BACKGROUND Cancer is one of the most serious threats to human health worldwide.Conventional treatments such as surgery and chemotherapy are associated with some drawbacks.In recent years,traditional Chinese medicine t...BACKGROUND Cancer is one of the most serious threats to human health worldwide.Conventional treatments such as surgery and chemotherapy are associated with some drawbacks.In recent years,traditional Chinese medicine treatment has been increasingly advocated by patients and attracted attention from clinicians,and has become an indispensable part of the comprehensive treatment for gastric cancer.AIM To investigate the mechanism of Xiaojianzhong decoction(XJZ)in the treatment of gastric cancer(GC)by utilizing network pharmacology and experimental validation,so as to provide a theoretical basis for later experimental research.METHODS We analyzed the mechanism and targets of XJZ in the treatment of GC through network pharmacology and bioinformatics.Subsequently,we verified the impact of XJZ treatment on the proliferative ability of GC cells through CCK-8,apoptosis,cell cycle,and clone formation assays.Additionally,we performed Western blot analysis and real-time quantitative PCR to assess the protein and mRNA expression of the core proteins.RESULTS XJZ mainly regulates IL6,PTGS2,CCL2,MMP9,MMP2,HMOX1,and other target genes and pathways in cancer to treat GC.The inhibition of cell viability,the increase of apoptosis,the blockage of the cell cycle at the G0/G1 phase,and the inhibition of the ability of cell clone formation were observed in AGS and HGC-27 cells after XJZ treatment.In addition,XJZ induced a decrease in the mRNA expression of IL6,PTGS2,MMP9,MMP2,and CCL2,and an increase in the mRNA expression of HOMX1.XJZ significantly inhibited the expression of IL6,PTGS2,MMP9,MMP2,and CCL2 proteins and promoted the expression of the heme oxygenase-1 protein.CONCLUSION XJZ exerts therapeutic effects against GC through multiple components,multiple targets,and multiple pathways.Our findings provide a new idea and scientific basis for further research on the molecular mechanisms underlying the therapeutic effects of XJZ in the treatment of GC.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
BACKGROUND:Sepsis-related acute respiratory distress syndrome(ARDS)has a high mortality rate,and no effective treatment is available currently.Quercetin is a natural plant product with many pharmacological activities,...BACKGROUND:Sepsis-related acute respiratory distress syndrome(ARDS)has a high mortality rate,and no effective treatment is available currently.Quercetin is a natural plant product with many pharmacological activities,such as antioxidative,anti-apoptotic,and anti-inflammatory effects.This study aimed to elucidate the protective mechanism of quercetin against sepsis-related ARDS.METHODS:In this study,network pharmacology and in vitro experiments were used to investigate the underlying mechanisms of quercetin against sepsis-related ARDS.Core targets and signaling pathways of quercetin against sepsis-related ARDS were screened and were verified by in vitro experiments.RESULTS:A total of 4,230 targets of quercetin,360 disease targets of sepsis-related ARDS,and 211 intersection targets were obtained via database screening.Among the 211 intersection targets,interleukin-6(IL-6),tumor necrosis factor(TNF),albumin(ALB),AKT serine/threonine kinase 1(AKT1),and interleukin-1β(IL-1β)were identified as the core targets.A Gene Ontology(GO)enrichment analysis revealed 894 genes involved in the inflammatory response,apoptosis regulation,and response to hypoxia.Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis identified 106 pathways.After eliminating and generalizing,the hypoxia-inducible factor-1(HIF-1),TNF,nuclear factor-κB(NF-κB),and nucleotide-binding and oligomerization domain(NOD)-like receptor signaling pathways were identified.Molecular docking revealed that quercetin had good binding activity with the core targets.Moreover,quercetin blocked the HIF-1,TNF,NF-κB,and NODlike receptor signaling pathways in lipopolysaccharide(LPS)-induced murine alveolar macrophage(MH-S)cells.It also suppressed the inflammatory response,oxidative reactions,and cell apoptosis.CONCLUSION:Quercetin ameliorates sepsis-related ARDS by binding to its core targets and blocking the HIF-1,TNF,NF-κB,and NOD-like receptor signaling pathways to reduce inflammation,cell apoptosis,and oxidative stress.展开更多
Objective This study aimed to investigate the effect and underlying mechanism of Fructus lycii in improving exercise fatigue.Methods A network pharmacological approach was used to explore potential mechanisms of actio...Objective This study aimed to investigate the effect and underlying mechanism of Fructus lycii in improving exercise fatigue.Methods A network pharmacological approach was used to explore potential mechanisms of action of Fructus lycii.Skeletal muscle C2C12 cells and immunofluorescence were employed to verify the effect and mechanism of the representative components in Fructus lycii predicted by network pharmacological analysis.Results Six potential active components,namely quercetin,β-sitosterol,stigmasterol,7-Omethylluteolin-6-C-beta-glucoside_qt,atropine,and glycitein,were identified to have potency in improving exercise fatigue via multiple pathways,such as the PI3K-Akt,neuroactive ligand-receptor interaction,IL-17,TNF,and MAPK signaling pathways.The immunofluorescence results indicated that quercetin,a significant active component in Fructus lycii,increased the mean staining area of 2-NBDG,TMRM,and MitoTracker,and decreased the area of CellRox compared to the control.Furthermore,the protein expression levels of p-38 MAPK,p-MAPK,p-JNK,p-PI3K,and p-AKT markedly increased after quercetin treatment.Conclusion Fructus lycii might alleviate exercise fatigue through multiple components and pathways.Among these,quercetin appears to improve exercise fatigue by enhancing energy metabolism and reducing oxidative stress.The PI3K-AKT and MAPK signaling pathways also appear to play a role in this process.展开更多
BACKGROUND Gastric cancer(GC)is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis.Resveratrol,a non-flavonoid poly-phenolic compound found in a variety of Chinese medicinal ...BACKGROUND Gastric cancer(GC)is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis.Resveratrol,a non-flavonoid poly-phenolic compound found in a variety of Chinese medicinal materials,has shown excellent anti-GC effect.However,its exact mechanisms of action in GC have not been clarified.AIM To identify the effects of resveratrol on GC progression and explore the related molecular mechanisms.METHODS Action targets of resveratrol and GC-related targets were screened from public databases.The overlapping targets between the two were confirmed using a Venn diagram,and a“Resveratrol-Target-GC”network was constructed using Cyto-scape software version 3.9.1.The protein-protein interaction(PPI)network was constructed using STRING database and core targets were identified by PPI network analysis.The Database for Annotation,Visualization and Integrated A total of 378 resveratrol action targets and 2154 GC disease targets were obtained from public databases,and 181 intersection targets between the two were screened by Venn diagram.The top 20 core targets were identified by PPI network analysis of the overlapping targets.GO function analysis mainly involved protein binding,identical protein binding,cytoplasm,nucleus,negative regulation of apoptotic process and response to xenobiotic stimulus.KEGG enrichment analysis suggested that the involved signaling pathways mainly included PI3K-AKT signaling pathway,MAPK signaling pathway,IL-17 signaling pathway,TNF signaling pathway,ErbB signaling pathway,etc.FBJ murine osteosarcoma viral oncogene homolog(FOS)and matrix metallopeptidase 9(MMP9)were selected by differential expression analysis,and they were closely associated with immune infiltration.Molecular docking results showed that resveratrol docked well with these two targets.Resveratrol treatment arrested the cell cycle at the S phase,induced apoptosis,and weakened viability,migration and invasion in a dose-dependent manner.Furthermore,resveratrol could exhibit anti-GC effect by regulating FOS and MMP9 expression.CONCLUSION The anti-GC effects of resveratrol are related to the inhibition of cell proliferation,migration,invasion and induction of cell cycle arrest and apoptosis by targeting FOS and MMP9.展开更多
Background:Buyang Huanwu decoction(BHD)is a traditional Chinese medicine herbal formula used for treating hypertension,particularly in the later stages of hypertension when it is associated with intracerebral hemorrha...Background:Buyang Huanwu decoction(BHD)is a traditional Chinese medicine herbal formula used for treating hypertension,particularly in the later stages of hypertension when it is associated with intracerebral hemorrhage.This study aims to investigate the treatment mechanism of BHD to provide a basis for its clinical application in hypertension treatment.Methods:Network pharmacology analysis and cell culture experiments were performed to explore the potential proteins and mechanisms of action of BHD against hypertension.Bioactive compounds related to BHD were screened,and relevant targets associated with hypertension and BHD were retrieved.Molecular docking technology was used to identify the effective signaling pathway based on the Kyoto Encyclopedia of Genes and Genomes and protein-protein interaction network cores.Lastly,the effects and mechanisms of BHD on salt-sensitive hypertensive endothelial cells were investigated.Results:Ninety-three potential therapeutic targets for BHD and salt-sensitive hypertension were found to be closely associated with the PI3K/Akt/eNOS signaling pathway and oxidative stress.Cell experiments further indicated the pivotal role of endothelial cells in hypertension,and validation analysis showed that BHD significantly preserved cell morphology,suppressed oxidative stress reactions,activated the PI3K/Akt/eNOS signaling pathways,preserved normal endothelial cell function,and reduced cell apoptosis.Conclusion:BHD effectively activates the PI3K/Akt/VEGF signaling pathway,attenuates oxidative stress-induced injury in endothelial cells exposed to high salt levels,and mitigates apoptosis,supporting the use of traditional Chinese medicine BHD in the treatment of salt-sensitive hypertension.展开更多
