OP had the best performances for classification of OP.In test set,AUC of ML Bagging-OP,Rad Bagging-OP and DL OP for classification of OP was 0.943,0.944 and 0.947,respectively,with no significant difference(all P>0.05).BMD obtained with all the above models had good consistency with those measured with QCT(most of the differences were within the range of Ax-G±1.96 s),which were highly positively correlated(r=0.910—0.974,all P<0.001).Conclusion AI models based on non-contrast chest CT had high efficacy for classification of OP,and good consistency of BMD measurements were found between AI models and QCT.
基金Supported by Zhejiang Provincial Medical and Health Science Technology Program,Health Commission of Zhejiang Province(No.2022PY074)Science and Technology Program of Wenzhou City(No.Y2020335).
文摘AIM:To explore whether unilateral herpes simplex keratitis(HSK)can cause morphological changes of bilateral meibomian glands(MGs)based on artificial intelligence(AI)analytical system.METHODS:In the retrospective study,29 patients with unilateral HSK and 29 participants matched in terms of age and sex were included as control group.Meibographic images of the upper eyelid using Keratograph 5M and assessed ocular surface parameters including tear meniscus height and tear break-up time.MG density and vagueness values were automatically analyzed and calculated using an AI analytical system.We compared the differences between the affected and the contralateral unaffected eyes in HSK patients,and the normal control eyes.We employed either the paired t-test or the Wilcoxon signed-rank test to compare significant difference between the affected and unaffected eyes in HSK patients or between the HSK group and control group.RESULTS:The MG density was 0.19±0.09 in the HSKaffected eye and 0.18±0.07 in contralateral unaffected eye,which had no significant difference(P=0.616).The MG density between the affected eye with HSK and the normal control group was statistically significant(P=0.028).There was a significant difference in MG density between the contralateral unaffected eye and the normal control group(P=0.012).However,no significant difference in vagueness value was observed between the eye with HSK and the control group or between HSK eye and contralateral eye.CONCLUSION:The MG density between the HSKaffected eye and the contralateral unaffected eye don’t significantly differ,whereas there is a significant decrease in the HSK group compared to that of the normal participants.Unilateral HSV keratitis may suffer from bilateral changes of MG morphology indicating bilateral dry eye.Therefore,the fellow eye of patients with unilateral HSK should be considered a potential case of MG dysfunction,necessitating early treatment for bilateral dry eye in the clinic.
文摘While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features.
文摘Although the pediatric perioperative pain management has been improved in recent years,the valid and reliable pain assessment tool in perioperative period of children remains a challenging task.Pediatric perioperative pain management is intractable not only because children cannot express their emotions accurately and objectively due to their inability to describe physiological characteristics of feeling which are different from those of adults,but also because there is a lack of effective and specific assessment tool for children.In addition,exposure to repeated painful stimuli early in life is known to have short and long-term adverse sequelae.The short-term sequelae can induce a series of neurological,endocrine,cardiovascular system stress related to psychological trauma,while long-term sequelae may alter brain maturation process,which can lead to impair neurodevelopmental,behavioral,and cognitive function.Children’s facial expressions largely reflect the degree of pain,which has led to the developing of a number of pain scoring tools that will help improve the quality of pain mana-gement in children if they are continually studied in depth.The artificial inte-lligence(AI)technology represented by machine learning has reached an unprecedented level in image processing of deep facial models through deep convolutional neural networks,which can effectively identify and systematically analyze various subtle features of children’s facial expressions.Based on the construction of a large database of images of facial expressions in children with perioperative pain,this study proposes to develop and apply automatic facial pain expression recognition software using AI technology.The study aims to improve the postoperative pain management for pediatric population and the short-term and long-term quality of life for pediatric patients after operational event.
文摘Esophageal squamous cell carcinoma(ESCC)is the most common histological type of esophageal cancer with a poor prognosis.Early diagnosis and prognosis assessment are crucial for improving the survival rate of ESCC patients.With the advancement of artificial intelligence(AI)technology and the proliferation of medical digital information,AI has demonstrated promising sensitivity and accuracy in assisting precise detection,treatment decision-making,and prognosis assessment of ESCC.It has become a unique opportunity to enhance comprehen-sive clinical management of ESCC in the era of precision oncology.This review examines how AI is applied to the diagnosis,treatment,and prognosis assessment of ESCC in the era of precision oncology,and analyzes the challenges and potential opportunities that AI faces in clinical translation.Through insights into future prospects,it is hoped that this review will contribute to the real-world application of AI in future clinical settings,ultimately alleviating the disease burden caused by ESCC.
