Molecular programming is applied to minimum spanning problem whose solution requires encoding of real values in DNA strands. A new encoding scheme is proposed for real values that is biologically plausible and has a f...Molecular programming is applied to minimum spanning problem whose solution requires encoding of real values in DNA strands. A new encoding scheme is proposed for real values that is biologically plausible and has a fixed code length. According to the characteristics of the problem, a DNA algorithm solving the minimum spanning tree problem is given. The effectiveness of the proposed method is verified by simulation. The advantages and disadvantages of this algorithm are discussed.展开更多
In this article there is an aim to build a realistic electronic model of this amazing molecule, this perhaps will be the basis for constructing of molecular computers. DNA molecule making the complexes with histones a...In this article there is an aim to build a realistic electronic model of this amazing molecule, this perhaps will be the basis for constructing of molecular computers. DNA molecule making the complexes with histones and other proteines, their electrostatic interaction cause the electrical polarisation and charges formation on this macromolecule, via charges DNA behavoirs are differentiated In this study analysis of signal is setting out by EWB PC simulation program and oscilloscope devices.展开更多
A more recent branch of natural computing is DNA computing. At the theoretical level, DNA computing is powerful. This is due to the fact that DNA structure and processing suggest a series of new data structures and op...A more recent branch of natural computing is DNA computing. At the theoretical level, DNA computing is powerful. This is due to the fact that DNA structure and processing suggest a series of new data structures and operations, and to the fact of the massive parallelism. The insertion-deletion system (insdel system) is a DNA computing model based on two genetic operations: insertion and deletion which, working together, are very powerful, leading to characterizations of recursively enumerable lan- guages. When designing an insdel computer, it is natural to try to keep the underlying model as simple as possible. One idea is to use either only insertion operations or only deletion operations. By helping with a weak coding and a morphism, the family INS4^7DEL0^0 is equal to the family of recursively enumerable languages. It is an open problem proposed by Martin-Vide et al. on whether or not the parameters 4 and 7 appearing here can be replaced by smaller numbers. In this paper, our positive answer to this question is that INS2^4DEL0^0 can also play the same role as insertion and deletion. We suppose that the INS2^4DEL0^0 may be the least only-insertion insdel system in this situation. We will give some reasons supporting this conjecture in our paper.展开更多
Aptamers are molecular recognition elements with high specificity that are selected from deoxyribonucleic acid/ribonucleic acid (DNA/RNA) library. Compared with the traditional protein recognition elements,aptamers ha...Aptamers are molecular recognition elements with high specificity that are selected from deoxyribonucleic acid/ribonucleic acid (DNA/RNA) library. Compared with the traditional protein recognition elements,aptamers have excellent properties such as cost-effective,stable,easy for synthesis and modification. In recent years,electrochemistry plays an important role in biosensor field because of its high sensitivity,high stability, fast response and easy miniaturization. Through the combination of these two technologies and our rational design,we constructed a series of biosensors and biochips that are simple,fast,cheap and miniaturized. Firstly,we designed an adenosine triphosphate (ATP) electrochemical biosensor based on the strand displacement strategy. We can detect as low as 10 nmol/L of ATP both in pure solution and complicated cell lysates. Secondly,we creatively split the aptamers into two fragments and constructed the sandwich assay platform only based on single aptamer sequence. We successfully transferred this design on biochips with multiple micro electrodes (6×6) and accomplished multiplex detection. In the fields of biochips and biocomputers,we designed several DNA logic gates with electric (electrochemical) signal as output which paves a new way for the development of DNA computer.展开更多
文摘Molecular programming is applied to minimum spanning problem whose solution requires encoding of real values in DNA strands. A new encoding scheme is proposed for real values that is biologically plausible and has a fixed code length. According to the characteristics of the problem, a DNA algorithm solving the minimum spanning tree problem is given. The effectiveness of the proposed method is verified by simulation. The advantages and disadvantages of this algorithm are discussed.
文摘In this article there is an aim to build a realistic electronic model of this amazing molecule, this perhaps will be the basis for constructing of molecular computers. DNA molecule making the complexes with histones and other proteines, their electrostatic interaction cause the electrical polarisation and charges formation on this macromolecule, via charges DNA behavoirs are differentiated In this study analysis of signal is setting out by EWB PC simulation program and oscilloscope devices.
文摘A more recent branch of natural computing is DNA computing. At the theoretical level, DNA computing is powerful. This is due to the fact that DNA structure and processing suggest a series of new data structures and operations, and to the fact of the massive parallelism. The insertion-deletion system (insdel system) is a DNA computing model based on two genetic operations: insertion and deletion which, working together, are very powerful, leading to characterizations of recursively enumerable lan- guages. When designing an insdel computer, it is natural to try to keep the underlying model as simple as possible. One idea is to use either only insertion operations or only deletion operations. By helping with a weak coding and a morphism, the family INS4^7DEL0^0 is equal to the family of recursively enumerable languages. It is an open problem proposed by Martin-Vide et al. on whether or not the parameters 4 and 7 appearing here can be replaced by smaller numbers. In this paper, our positive answer to this question is that INS2^4DEL0^0 can also play the same role as insertion and deletion. We suppose that the INS2^4DEL0^0 may be the least only-insertion insdel system in this situation. We will give some reasons supporting this conjecture in our paper.
基金100 Talents Program of Chinese Academy of SciencesNational Key Basic Research Program of China ("973"Program) (No. 2012CB932600)
文摘Aptamers are molecular recognition elements with high specificity that are selected from deoxyribonucleic acid/ribonucleic acid (DNA/RNA) library. Compared with the traditional protein recognition elements,aptamers have excellent properties such as cost-effective,stable,easy for synthesis and modification. In recent years,electrochemistry plays an important role in biosensor field because of its high sensitivity,high stability, fast response and easy miniaturization. Through the combination of these two technologies and our rational design,we constructed a series of biosensors and biochips that are simple,fast,cheap and miniaturized. Firstly,we designed an adenosine triphosphate (ATP) electrochemical biosensor based on the strand displacement strategy. We can detect as low as 10 nmol/L of ATP both in pure solution and complicated cell lysates. Secondly,we creatively split the aptamers into two fragments and constructed the sandwich assay platform only based on single aptamer sequence. We successfully transferred this design on biochips with multiple micro electrodes (6×6) and accomplished multiplex detection. In the fields of biochips and biocomputers,we designed several DNA logic gates with electric (electrochemical) signal as output which paves a new way for the development of DNA computer.