BACKGROUND Curcumin originates from the natural herb turmeric,and its antitumor effects have been known about for a long time.However,the mechanism by which curcumin affects gastric cancer(GC)has not been elucidated.A...BACKGROUND Curcumin originates from the natural herb turmeric,and its antitumor effects have been known about for a long time.However,the mechanism by which curcumin affects gastric cancer(GC)has not been elucidated.AIM To elucidate the potential mechanisms of curcumin in the treatment of GC.METHODS Network pharmacological approaches were used to perform network analysis of Curcumin.We first analyzed Lipinski’s Rule of Five for the use of Curcumin.Curcumin latent targets were predicted using the PharmMapper,SwissTargetPrediction and DrugBank network databases.GC disease targets were mined through the GeneCard,OMIM,DrugBank and TTD network databases.Then,GO enrichment,KEGG enrichment,protein-protein interaction(PPI),and overall survival analyses were performed.The results were further verified through molecular docking,differential expression analysis and cell experiments.RESULTS We identified a total of 48 curcumin-related genes with 31 overlapping GC-related targets.The intersection targets between curcumin and GC have been enriched in 81 GO biological processes and 22 significant pathways.Following PPI analysis,6 hub targets were identified,namely,estrogen receptor 1(ESR1),epidermal growth factor receptor(EGFR),cytochrome P450 family 3 subfamily A member 4(CYP3A4),mitogen-activated protein kinase 14(MAPK-14),cytochrome P450 family 1 subfamily A member 2(CYP1A2),and cytochrome p450 family 2 subfamily B member 6(CYP2B6).These factors are correlated with decreased survival rates among patients diagnosed with GC.Molecular docking analysis further substantiated the strong binding interactions between Curcumin and the hub target genes.The experimental findings demonstrated that curcumin not only effectively inhibits the growth of BGC-823 cells but also suppresses their proliferation.mRNA levels of hub targets CYP3A4,MAPK14,CYP1A2,and CYP2B6 in BGC-823 cells were significantly increased in each dose group.CONCLUSION Curcumin can play an anti-GC role through a variety of targets,pathways and biological processes.展开更多
BACKGROUND Diabetic retinopathy(DR)is a common microvascular complication of diabetes mellitus.Its blindness rate is high;therefore,finding a reasonable and safe treatment plan to prevent and control DR is crucial.Cur...BACKGROUND Diabetic retinopathy(DR)is a common microvascular complication of diabetes mellitus.Its blindness rate is high;therefore,finding a reasonable and safe treatment plan to prevent and control DR is crucial.Currently,there are abundant and diverse research results on the treatment of DR by Chinese medicine Traditional Chinese medicine compounds are potentially advantageous for DR prevention and treatment because of its safe and effective therapeutic effects.AIM To investigate the effects of Buqing granule(BQKL)on DR and its mechanism from a systemic perspective and at the molecular level by combining network pharmacology and in vivo experiments.METHODS This study collected information on the drug targets of BQKL and the therapeutic targets of DR for intersecting target gene analysis and protein-protein interactions(PPI),identified various biological pathways related to DR treatment by BQKL through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses,and preliminarily validated the screened core targets by molecular docking.Furthermore,we constructed a diabetic rat model with a high-fat and high-sugar diet and intraperitoneal streptozotocin injection,and administered the appropriate drugs for 12 weeks after the model was successfully induced.Body mass and fasting blood glucose and lipid levels were measured,and pathological changes in retinal tissue were detected by hematoxylin and eosin staining.ELISA was used to detect the oxidative stress index expression in serum and retinal tissue,and immunohistochemistry,real-time quantitative reverse transcription PCR,and western blotting were used to verify the changes in the expression of core targets.RESULTS Six potential therapeutic targets of BQKL for DR treatment,including Caspase-3,c-Jun,TP53,AKT1,MAPK1,and MAPK3,were screened using PPI.Enrichment analysis indicated that the MAPK signaling pathway might be the core target pathway of BQKL in DR treatment.Molecular docking prediction indicated that BQKL stably bound to these core targets.In vivo experiments have shown that compared with those in the Control group,rats in the Model group had statistically significant(P<0.05)severe retinal histopathological damage;elevated blood glucose,lipid,and malondialdehyde(MDA)levels;increased Caspase-3,c-Jun,and TP53 protein expression;and reduced superoxide dismutase(SOD)and glutathione peroxidase(GSH-Px)levels,ganglion cell number,AKT1,MAPK1,and MAPK3 protein expression.Compared with the Model group,BQKL group had reduced histopathological retinal damage and the expression of blood glucose and lipids,MDA level,Caspase-3,c-Jun and TP53 proteins were reduced,while the expression of SOD,GSH-Px level,the number of ganglion cells,AKT1,MAPK1,and MAPK3 proteins were elevated.These differences were statistically significant(P<0.05).CONCLUSION BQKL can delay DR onset and progression by attenuating oxidative stress and inflammatory responses and regulating Caspase-3,c-Jun,TP53,AKT1,MAPK1,and MAPK3 proteins in the MAPK signaling pathway mediates these alterations.展开更多
BACKGROUND Pachymic acid(PA)is derived from Poria cocos.PA has a variety of pharmacological and inhibitory effects on various tumors.However,the mechanism of action of PA in gastric cancer(GC)remains unclear.AIM To in...BACKGROUND Pachymic acid(PA)is derived from Poria cocos.PA has a variety of pharmacological and inhibitory effects on various tumors.However,the mechanism of action of PA in gastric cancer(GC)remains unclear.AIM To investigate the mechanism of PA in treating GC via the combination of network pharmacology and experimental verification.METHODS The GeneCards and OMIM databases were used to derive the GC targets,while the Pharm Mapper database provided the PA targets.Utilizing the STRING database,a protein-protein interaction network was constructed and core targets were screened.The analyses of Gene Ontology,Kyoto Encyclopedia of Genes and Genomes(KEGG),and gene set enrichment analysis were conducted,and molecular docking and clinical correlation analyses were performed on the core targets.Ultimately,the network pharmacology findings were validated through in vitro cell assays,encompassing assessments of cell viability,apoptosis,cell cycle,cloning,and western blot analysis.RESULTS According to network pharmacology analysis,the core targets were screened,and the PI3K/AKT signaling pathway is likely to be the mechanism by which PA effectively treats GC,according to KEGG enrichment analysis.The experimental findings showed that PA could control PI3K/AKT signaling to prevent GC cell proliferation,induce apoptosis,and pause the cell cycle.CONCLUSION Network pharmacology demonstrated that PA could treat GC by controlling a variety of signaling pathways and acting on a variety of targets.This has also been supported by in vitro cell studies,which serve as benchmarks for further research.展开更多
Objective:To investigate the mechanism underlying the effects exerted by the Qizhu prescription(QZP)in breast cancer(BC),and the respective targets.Methods: Expression data from the ArrayExpress and The Cancer Genome ...Objective:To investigate the mechanism underlying the effects exerted by the Qizhu prescription(QZP)in breast cancer(BC),and the respective targets.Methods: Expression data from the ArrayExpress and The Cancer Genome Atlas(TCGA)were used to identify differentially expressed genes(DEGs)in BC.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were performed on the DEGs to identify genes involved in protein–protein interactions.Molecular docking was used to explore the dynamic relationship between active molecules and targets.Cell function experiments and animal studies were conducted to evaluate the effects of hub genes and active QZP compounds on BC cell behavior.Results: Among the 25 evaluated BC-related targets of QZP,matrix metalloproteinase-1(MMP1)and epidermal growth factor receptor(EGFR)exhibited the highest degrees of dysregulation.GO and KEGG enrichment analyses revealed that the anti-BC targets of QZP primarily affected drug responses and pathways in cancer cells.Molecular docking analysis suggested potential interactions between EGFR and quercetin/luteolin,as well as between MMP1 and luteolin/kaempferol/quercetin.Quercetin significantly reduced BC cell proliferation,migration,invasion,and tumor development in vivo.Treatment of BC cells with quercetin decreased the expression or activation of several associated proteins.Conclusion: The findings of our study provide new insights into the therapeutic potential of traditional Chinese medicine against BC,with particular reference to QZP.展开更多
Objective:To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods: We predicted and characterized HQD patt...Objective:To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods: We predicted and characterized HQD pattern genes using the new strategy,TCM-HIN2Vec,which involves heterogeneous network embedding and transcriptomic experiments.First,a heterogeneous network of traditional Chinese medicine(TCM)patterns was constructed using public databases.Next,we predicted HQD pattern genes using a heterogeneous network-embedding algorithm.We then analyzed the functional characteristics of HQD pattern genes using gene enrichment analysis and examined gene expression levels using RNA-seq.Finally,we identified TCM herbs that demonstrated enriched interactions with HQD pattern genes via herbal enrichment analysis.Results: Our TCM-HIN2Vec strategy revealed that candidate genes associated with HQD pattern were significantly enriched in energy metabolism,signal transduction pathways,and immune processes.Moreover,we found that these candidate genes were significantly differentially expressed in the transcriptional profile of mice model with heart failure with a qi deficiency pattern.Furthermore,herbal enrichment analysis identified TCM herbs that demonstrated enriched interactions with the top 10 candidate genes and could potentially serve as drug candidates for treating HQD.Conclusion: Our results suggested that TCM-HIN2Vec is capable of not only accurately identifying HQD pattern genes,but also deciphering the basis of HQD pattern.Furthermore our finding indicated that TCM-HIN2Vec may be further expanded to develop other patterns,leading to a new approach aimed at elucidating general TCM patterns and developing precision medicine.展开更多