文摘Artificial Intelligence (AI) has progressively impacted healthcare around the world. The increasing need for readily available mental health services, coupled with the swift advancement of novel technologies, prompts conversations over the viability of psychotherapy approaches using engagements with AI. Despite the positive impacts, there are recognizable drawbacks associated with the application of AI in psychotherapy. Establishing a therapeutic alliance is difficult for non-human entities. Psychotherapy is a task too complex for limited artificial intelligence. AI appears capable of handling jobs that are clearly defined and relatively straightforward. Besides, AI malfunctions, data confidentiality, informed consent, and risk of bias are potential concerns. We present a literature update of possible solutions to overcome these concerns.
基金supported by Prince Sultan University(Grant No.PSU-CE-TECH-135,2023).
文摘In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.
文摘Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.
文摘With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generative AI technology and its potential in personalized learning,interactive content creation and adaptive assessment in education were introduced firstly.Then,the application case of generative AI tools in teaching content creation,scenario-based teaching content development,visual teaching content development,complex concept deconstruction and analogy,student-led application practice and other aspects in the teaching of Building Decoration Materials was discussed.Through the teaching experiment and effect evaluation,the positive influence of generative AI technology on the improvement of students'learning effect and teaching efficiency was verified.Finally,some thoughts and inspirations on the combination of educational theory and generative AI technology,the integration of teaching design and generative AI technology,and the practice cases and effect evaluation were put forward,and the importance of teacher role transformation and personalized learning path design was emphasized to provide theoretical and practical support for the innovative development of higher education.
文摘The number and variety of applications of artificial intelligence(AI)in gastr-ointestinal(GI)endoscopy is growing rapidly.New technologies based on machine learning(ML)and convolutional neural networks(CNNs)are at various stages of development and deployment to assist patients and endoscopists in preparing for endoscopic procedures,in detection,diagnosis and classification of pathology during endoscopy and in confirmation of key performance indicators.Platforms based on ML and CNNs require regulatory approval as medical devices.Interactions between humans and the technologies we use are complex and are influenced by design,behavioural and psychological elements.Due to the substantial differences between AI and prior technologies,important differences may be expected in how we interact with advice from AI technologies.Human-AI interaction(HAII)may be optimised by developing AI algorithms to minimise false positives and designing platform interfaces to maximise usability.Human factors influencing HAII may include automation bias,alarm fatigue,algorithm aversion,learning effect and deskilling.Each of these areas merits further study in the specific setting of AI applications in GI endoscopy and professional societies should engage to ensure that sufficient emphasis is placed on human-centred design in development of new AI technologies.
文摘The Automated Actuarial Pricing and Underwriting Model has been enhanced and expanded through the implementation of Artificial Intelligence to automate three distinct actuarial functions: loss reserving, pricing, and underwriting. This model utilizes data analytics based on Artificial Intelligence to merge microfinance and car insurance services. Introducing and applying a no-claims bonus rate system, comprising base rates, variable rates, and final rates, to three key policyholder categories significantly reduces the occurrence and impact of claims while encouraging increased premium payments. We have enhanced frequency-severity models with eight machine learning algorithms and adjusted the Automated Actuarial Pricing and Underwriting Model for inflation, resulting in outstanding performance. Among the machine learning models utilized, the Random Forest (RANGER) achieved the highest Total Aggregate Comprehensive Automated Actuarial Loss Reserve Risk Pricing Balance (ACAALRRPB), establishing itself as the preferred model for developing Automated Actuarial Underwriting models tailored to specific policyholder categories.