The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array ...The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array of the Taguchi method.A proposed numerical model for predicting the correlation of mechanical properties was supplemented with experimental data.The quenching process was conducted using a cooling medium called “nanofluids”.Nanoparticles were dissolved in a liquid phase at various concentrations(0.5%,1%,2.5%,and 5% vf) to prepare the nanofluids.Experimental investigations were done to assess the impact of temperature,base fluid,volume fraction,and soaking time on the mechanical properties.The outcomes showed that all conditions led to a noticeable improvement in the alloy's hardness which reached 100%,the grain size was refined about 80%,and unwanted residual stresses were removed from 50 to 150 MPa.Adding 5% of CuO nanoparticles to oil led to the best grain size refinement,while adding 2.5% of Al_(2)O_(3) nanoparticles to engine oil resulted in the greatest compressive residual stress.The experimental variables were used as the input data for the established numerical ANN model,and the mechanical properties were the output.Upwards of 99% of the training network's correlations seemed to be positive.The estimated result,nevertheless,matched the experimental dataset exactly.Thus,the ANN model is an effective tool for reflecting the effects of quenching conditions on the mechanical properties of AISI 1035.展开更多
Background:Diabetic kidney disease(DKD)is a microvascular complication of diabetes mellitus and is the main cause of end-stage renal failure.Suoquan pills(SQP)has a variety of pharmacological activities and multiple t...Background:Diabetic kidney disease(DKD)is a microvascular complication of diabetes mellitus and is the main cause of end-stage renal failure.Suoquan pills(SQP)has a variety of pharmacological activities and multiple therapeutic effects,and it is used clinically as a basic formula for the treatment of DKD.Methods:Public databases were used to identify SQP compounds and the potential targets of SQP and DKD.A drug-component-therapeutic target network was constructed.Protein-protein interaction network analysis,Gene Ontology functional analysis,and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to analyse the potential molecular mechanisms of SQP based on common targets of drugs and diseases.Molecular docking simulations were conducted to confirm the binding abity of the core compounds to key targets.The efficacy and predicted molecular mechanisms of SQP were validated using cell counting kit-8 assay,flow cytometry,and western blotting with HK-2 cells as a model.Results:Network pharmacology analysis showed that 26 compounds and 207 potential targets of SQP were involved in the treatment of DKD;boldine,denudatin B,pinocembrin,kaempferoid,and quercetin were considered core compounds,and epidermal growth factor receptor(EGFR)and proto-oncogene,non-receptor tyrosine kinase(SRC)were considered key targets.Gene Ontology enrichment analysis indicated that protein phosphorylation and negative regulation of apoptotic processes are important biological processes in the treatment of DKD by SQP.Molecular docking confirmed the excellent binding abilities of boldine,denudatin B,kaempferide,and quercetin to EGFR and SRC.The results of in vitro experiments showed that treatment with an ethanolic extract of SQP significantly protected HK-2 cells from high glucose-induced cell damage.In addition,the SQP ethanol extract inhibited the phosphorylation of EGFR and SRC,suppressed the apoptosis rate,and regulated apoptosis-related proteins in HK-2 cells under high glucose stress.Conclusion:This study systematically and intuitively illustrated the possible pharmacological mechanisms of SQP against DKD through multiple components,targets,and signalling pathways,especially the inhibition of EGFR and SRC phosphorylation and apoptosis.展开更多
Background:The purpose of the study was to investigate the active ingredients and potential biochemical mechanisms of Juanbi capsule in knee osteoarthritis based on network pharmacology,molecular docking and animal ex...Background:The purpose of the study was to investigate the active ingredients and potential biochemical mechanisms of Juanbi capsule in knee osteoarthritis based on network pharmacology,molecular docking and animal experiments.Methods:Chemical components for each drug in the Juanbi capsule were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,while the target proteins for knee osteoarthritis were retrieved from the Drugbank,GeneCards,and OMIM databases.The study compared information on knee osteoarthritis and the targets of drugs to identify common elements.The data was imported into the STRING platform to generate a protein-protein interaction network diagram.Subsequently,a“component-target”network diagram was created using the screened drug components and target information with Cytoscape software.Common targets were imported into Metascape for GO function and KEGG pathway enrichment analysis.AutoDockTools was utilized to predict the molecular docking of the primary chemical components and core targets.Ultimately,the key targets were validated through animal experiments.Results:Juanbi capsule ameliorated Knee osteoarthritis mainly by affecting tumor necrosis factor,interleukin1β,MMP9,PTGS2,VEGFA,TP53,and other cytokines through quercetin,kaempferol,andβ-sitosterol.The drug also influenced the AGE-RAGE,interleukin-17,tumor necrosis factor,Relaxin,and NF-κB signaling pathways.The network pharmacology analysis results were further validated in animal experiments.The results indicated that Juanbi capsule could decrease the levels of tumor necrosis factor-αand interleukin-1βin the serum and synovial fluid of knee osteoarthritis rats and also down-regulate the expression levels of MMP9 and PTGS2 proteins in the articular cartilage.Conclusion:Juanbi capsule may improve the knee bone microstructure and reduce the expression of inflammatory factors of knee osteoarthritis via multiple targets and multiple signaling pathways.展开更多
BACKGROUND Diabetic kidney disease(DKD)is one of the serious complications of diabetes mellitus,and the existing treatments cannot meet the needs of today's patients.Traditional Chinese medicine has been validated...BACKGROUND Diabetic kidney disease(DKD)is one of the serious complications of diabetes mellitus,and the existing treatments cannot meet the needs of today's patients.Traditional Chinese medicine has been validated for its efficacy in DKD after many years of clinical application.However,the specific mechanism by which it works is still unclear.Elucidating the molecular mechanism of the Nardostachyos Radix et Rhizoma-rhubarb drug pair(NRDP)for the treatment of DKD will provide a new way of thinking for the research and development of new drugs.AIM To investigate the mechanism of the NRDP in DKD by network pharmacology combined with molecular docking,and then verify the initial findings by in vitro experiments.METHODS The Traditional Chinese Medicine Systems Pharmacology(TCMSP)database was used to screen active ingredient targets of NRDP.Targets for DKD were obtained based on the Genecards,OMIM,and TTD databases.The VENNY 2.1 database was used to obtain DKD and NRDP intersection targets and their Venn diagram,and Cytoscape 3.9.0 was used to build a"drug-component-target-disease"network.The String database was used to construct protein interaction networks.Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis and Gene Ontology analysis were performed based on the DAVID database.After selecting the targets and the active ingredients,Autodock software was used to perform molecular docking.In experimental validation using renal tubular epithelial cells(TCMK-1),we used the Cell Counting Kit-8 assay to detect the effect of NRDP on cell viability,with glucose solution used to mimic a hyperglycemic environment.Flow cytometry was used to detect the cell cycle progression and apoptosis.Western blot was used to detect the protein expression of STAT3,p-STAT3,BAX,BCL-2,Caspase9,and Caspase3.RESULTS A total of 10 active ingredients and 85 targets with 111 disease-related signaling pathways were obtained for NRDP.Enrichment analysis of KEGG pathways was performed to determine advanced glycation end products(AGEs)-receptor for AGEs(RAGE)signaling as the core pathway.Molecular docking showed good binding between each active ingredient and its core targets.In vitro experiments showed that NRDP inhibited the viability of TCMK-1 cells,blocked cell cycle progression in the G0/G1 phase,and reduced apoptosis in a concentrationdependent manner.Based on the results of Western blot analysis,NRDP differentially downregulated p-STAT3,BAX,Caspase3,and Caspase9 protein levels(P<0.01 or P<0.05).In addition,BAX/BCL-2 and p-STAT3/STAT3 ratios were reduced,while BCL-2 and STAT3 protein expression was upregulated(P<0.01).CONCLUSION NRDP may upregulate BCL-2 and STAT3 protein expression,and downregulate BAX,Caspase3,and Caspase9 protein expression,thus activating the AGE-RAGE signaling pathway,inhibiting the vitality of TCMK-1 cells,reducing their apoptosis.and arresting them in the G0/G1 phase to protect them from damage by high glucose.展开更多
Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effec...Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effective compounds and drug targets using Chinese medicine systemic pharmacology database and analysis platform and Chinese medicine molecular mechanism bioinformatics analysis tools;and searched for DKD targets using human online Mendelian genetics and gene cards.The potential targets of GLQMP for DKD were obtained through the intersection of drug targets and disease targets.Cytoscape software was applied to build herbal medicine-active compound-target-disease networks and analyze them;protein-protein interaction networks were analyzed using the STRING database platform;gene ontology and Kyoto Encyclopedia of Genes and Genomes were used for gene ontology and gene and genome encyclopedia to enrich potential targets using the DAVID database;and the AutoDock Vina 1.1.2 software for molecular docking of key targets with corresponding key components.In vitro experiments were validated by CCK8,oil red O staining,TC,TG,RT-qPCR,and Western blot.Results:Through network pharmacology analysis,a total of 99 potential therapeutic targets of GLQMP for DKD and the corresponding 38 active compounds were obtained,and 5 core compounds were identified.By constructing the protein-protein interaction network and performing network topology analysis,we found that PPARA and PPARG were the key targets,and then we molecularly docked these two key targets with the 38 active compounds,especially the 5 core compounds,and found that PPARA and PPARG had good binding ability with a variety of compounds.In vitro experiments showed that GLQMP was able to ameliorate HK-2 cell injury under high glucose stress,improve cell viability,reduce TC and TG levels as well as decrease the accumulation of lipid droplets,and RT-qPCR and Western blot confirmed that GLQMP was able to promote the expression levels of PPARA and PPARG.Conclusion:Overall,this study revealed the active compounds,important targets and possible mechanisms of GLQMP treatment for DKD,and conducted preliminary verification experiments on its correctness,provided novel insights into the treatment of DKD by GLQMP.展开更多
Background:To explore the potential mechanism of action of the active ingredients of Smilacis Glabrae Rhizoma(SGR)in the treatment of migraine using network pharmacology and in vivo experiments.Methods:Through the sea...Background:To explore the potential mechanism of action of the active ingredients of Smilacis Glabrae Rhizoma(SGR)in the treatment of migraine using network pharmacology and in vivo experiments.Methods:Through the search of Traditional Chinese Medicines Systems Pharmacology Database and Analysis Platform,Genecards,Drugbank and other databases,we obtained active ingredients,targets of SGR and related disease targets of migraine,and took the intersection for protein-protein interactions analysis.After constructing the network diagram,network topology analysis was performed to derive the core targets and key active ingredients,and Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed.Finally,molecular docking was performed and validated by in vivo experiments.In vivo experiments,18 male BALB/c mice were selected,and the SGR group was fed with SGR drinking tablet concentrate,and nitroglycerin injection was used to construct a mouse model of migraine.Enzyme-linked immunosorbent assay test was used to detect the levels of TNF-α,IL-1β,IL-6,and AKT1 in plasma.Results:The results showed that the core targets of SGR for the treatment of migraine were TNF-α,IL-1β,IL-6,and AKT1.These core targets and key active ingredients had better binding ability.Compared with the blank group,the number of head scratching in the model group increased.Compared with the model group,there was a significant reduction of the number of head scratching in the SGR group.In comparison with the blank group,the protein level in the plasma in the model group was markedly higher.Compared with the model group,the protein level in the SGR group was significantly lower.Conclusion:SGR has the characteristics of improving migraine based on multi-targets,multi-components and multi-pathways,and the mechanism of action may be related to the inhibition of the release of inflammatory factors,neuron protection,and interference with apoptosis and other processes.展开更多
Objective:To explore the potential mechanism of action of quercetin in the treatment of diarrhea irritable bowel syndrome(IBS-D).Methods:The potential targets of quercetin were obtained from the TCMSP,SwissTar-getPred...Objective:To explore the potential mechanism of action of quercetin in the treatment of diarrhea irritable bowel syndrome(IBS-D).Methods:The potential targets of quercetin were obtained from the TCMSP,SwissTar-getPrediction,and BATMAN-TCM databases.The targets of IBS-D were obtained by searching the GeneCards database with"diarrhea irritable bowel syndrome"as the keyword,and the targets of quercetin and IBS-D were intersected.The PPI network was constructed by Cytoscape 3.7.1 software.The intersected targets were imported into the DAVID database for GO functional analysis and KEGG pathway enrichment analysis.The binding ability of quercetin to the core targets was observed using molecular docking.Based on this,we established an IBS-D rat model,administered quercetin for intervention,and experimentally validated the network pharmacology prediction results by HE staining and ELISA assay.Results:Network pharmacology analysis showed that TP53,TNF-α,AKT1,VEGF-A,IL-6 factors and MAPK,PI3K-Akt signaling pathway as the core targets and pathways of quercetin for the treatment of IBS-D.The results of animal experiments revealed that quercetin could inhibit the secretion of TP53,TNF-α,AKT1,VEGF-A,IL-1βand IL-6,reduce the inflammatory response and improve IBS-D.Conclusion:Quercetin could protect colon tissue by regulating the expression of TP53,TNF-α,AKT1,VEGF-A,IL-1βand IL-6,thereby treating IBS-D.展开更多
Background:Studying the potential targets and mechanisms of Epimedium for anti-diabetic testicular injury using network pharmacology,molecular docking,and cell experiments.Methods:Acquisition of major components and t...Background:Studying the potential targets and mechanisms of Epimedium for anti-diabetic testicular injury using network pharmacology,molecular docking,and cell experiments.Methods:Acquisition of major components and targets of Epimedium was based on TCMSP,TCMID,and Symmap databases and retrieval of diabetic testicular injury targets by OMIM,GeneCards,Pharmgkb,and Drugbank databases.Intersecting targets were obtained from the Venny 2.1.0 database and input SRTING data to construct a protein-protein interaction(PPI)network,and key targets were screened in Cytoscape 3.8.0 software.Then the Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses of intersecting targets were conducted through the DAVID database.Further,AutoDock software was used to verify docking between the main components and the core target proteins.In addition,a Cell Counting Kit-8(CCK-8)assay was used to determine the survival effect of quercetin,the main component of Epimedium,on TM4 sertoli-like cells exposed to palmitic acid(PA).Results:Quercetin,kaempferol and luteolin in epimedium were identified as the main components in the treatment of diabetic testicular injury.It has core target proteins including MMP9,AKT1,and TNF.The biological process mainly involves the regulation of the apoptotic signaling pathway.The key pathways of KEGG are the AGE-RAGE signaling pathway in diabetic complications,PI3K-Akt and MAPK signaling pathway.Molecular docking results showed that quercetin had the strongest binding ability to MMP9.Also,PA-challenged cells had a lower survival rate,which was alleviated by the administration of quercetin.Conclusion:Our findings suggest that Epimedium attenuates diabetes mellitus(DM)-induced testicular injury through AGE-RAGE,PI3K-Akt and MAPK signaling pathway.These insights offer a potential therapeutic strategy for managing DM-induced testicular injury,will be the basis for future clinical research.展开更多
Background:Ginkgo flavone aglycones(GA),a Ginkgo(Ginkgo biloba)extract,has been proven to have good biological activity in atherosclerosis(AS)treatment.Moreover,its active compounds and the corresponding mechanism for...Background:Ginkgo flavone aglycones(GA),a Ginkgo(Ginkgo biloba)extract,has been proven to have good biological activity in atherosclerosis(AS)treatment.Moreover,its active compounds and the corresponding mechanism for the treatment of AS remain unclear.Methods:To evaluate and identify the potential pharmacological mechanisms of GA in AS treatment,the program Cytoscape was used to generate network mappings of the GA-AS-potential target gene.GO and KEGG enrichment analyses were performed to further investigate the potential mechanism of AS and the pharmacological properties of GA.A molecular docking approach was utilized to determine the GA components that interact with Akt.In vitro experiments were carried out to identify the anti-atherosclerotic effects of GA by targeting Akt.Results:Network pharmacological research determined that the active components of GA(quercetin,kaempferol,and isorhamnetin)correlated with AS target genes such as AKT1,EGFR,SRC,ESR1,PTGS2,MMP9,KDR,GSK3B,APP,and MMP2,respectively.GO enrichment and KEGG analysis showed that PI3K-Akt signaling may play an important role in GA treatment.Molecular docking experiments indicated that quercetin,kaempferol,and isorhamnetin integrate into the binding pockets of the most potentially beneficial GA-AS target protein(Akt).Consequently,cell experiments were conducted to support the anti-atherosclerotic activity of GA on AS by inhibiting the phosphorylation of AKT1 and its downstream signaling molecules,which regulated the proliferation of HASMCs.Conclusion:Our results detailed GA's active ingredients,potential targets,and molecular basis against AS.GA may exert anti-atherosclerotic effects by suppressing Akt phosphorylation and inhibiting the proliferation of HASMCs.It also proposed a viable approach to determining the scientific foundation and therapeutic mechanism of Chinese herbal medicine extracts in disease therapy.展开更多
基金West Light Foundation of the Ningxia Key Research and Development Program,No.2023BEG02015High-level Key Discipline Construction Project of State Administration of Traditional Chinese Medicine,No.2022-226+1 种基金Talent Development Projects of Young Qihuang of National Administration of Traditional Chinese Medicine,No.2020-218National Natural Science Foundation of China,No.82374261.