文摘In recent years,the domain of machine translation has experienced remarkable growth,particularly with the emergence of neural machine translation,which has significantly enhanced both the accuracy and fluency of translation.At the same time,AI also showed its tremendous advancement,with its capabilities now extending to assisting users in a multitude of tasks,including translation,garnering attention across various sectors.In this paper,the author selects representative sentences from both literary and scientific texts,and translates them using two translation software and two AI tools for comparison.The results show that all four translation tools are very efficient and can help with simple translation tasks.However,the accuracy of terminology needs to be improved,and it is difficult to make adjustments based on the characteristics of the target language.It is worth mentioning that one of the advantages of AI is its interactivity,which allows it to modify the translation according to the translator’s needs.
文摘High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-performing server systems pose an immense thermal challenge for cooling. The use of refrigerants as a direct-to-chip cooling method is investigated as a potential cooling solution for cooling AI chips. Using a vapor compression refrigeration system (VCRS), the coolant temperature will be sub-ambient thereby increasing the total cooling capacity. Coupled with the implementation of a direct-to-chip boiler, using refrigerants to cool AI server systems can materialize as a potential solution for current AI server cooling demands. In this study, a comparison of 8 different refrigerants: R-134a, R-153a, R-717, R-508B, R-22, R-12, R-410a, and R-1234yf is analyzed for optimal performance. A control theoretical VCRS model is created to assess variable refrigerants under the same operational conditions. From this model, the coefficient of performance (COP), required mass flow rate of refrigerant, work required by the compressor, and overall heat transfer coefficient is determined for all 8 refrigerants. Lastly, a comprehensive analysis is provided to determine the most optimal refrigerants for cooling applications. R-717, commonly known as Ammonia, was found to have the highest COP value thus proving to be the optimal refrigerant for cooling AI chips and high-performing server applications.
基金Supported by the National Natural Science Foundation of China,No.81401988China Postdoctoral Science Foundation,No.2019M661907+4 种基金Jiangsu Postdoctoral Science Foundation,No.2019K159,and No.2019Z153General Project of Jiangsu Provincial Health Committee,No.H2023136General Project of Nantong Municipal Health Committee,No.MS2023013Jiangsu Provincial Research Hospital,No.YJXYY202204-YSB28and College Student Innovation Program,No.202210304128Y,and No.2023103041055.
文摘Artificial Intelligence(AI)has increased as a potent tool in medicine,with promising oncology applications.The emergence of immunotherapy has transformed the treatment terrain for hepatocellular carcinoma(HCC),offering new hope to patients with this challenging malignancy.This article examines the role and future of AI in forecasting the effectiveness of immunotherapy in HCC.We highlight the potential of AI to revolutionize the prediction of therapy response,thus improving patient selection and clinical outcomes.The article further outlines the challenges and future research directions in this emerging field.
基金General Project of Philosophy and Social Science Research in Jiangsu Universities in 2024“Research on the Mining and Integration Strategy of Ideological and Political Elements in Business English Major Courses”(2024SISZ0787)。
文摘This study explores the impact of generative artificial intelligence(AI)-enabled instruction on critical thinking in English essay writing among 1,050 first-year English majors across four colleges.Pedagogical strategies,including facilitating critical responses and emphasizing real-world application,are identified to enhance generative AI’s impact.Both qualitative and quantitative analyses reveal significant post-intervention improvements in critical thinking skills.This research contributes to understanding how generative AI can effectively foster critical thinking in educational settings.
文摘This article proposes a comprehensive monitoring system for tunnel operation to address the risks associated with tunnel operations.These risks include safety control risks,increased traffic flow,extreme weather events,and movement of tectonic plates.The proposed system is based on the Internet of Things and artificial intelligence identification technology.The monitoring system will cover various aspects of tunnel operations,such as the slope of the entrance,the structural safety of the cave body,toxic and harmful gases that may appear during operation,excessively high and low-temperature humidity,poor illumination,water leakage or road water accumulation caused by extreme weather,combustion and smoke caused by fires,and more.The system will enable comprehensive monitoring and early warning of fire protection systems,accident vehicles,and overheating vehicles.This will effectively improve safety during tunnel operation.
文摘The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and teaching,but it also prevents individuals from thinking independently and creatively.In the era of generative AI,the rapid development of technology and its significant impact on the field of education are inevitable.There are many educational issues related to it,such as teaching methods,student training goals,teaching philosophy and purposes,and other educational issues,that require re-conceptualization and review.