文摘BACKGROUND Cancer is one of the most serious threats to human health worldwide.Conventional treatments such as surgery and chemotherapy are associated with some drawbacks.In recent years,traditional Chinese medicine treatment has been increasingly advocated by patients and attracted attention from clinicians,and has become an indispensable part of the comprehensive treatment for gastric cancer.AIM To investigate the mechanism of Xiaojianzhong decoction(XJZ)in the treatment of gastric cancer(GC)by utilizing network pharmacology and experimental validation,so as to provide a theoretical basis for later experimental research.METHODS We analyzed the mechanism and targets of XJZ in the treatment of GC through network pharmacology and bioinformatics.Subsequently,we verified the impact of XJZ treatment on the proliferative ability of GC cells through CCK-8,apoptosis,cell cycle,and clone formation assays.Additionally,we performed Western blot analysis and real-time quantitative PCR to assess the protein and mRNA expression of the core proteins.RESULTS XJZ mainly regulates IL6,PTGS2,CCL2,MMP9,MMP2,HMOX1,and other target genes and pathways in cancer to treat GC.The inhibition of cell viability,the increase of apoptosis,the blockage of the cell cycle at the G0/G1 phase,and the inhibition of the ability of cell clone formation were observed in AGS and HGC-27 cells after XJZ treatment.In addition,XJZ induced a decrease in the mRNA expression of IL6,PTGS2,MMP9,MMP2,and CCL2,and an increase in the mRNA expression of HOMX1.XJZ significantly inhibited the expression of IL6,PTGS2,MMP9,MMP2,and CCL2 proteins and promoted the expression of the heme oxygenase-1 protein.CONCLUSION XJZ exerts therapeutic effects against GC through multiple components,multiple targets,and multiple pathways.Our findings provide a new idea and scientific basis for further research on the molecular mechanisms underlying the therapeutic effects of XJZ in the treatment of GC.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金supported by the National Natural Science Foundation of China(82172182 and 82102311)Natural Science Foundation of Jiangsu Province(BK20211136)+2 种基金China Postdoctoral Science Foundation(2018M643890 and 2020M683718)Xuzhou Science and Technology Project(KC21215 and KC22136)Development Fund Project of Affiliated Hospital of Xuzhou Medical University(XYFY202232)。
文摘BACKGROUND:Sepsis-related acute respiratory distress syndrome(ARDS)has a high mortality rate,and no effective treatment is available currently.Quercetin is a natural plant product with many pharmacological activities,such as antioxidative,anti-apoptotic,and anti-inflammatory effects.This study aimed to elucidate the protective mechanism of quercetin against sepsis-related ARDS.METHODS:In this study,network pharmacology and in vitro experiments were used to investigate the underlying mechanisms of quercetin against sepsis-related ARDS.Core targets and signaling pathways of quercetin against sepsis-related ARDS were screened and were verified by in vitro experiments.RESULTS:A total of 4,230 targets of quercetin,360 disease targets of sepsis-related ARDS,and 211 intersection targets were obtained via database screening.Among the 211 intersection targets,interleukin-6(IL-6),tumor necrosis factor(TNF),albumin(ALB),AKT serine/threonine kinase 1(AKT1),and interleukin-1β(IL-1β)were identified as the core targets.A Gene Ontology(GO)enrichment analysis revealed 894 genes involved in the inflammatory response,apoptosis regulation,and response to hypoxia.Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis identified 106 pathways.After eliminating and generalizing,the hypoxia-inducible factor-1(HIF-1),TNF,nuclear factor-κB(NF-κB),and nucleotide-binding and oligomerization domain(NOD)-like receptor signaling pathways were identified.Molecular docking revealed that quercetin had good binding activity with the core targets.Moreover,quercetin blocked the HIF-1,TNF,NF-κB,and NODlike receptor signaling pathways in lipopolysaccharide(LPS)-induced murine alveolar macrophage(MH-S)cells.It also suppressed the inflammatory response,oxidative reactions,and cell apoptosis.CONCLUSION:Quercetin ameliorates sepsis-related ARDS by binding to its core targets and blocking the HIF-1,TNF,NF-κB,and NOD-like receptor signaling pathways to reduce inflammation,cell apoptosis,and oxidative stress.
基金funded by China’s National Key R&D Programmers for“Hi-Tech Winter Olympics”Special Project[2020YFF0305001]。
文摘Objective This study aimed to investigate the effect and underlying mechanism of Fructus lycii in improving exercise fatigue.Methods A network pharmacological approach was used to explore potential mechanisms of action of Fructus lycii.Skeletal muscle C2C12 cells and immunofluorescence were employed to verify the effect and mechanism of the representative components in Fructus lycii predicted by network pharmacological analysis.Results Six potential active components,namely quercetin,β-sitosterol,stigmasterol,7-Omethylluteolin-6-C-beta-glucoside_qt,atropine,and glycitein,were identified to have potency in improving exercise fatigue via multiple pathways,such as the PI3K-Akt,neuroactive ligand-receptor interaction,IL-17,TNF,and MAPK signaling pathways.The immunofluorescence results indicated that quercetin,a significant active component in Fructus lycii,increased the mean staining area of 2-NBDG,TMRM,and MitoTracker,and decreased the area of CellRox compared to the control.Furthermore,the protein expression levels of p-38 MAPK,p-MAPK,p-JNK,p-PI3K,and p-AKT markedly increased after quercetin treatment.Conclusion Fructus lycii might alleviate exercise fatigue through multiple components and pathways.Among these,quercetin appears to improve exercise fatigue by enhancing energy metabolism and reducing oxidative stress.The PI3K-AKT and MAPK signaling pathways also appear to play a role in this process.
基金Natural Science Foundation of Hebei Province,No.H2018307071Traditional Chinese Medicine Research Plan Project in Hebei Province,No.2022122Hebei Provincial Science and Technology Program,No.17397763D.
文摘BACKGROUND Gastric cancer(GC)is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis.Resveratrol,a non-flavonoid poly-phenolic compound found in a variety of Chinese medicinal materials,has shown excellent anti-GC effect.However,its exact mechanisms of action in GC have not been clarified.AIM To identify the effects of resveratrol on GC progression and explore the related molecular mechanisms.METHODS Action targets of resveratrol and GC-related targets were screened from public databases.The overlapping targets between the two were confirmed using a Venn diagram,and a“Resveratrol-Target-GC”network was constructed using Cyto-scape software version 3.9.1.The protein-protein interaction(PPI)network was constructed using STRING database and core targets were identified by PPI network analysis.The Database for Annotation,Visualization and Integrated A total of 378 resveratrol action targets and 2154 GC disease targets were obtained from public databases,and 181 intersection targets between the two were screened by Venn diagram.The top 20 core targets were identified by PPI network analysis of the overlapping targets.GO function analysis mainly involved protein binding,identical protein binding,cytoplasm,nucleus,negative regulation of apoptotic process and response to xenobiotic stimulus.KEGG enrichment analysis suggested that the involved signaling pathways mainly included PI3K-AKT signaling pathway,MAPK signaling pathway,IL-17 signaling pathway,TNF signaling pathway,ErbB signaling pathway,etc.FBJ murine osteosarcoma viral oncogene homolog(FOS)and matrix metallopeptidase 9(MMP9)were selected by differential expression analysis,and they were closely associated with immune infiltration.Molecular docking results showed that resveratrol docked well with these two targets.Resveratrol treatment arrested the cell cycle at the S phase,induced apoptosis,and weakened viability,migration and invasion in a dose-dependent manner.Furthermore,resveratrol could exhibit anti-GC effect by regulating FOS and MMP9 expression.CONCLUSION The anti-GC effects of resveratrol are related to the inhibition of cell proliferation,migration,invasion and induction of cell cycle arrest and apoptosis by targeting FOS and MMP9.
基金the Liaoning Provincial Science and Technology Plan Project(2023-MSLH-178)the Project Fund of Liaoning Provincial Department of Education(LJKMZ20221315,L202025)+1 种基金the Special Fund of Liaoning Provincial Department of Science and Technology for Central Guidance of Local Science and Technology Development(2018416016)the Project Fund of Liaoning Provincial Department of Human Resources and Social Security"Millions of Talents Program"(2020921097).
文摘Background:Buyang Huanwu decoction(BHD)is a traditional Chinese medicine herbal formula used for treating hypertension,particularly in the later stages of hypertension when it is associated with intracerebral hemorrhage.This study aims to investigate the treatment mechanism of BHD to provide a basis for its clinical application in hypertension treatment.Methods:Network pharmacology analysis and cell culture experiments were performed to explore the potential proteins and mechanisms of action of BHD against hypertension.Bioactive compounds related to BHD were screened,and relevant targets associated with hypertension and BHD were retrieved.Molecular docking technology was used to identify the effective signaling pathway based on the Kyoto Encyclopedia of Genes and Genomes and protein-protein interaction network cores.Lastly,the effects and mechanisms of BHD on salt-sensitive hypertensive endothelial cells were investigated.Results:Ninety-three potential therapeutic targets for BHD and salt-sensitive hypertension were found to be closely associated with the PI3K/Akt/eNOS signaling pathway and oxidative stress.Cell experiments further indicated the pivotal role of endothelial cells in hypertension,and validation analysis showed that BHD significantly preserved cell morphology,suppressed oxidative stress reactions,activated the PI3K/Akt/eNOS signaling pathways,preserved normal endothelial cell function,and reduced cell apoptosis.Conclusion:BHD effectively activates the PI3K/Akt/VEGF signaling pathway,attenuates oxidative stress-induced injury in endothelial cells exposed to high salt levels,and mitigates apoptosis,supporting the use of traditional Chinese medicine BHD in the treatment of salt-sensitive hypertension.
基金Supported by the National Nature Science Foundation of China,No.81273735 and No.82174319the Natural Science Foundation of Guangdong Province,China,No.2021A1515010961+1 种基金the Key-Area Research and Development Program of Guangdong Province,China,No.2020B1111100011the China Postdoctoral Science Foundation,China,No.2023M740859.
文摘BACKGROUND Curcumin originates from the natural herb turmeric,and its antitumor effects have been known about for a long time.However,the mechanism by which curcumin affects gastric cancer(GC)has not been elucidated.AIM To elucidate the potential mechanisms of curcumin in the treatment of GC.METHODS Network pharmacological approaches were used to perform network analysis of Curcumin.We first analyzed Lipinski’s Rule of Five for the use of Curcumin.Curcumin latent targets were predicted using the PharmMapper,SwissTargetPrediction and DrugBank network databases.GC disease targets were mined through the GeneCard,OMIM,DrugBank and TTD network databases.Then,GO enrichment,KEGG enrichment,protein-protein interaction(PPI),and overall survival analyses were performed.The results were further verified through molecular docking,differential expression analysis and cell experiments.RESULTS We identified a total of 48 curcumin-related genes with 31 overlapping GC-related targets.The intersection targets between curcumin and GC have been enriched in 81 GO biological processes and 22 significant pathways.Following PPI analysis,6 hub targets were identified,namely,estrogen receptor 1(ESR1),epidermal growth factor receptor(EGFR),cytochrome P450 family 3 subfamily A member 4(CYP3A4),mitogen-activated protein kinase 14(MAPK-14),cytochrome P450 family 1 subfamily A member 2(CYP1A2),and cytochrome p450 family 2 subfamily B member 6(CYP2B6).These factors are correlated with decreased survival rates among patients diagnosed with GC.Molecular docking analysis further substantiated the strong binding interactions between Curcumin and the hub target genes.The experimental findings demonstrated that curcumin not only effectively inhibits the growth of BGC-823 cells but also suppresses their proliferation.mRNA levels of hub targets CYP3A4,MAPK14,CYP1A2,and CYP2B6 in BGC-823 cells were significantly increased in each dose group.CONCLUSION Curcumin can play an anti-GC role through a variety of targets,pathways and biological processes.
基金Supported by National Natural Science Foundation of China,No.81960836Ningxia Natural Science Foundation,No.2020AAC03126Ningxia Higher Education Scientific Research Project,No.NGY2020045。
文摘BACKGROUND Diabetic retinopathy(DR)is a common microvascular complication of diabetes mellitus.Its blindness rate is high;therefore,finding a reasonable and safe treatment plan to prevent and control DR is crucial.Currently,there are abundant and diverse research results on the treatment of DR by Chinese medicine Traditional Chinese medicine compounds are potentially advantageous for DR prevention and treatment because of its safe and effective therapeutic effects.AIM To investigate the effects of Buqing granule(BQKL)on DR and its mechanism from a systemic perspective and at the molecular level by combining network pharmacology and in vivo experiments.METHODS This study collected information on the drug targets of BQKL and the therapeutic targets of DR for intersecting target gene analysis and protein-protein interactions(PPI),identified various biological pathways related to DR treatment by BQKL through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses,and preliminarily validated the screened core targets by molecular docking.Furthermore,we constructed a diabetic rat model with a high-fat and high-sugar diet and intraperitoneal streptozotocin injection,and administered the appropriate drugs for 12 weeks after the model was successfully induced.Body mass and fasting blood glucose and lipid levels were measured,and pathological changes in retinal tissue were detected by hematoxylin and eosin staining.ELISA was used to detect the oxidative stress index expression in serum and retinal tissue,and immunohistochemistry,real-time quantitative reverse transcription PCR,and western blotting were used to verify the changes in the expression of core targets.RESULTS Six potential therapeutic targets of BQKL for DR treatment,including Caspase-3,c-Jun,TP53,AKT1,MAPK1,and MAPK3,were screened using PPI.Enrichment analysis indicated that the MAPK signaling pathway might be the core target pathway of BQKL in DR treatment.Molecular docking prediction indicated that BQKL stably bound to these core targets.In vivo experiments have shown that compared with those in the Control group,rats in the Model group had statistically significant(P<0.05)severe retinal histopathological damage;elevated blood glucose,lipid,and malondialdehyde(MDA)levels;increased Caspase-3,c-Jun,and TP53 protein expression;and reduced superoxide dismutase(SOD)and glutathione peroxidase(GSH-Px)levels,ganglion cell number,AKT1,MAPK1,and MAPK3 protein expression.Compared with the Model group,BQKL group had reduced histopathological retinal damage and the expression of blood glucose and lipids,MDA level,Caspase-3,c-Jun and TP53 proteins were reduced,while the expression of SOD,GSH-Px level,the number of ganglion cells,AKT1,MAPK1,and MAPK3 proteins were elevated.These differences were statistically significant(P<0.05).CONCLUSION BQKL can delay DR onset and progression by attenuating oxidative stress and inflammatory responses and regulating Caspase-3,c-Jun,TP53,AKT1,MAPK1,and MAPK3 proteins in the MAPK signaling pathway mediates these alterations.
基金Supported by Ningxia Science and Technology Benefiting People Program,No.2022CMG03064National Natural Science Foundation of China,No.82260879Ningxia Natural Science Foundation,No.2022AAC03144 and 2022AAC02039.
文摘BACKGROUND Pachymic acid(PA)is derived from Poria cocos.PA has a variety of pharmacological and inhibitory effects on various tumors.However,the mechanism of action of PA in gastric cancer(GC)remains unclear.AIM To investigate the mechanism of PA in treating GC via the combination of network pharmacology and experimental verification.METHODS The GeneCards and OMIM databases were used to derive the GC targets,while the Pharm Mapper database provided the PA targets.Utilizing the STRING database,a protein-protein interaction network was constructed and core targets were screened.The analyses of Gene Ontology,Kyoto Encyclopedia of Genes and Genomes(KEGG),and gene set enrichment analysis were conducted,and molecular docking and clinical correlation analyses were performed on the core targets.Ultimately,the network pharmacology findings were validated through in vitro cell assays,encompassing assessments of cell viability,apoptosis,cell cycle,cloning,and western blot analysis.RESULTS According to network pharmacology analysis,the core targets were screened,and the PI3K/AKT signaling pathway is likely to be the mechanism by which PA effectively treats GC,according to KEGG enrichment analysis.The experimental findings showed that PA could control PI3K/AKT signaling to prevent GC cell proliferation,induce apoptosis,and pause the cell cycle.CONCLUSION Network pharmacology demonstrated that PA could treat GC by controlling a variety of signaling pathways and acting on a variety of targets.This has also been supported by in vitro cell studies,which serve as benchmarks for further research.
基金supported by the National Natural Science Foundation of China(82004240,82104952)Shanghai Municipal Science and Technology Commission Medical Innovation Research Program(21Y11923600)+1 种基金Shanghai Municipal Health Commission Health Industry Clinical Research Specialization(202140172)Shanghai University of Traditional Chinese Medicine Industrial Development Center Healthcare Integration Science and Innovation Project(YYKC-2021-01-153).
文摘Objective:To investigate the mechanism underlying the effects exerted by the Qizhu prescription(QZP)in breast cancer(BC),and the respective targets.Methods: Expression data from the ArrayExpress and The Cancer Genome Atlas(TCGA)were used to identify differentially expressed genes(DEGs)in BC.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were performed on the DEGs to identify genes involved in protein–protein interactions.Molecular docking was used to explore the dynamic relationship between active molecules and targets.Cell function experiments and animal studies were conducted to evaluate the effects of hub genes and active QZP compounds on BC cell behavior.Results: Among the 25 evaluated BC-related targets of QZP,matrix metalloproteinase-1(MMP1)and epidermal growth factor receptor(EGFR)exhibited the highest degrees of dysregulation.GO and KEGG enrichment analyses revealed that the anti-BC targets of QZP primarily affected drug responses and pathways in cancer cells.Molecular docking analysis suggested potential interactions between EGFR and quercetin/luteolin,as well as between MMP1 and luteolin/kaempferol/quercetin.Quercetin significantly reduced BC cell proliferation,migration,invasion,and tumor development in vivo.Treatment of BC cells with quercetin decreased the expression or activation of several associated proteins.Conclusion: The findings of our study provide new insights into the therapeutic potential of traditional Chinese medicine against BC,with particular reference to QZP.
基金supported by the National Natural Science Foundation of China(32088101)National key Research and Development Program of China(2017YFC1700105,2021YFA1301603).
文摘Objective:To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods: We predicted and characterized HQD pattern genes using the new strategy,TCM-HIN2Vec,which involves heterogeneous network embedding and transcriptomic experiments.First,a heterogeneous network of traditional Chinese medicine(TCM)patterns was constructed using public databases.Next,we predicted HQD pattern genes using a heterogeneous network-embedding algorithm.We then analyzed the functional characteristics of HQD pattern genes using gene enrichment analysis and examined gene expression levels using RNA-seq.Finally,we identified TCM herbs that demonstrated enriched interactions with HQD pattern genes via herbal enrichment analysis.Results: Our TCM-HIN2Vec strategy revealed that candidate genes associated with HQD pattern were significantly enriched in energy metabolism,signal transduction pathways,and immune processes.Moreover,we found that these candidate genes were significantly differentially expressed in the transcriptional profile of mice model with heart failure with a qi deficiency pattern.Furthermore,herbal enrichment analysis identified TCM herbs that demonstrated enriched interactions with the top 10 candidate genes and could potentially serve as drug candidates for treating HQD.Conclusion: Our results suggested that TCM-HIN2Vec is capable of not only accurately identifying HQD pattern genes,but also deciphering the basis of HQD pattern.Furthermore our finding indicated that TCM-HIN2Vec may be further expanded to develop other patterns,leading to a new approach aimed at elucidating general TCM patterns and developing precision medicine.
基金Kut Technical Institute for their funding supports。
文摘The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array of the Taguchi method.A proposed numerical model for predicting the correlation of mechanical properties was supplemented with experimental data.The quenching process was conducted using a cooling medium called “nanofluids”.Nanoparticles were dissolved in a liquid phase at various concentrations(0.5%,1%,2.5%,and 5% vf) to prepare the nanofluids.Experimental investigations were done to assess the impact of temperature,base fluid,volume fraction,and soaking time on the mechanical properties.The outcomes showed that all conditions led to a noticeable improvement in the alloy's hardness which reached 100%,the grain size was refined about 80%,and unwanted residual stresses were removed from 50 to 150 MPa.Adding 5% of CuO nanoparticles to oil led to the best grain size refinement,while adding 2.5% of Al_(2)O_(3) nanoparticles to engine oil resulted in the greatest compressive residual stress.The experimental variables were used as the input data for the established numerical ANN model,and the mechanical properties were the output.Upwards of 99% of the training network's correlations seemed to be positive.The estimated result,nevertheless,matched the experimental dataset exactly.Thus,the ANN model is an effective tool for reflecting the effects of quenching conditions on the mechanical properties of AISI 1035.
基金supported by the grants from National Natural Science Foundation of China(No.82174334)Hainan Province in 2022 postgraduate innovation research projects(No.Qhys2022-273).
文摘Background:Diabetic kidney disease(DKD)is a microvascular complication of diabetes mellitus and is the main cause of end-stage renal failure.Suoquan pills(SQP)has a variety of pharmacological activities and multiple therapeutic effects,and it is used clinically as a basic formula for the treatment of DKD.Methods:Public databases were used to identify SQP compounds and the potential targets of SQP and DKD.A drug-component-therapeutic target network was constructed.Protein-protein interaction network analysis,Gene Ontology functional analysis,and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to analyse the potential molecular mechanisms of SQP based on common targets of drugs and diseases.Molecular docking simulations were conducted to confirm the binding abity of the core compounds to key targets.The efficacy and predicted molecular mechanisms of SQP were validated using cell counting kit-8 assay,flow cytometry,and western blotting with HK-2 cells as a model.Results:Network pharmacology analysis showed that 26 compounds and 207 potential targets of SQP were involved in the treatment of DKD;boldine,denudatin B,pinocembrin,kaempferoid,and quercetin were considered core compounds,and epidermal growth factor receptor(EGFR)and proto-oncogene,non-receptor tyrosine kinase(SRC)were considered key targets.Gene Ontology enrichment analysis indicated that protein phosphorylation and negative regulation of apoptotic processes are important biological processes in the treatment of DKD by SQP.Molecular docking confirmed the excellent binding abilities of boldine,denudatin B,kaempferide,and quercetin to EGFR and SRC.The results of in vitro experiments showed that treatment with an ethanolic extract of SQP significantly protected HK-2 cells from high glucose-induced cell damage.In addition,the SQP ethanol extract inhibited the phosphorylation of EGFR and SRC,suppressed the apoptosis rate,and regulated apoptosis-related proteins in HK-2 cells under high glucose stress.Conclusion:This study systematically and intuitively illustrated the possible pharmacological mechanisms of SQP against DKD through multiple components,targets,and signalling pathways,especially the inhibition of EGFR and SRC phosphorylation and apoptosis.
基金funding from the Basic Research Project of the Education Department of Shaanxi Province(21JC010,21JP035)the Young and Middle-Aged Scientific Research and Innovation Team of the Shaanxi Provincial Administration of Traditional Chinese Medicine(2022SLRHLJ001)the 2023 Central Financial Transfer Payment Local Project“Innovation and Improvement of Five Types of Hospital Preparations,Such as Roumudan Granules”.
文摘Background:The purpose of the study was to investigate the active ingredients and potential biochemical mechanisms of Juanbi capsule in knee osteoarthritis based on network pharmacology,molecular docking and animal experiments.Methods:Chemical components for each drug in the Juanbi capsule were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,while the target proteins for knee osteoarthritis were retrieved from the Drugbank,GeneCards,and OMIM databases.The study compared information on knee osteoarthritis and the targets of drugs to identify common elements.The data was imported into the STRING platform to generate a protein-protein interaction network diagram.Subsequently,a“component-target”network diagram was created using the screened drug components and target information with Cytoscape software.Common targets were imported into Metascape for GO function and KEGG pathway enrichment analysis.AutoDockTools was utilized to predict the molecular docking of the primary chemical components and core targets.Ultimately,the key targets were validated through animal experiments.Results:Juanbi capsule ameliorated Knee osteoarthritis mainly by affecting tumor necrosis factor,interleukin1β,MMP9,PTGS2,VEGFA,TP53,and other cytokines through quercetin,kaempferol,andβ-sitosterol.The drug also influenced the AGE-RAGE,interleukin-17,tumor necrosis factor,Relaxin,and NF-κB signaling pathways.The network pharmacology analysis results were further validated in animal experiments.The results indicated that Juanbi capsule could decrease the levels of tumor necrosis factor-αand interleukin-1βin the serum and synovial fluid of knee osteoarthritis rats and also down-regulate the expression levels of MMP9 and PTGS2 proteins in the articular cartilage.Conclusion:Juanbi capsule may improve the knee bone microstructure and reduce the expression of inflammatory factors of knee osteoarthritis via multiple targets and multiple signaling pathways.
基金Supported by National Natural Science Foundation of China,No.81573695,No.81860894,and No.81674096Ningxia Key Research and Development Plan Project,No.2021BEG03106.
文摘BACKGROUND Diabetic kidney disease(DKD)is one of the serious complications of diabetes mellitus,and the existing treatments cannot meet the needs of today's patients.Traditional Chinese medicine has been validated for its efficacy in DKD after many years of clinical application.However,the specific mechanism by which it works is still unclear.Elucidating the molecular mechanism of the Nardostachyos Radix et Rhizoma-rhubarb drug pair(NRDP)for the treatment of DKD will provide a new way of thinking for the research and development of new drugs.AIM To investigate the mechanism of the NRDP in DKD by network pharmacology combined with molecular docking,and then verify the initial findings by in vitro experiments.METHODS The Traditional Chinese Medicine Systems Pharmacology(TCMSP)database was used to screen active ingredient targets of NRDP.Targets for DKD were obtained based on the Genecards,OMIM,and TTD databases.The VENNY 2.1 database was used to obtain DKD and NRDP intersection targets and their Venn diagram,and Cytoscape 3.9.0 was used to build a"drug-component-target-disease"network.The String database was used to construct protein interaction networks.Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis and Gene Ontology analysis were performed based on the DAVID database.After selecting the targets and the active ingredients,Autodock software was used to perform molecular docking.In experimental validation using renal tubular epithelial cells(TCMK-1),we used the Cell Counting Kit-8 assay to detect the effect of NRDP on cell viability,with glucose solution used to mimic a hyperglycemic environment.Flow cytometry was used to detect the cell cycle progression and apoptosis.Western blot was used to detect the protein expression of STAT3,p-STAT3,BAX,BCL-2,Caspase9,and Caspase3.RESULTS A total of 10 active ingredients and 85 targets with 111 disease-related signaling pathways were obtained for NRDP.Enrichment analysis of KEGG pathways was performed to determine advanced glycation end products(AGEs)-receptor for AGEs(RAGE)signaling as the core pathway.Molecular docking showed good binding between each active ingredient and its core targets.In vitro experiments showed that NRDP inhibited the viability of TCMK-1 cells,blocked cell cycle progression in the G0/G1 phase,and reduced apoptosis in a concentrationdependent manner.Based on the results of Western blot analysis,NRDP differentially downregulated p-STAT3,BAX,Caspase3,and Caspase9 protein levels(P<0.01 or P<0.05).In addition,BAX/BCL-2 and p-STAT3/STAT3 ratios were reduced,while BCL-2 and STAT3 protein expression was upregulated(P<0.01).CONCLUSION NRDP may upregulate BCL-2 and STAT3 protein expression,and downregulate BAX,Caspase3,and Caspase9 protein expression,thus activating the AGE-RAGE signaling pathway,inhibiting the vitality of TCMK-1 cells,reducing their apoptosis.and arresting them in the G0/G1 phase to protect them from damage by high glucose.
基金supported by the grants from National Natural Science Foundation of China(No.82174334)Hainan Provincial Key Laboratory of Tropical Brain Science Research and Transformation Research Project(JCKF2021001)Innovative Research Projects for Graduate Students(HYYS2021B01).
文摘Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effective compounds and drug targets using Chinese medicine systemic pharmacology database and analysis platform and Chinese medicine molecular mechanism bioinformatics analysis tools;and searched for DKD targets using human online Mendelian genetics and gene cards.The potential targets of GLQMP for DKD were obtained through the intersection of drug targets and disease targets.Cytoscape software was applied to build herbal medicine-active compound-target-disease networks and analyze them;protein-protein interaction networks were analyzed using the STRING database platform;gene ontology and Kyoto Encyclopedia of Genes and Genomes were used for gene ontology and gene and genome encyclopedia to enrich potential targets using the DAVID database;and the AutoDock Vina 1.1.2 software for molecular docking of key targets with corresponding key components.In vitro experiments were validated by CCK8,oil red O staining,TC,TG,RT-qPCR,and Western blot.Results:Through network pharmacology analysis,a total of 99 potential therapeutic targets of GLQMP for DKD and the corresponding 38 active compounds were obtained,and 5 core compounds were identified.By constructing the protein-protein interaction network and performing network topology analysis,we found that PPARA and PPARG were the key targets,and then we molecularly docked these two key targets with the 38 active compounds,especially the 5 core compounds,and found that PPARA and PPARG had good binding ability with a variety of compounds.In vitro experiments showed that GLQMP was able to ameliorate HK-2 cell injury under high glucose stress,improve cell viability,reduce TC and TG levels as well as decrease the accumulation of lipid droplets,and RT-qPCR and Western blot confirmed that GLQMP was able to promote the expression levels of PPARA and PPARG.Conclusion:Overall,this study revealed the active compounds,important targets and possible mechanisms of GLQMP treatment for DKD,and conducted preliminary verification experiments on its correctness,provided novel insights into the treatment of DKD by GLQMP.
基金supported by Open Fund Project of Key Laboratory of Xin’an Medicine Ministry of Education(2020xayx09)Scientific Research Program of Chinese Society of Ethnomedicine(2020Z1066-410113).
文摘Background:To explore the potential mechanism of action of the active ingredients of Smilacis Glabrae Rhizoma(SGR)in the treatment of migraine using network pharmacology and in vivo experiments.Methods:Through the search of Traditional Chinese Medicines Systems Pharmacology Database and Analysis Platform,Genecards,Drugbank and other databases,we obtained active ingredients,targets of SGR and related disease targets of migraine,and took the intersection for protein-protein interactions analysis.After constructing the network diagram,network topology analysis was performed to derive the core targets and key active ingredients,and Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed.Finally,molecular docking was performed and validated by in vivo experiments.In vivo experiments,18 male BALB/c mice were selected,and the SGR group was fed with SGR drinking tablet concentrate,and nitroglycerin injection was used to construct a mouse model of migraine.Enzyme-linked immunosorbent assay test was used to detect the levels of TNF-α,IL-1β,IL-6,and AKT1 in plasma.Results:The results showed that the core targets of SGR for the treatment of migraine were TNF-α,IL-1β,IL-6,and AKT1.These core targets and key active ingredients had better binding ability.Compared with the blank group,the number of head scratching in the model group increased.Compared with the model group,there was a significant reduction of the number of head scratching in the SGR group.In comparison with the blank group,the protein level in the plasma in the model group was markedly higher.Compared with the model group,the protein level in the SGR group was significantly lower.Conclusion:SGR has the characteristics of improving migraine based on multi-targets,multi-components and multi-pathways,and the mechanism of action may be related to the inhibition of the release of inflammatory factors,neuron protection,and interference with apoptosis and other processes.
基金National Natural Science Foundation of China(No.82160890)Guangxi Health Appropriate Technology Development and Application Project(No.GZSY23-21)+1 种基金Graduate Education Innovation Project,Guangxi University of Traditional Chinese Medicine(No.YCSW2023383)Research Program of Guangxi University of Traditional Chinese Medicine(No.2019MS016)。
文摘Objective:To explore the potential mechanism of action of quercetin in the treatment of diarrhea irritable bowel syndrome(IBS-D).Methods:The potential targets of quercetin were obtained from the TCMSP,SwissTar-getPrediction,and BATMAN-TCM databases.The targets of IBS-D were obtained by searching the GeneCards database with"diarrhea irritable bowel syndrome"as the keyword,and the targets of quercetin and IBS-D were intersected.The PPI network was constructed by Cytoscape 3.7.1 software.The intersected targets were imported into the DAVID database for GO functional analysis and KEGG pathway enrichment analysis.The binding ability of quercetin to the core targets was observed using molecular docking.Based on this,we established an IBS-D rat model,administered quercetin for intervention,and experimentally validated the network pharmacology prediction results by HE staining and ELISA assay.Results:Network pharmacology analysis showed that TP53,TNF-α,AKT1,VEGF-A,IL-6 factors and MAPK,PI3K-Akt signaling pathway as the core targets and pathways of quercetin for the treatment of IBS-D.The results of animal experiments revealed that quercetin could inhibit the secretion of TP53,TNF-α,AKT1,VEGF-A,IL-1βand IL-6,reduce the inflammatory response and improve IBS-D.Conclusion:Quercetin could protect colon tissue by regulating the expression of TP53,TNF-α,AKT1,VEGF-A,IL-1βand IL-6,thereby treating IBS-D.
基金supported in part by the Scientific Research Projects of Hubei Health Commission(WJ2023M119)Hubei Province Research Innovation Team Project(T2021022).
文摘Background:Studying the potential targets and mechanisms of Epimedium for anti-diabetic testicular injury using network pharmacology,molecular docking,and cell experiments.Methods:Acquisition of major components and targets of Epimedium was based on TCMSP,TCMID,and Symmap databases and retrieval of diabetic testicular injury targets by OMIM,GeneCards,Pharmgkb,and Drugbank databases.Intersecting targets were obtained from the Venny 2.1.0 database and input SRTING data to construct a protein-protein interaction(PPI)network,and key targets were screened in Cytoscape 3.8.0 software.Then the Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses of intersecting targets were conducted through the DAVID database.Further,AutoDock software was used to verify docking between the main components and the core target proteins.In addition,a Cell Counting Kit-8(CCK-8)assay was used to determine the survival effect of quercetin,the main component of Epimedium,on TM4 sertoli-like cells exposed to palmitic acid(PA).Results:Quercetin,kaempferol and luteolin in epimedium were identified as the main components in the treatment of diabetic testicular injury.It has core target proteins including MMP9,AKT1,and TNF.The biological process mainly involves the regulation of the apoptotic signaling pathway.The key pathways of KEGG are the AGE-RAGE signaling pathway in diabetic complications,PI3K-Akt and MAPK signaling pathway.Molecular docking results showed that quercetin had the strongest binding ability to MMP9.Also,PA-challenged cells had a lower survival rate,which was alleviated by the administration of quercetin.Conclusion:Our findings suggest that Epimedium attenuates diabetes mellitus(DM)-induced testicular injury through AGE-RAGE,PI3K-Akt and MAPK signaling pathway.These insights offer a potential therapeutic strategy for managing DM-induced testicular injury,will be the basis for future clinical research.
基金supported by the Science and Technology Foundation of Basic Research Program of Guizhou Province([2023]General 371,[2020]1Y381)the Administration of Traditional Chinese Medicine of Guizhou Province(QZYY-2018-130)+3 种基金the project of Key Laboratory of Basic Pharmacology of Ministry of Education,Zunyi Medicial University(No.qianjiaoheKYzi[2022]395)the Cultivation Plan of the NSFC(National Natural Science Foundation of China)of the affiliated hospital of Guizhou Medical University(GYFYNSFC-2021-55,GYFYNSFC-2021-56)the Cultivation Plan of the NSFC(National Natural Science Foundation of China)of Guizhou Medical University(21NSFCP13)the Science and Technology Foundation of Health Commission of Guizhou Province(gzwkj 2022-221).
文摘Background:Ginkgo flavone aglycones(GA),a Ginkgo(Ginkgo biloba)extract,has been proven to have good biological activity in atherosclerosis(AS)treatment.Moreover,its active compounds and the corresponding mechanism for the treatment of AS remain unclear.Methods:To evaluate and identify the potential pharmacological mechanisms of GA in AS treatment,the program Cytoscape was used to generate network mappings of the GA-AS-potential target gene.GO and KEGG enrichment analyses were performed to further investigate the potential mechanism of AS and the pharmacological properties of GA.A molecular docking approach was utilized to determine the GA components that interact with Akt.In vitro experiments were carried out to identify the anti-atherosclerotic effects of GA by targeting Akt.Results:Network pharmacological research determined that the active components of GA(quercetin,kaempferol,and isorhamnetin)correlated with AS target genes such as AKT1,EGFR,SRC,ESR1,PTGS2,MMP9,KDR,GSK3B,APP,and MMP2,respectively.GO enrichment and KEGG analysis showed that PI3K-Akt signaling may play an important role in GA treatment.Molecular docking experiments indicated that quercetin,kaempferol,and isorhamnetin integrate into the binding pockets of the most potentially beneficial GA-AS target protein(Akt).Consequently,cell experiments were conducted to support the anti-atherosclerotic activity of GA on AS by inhibiting the phosphorylation of AKT1 and its downstream signaling molecules,which regulated the proliferation of HASMCs.Conclusion:Our results detailed GA's active ingredients,potential targets,and molecular basis against AS.GA may exert anti-atherosclerotic effects by suppressing Akt phosphorylation and inhibiting the proliferation of HASMCs.It also proposed a viable approach to determining the scientific foundation and therapeutic mechanism of Chinese herbal medicine extracts in disease therapy.