Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors...Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.展开更多
In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby...In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby limiting their performance.This paper aims to review the underlying mechanisms of how irregularly arranged Pinfins influence the thermal characteristics of power modules and introduce collaborative thermal design with DC bus capacitor and motor.Literature considers chip size,placement,coolant flow direction with the goal of reducing thermal resistance of power modules,minimizing chip junction temperature differentials,and optimizing Pinfin layouts.In the first step,algorithms should efficiently generating numerous unique irregular Pinfin layouts to enhance optimization quality.The second step is to efficiently evaluate Pinfin layouts.Simulation accuracy and speed should be ensured to improve computational efficiency.Finally,to improve overall heat dissipation effectiveness,papers establish models for capacitors,motors,to aid collaborative Pinfin optimization.These research outcomes will provide essential support for future developments in high power density motor drive for vehicles.展开更多
Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In exist...Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.展开更多
Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. ...Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.展开更多
To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In thi...To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In this paper,two deep learning models are developed and trained with two feature groups extracted from the Materials Project datasets to predict the battery electrochemical performances including average voltage,specific capacity and specific energy.The deep learning models are trained with the multilayer perceptron as the core.The Bayesian optimization and Monte Carlo methods are applied to improve the prediction accuracy of models.Based on 10 types of ion batteries,the correlation coefficients are maintained above 0.9 compared to DFT calculation results and the mean absolute error of the prediction results for voltages of two models can reach 0.41 V and 0.20 V,respectively.The electrochemical performance prediction times for the two trained models on thousands of batteries are only 72.9 ms and 75.7 ms.Besides,the two deep learning models are applied to approach the screening of emerging electrode materials for sodium-ion and potassium-ion batteries.This work can contribute to a high-throughput computational method to accelerate the rational and fast materials discovery and design.展开更多
With the rapid development of electrical power systems,ensuring the accuracy and reliability of power transmis-sion has become particularly crucial.The secondary cable line calibrator for current transformers(CT)plays...With the rapid development of electrical power systems,ensuring the accuracy and reliability of power transmis-sion has become particularly crucial.The secondary cable line calibrator for current transformers(CT)plays an essential role in calibrating electrical power systems.It is not only related to the safe operation of the system but also directly im-pacts the accuracy of energy metering.This study aims to design and analyze an efficient CT secondary cable line calibra-tor to explore its application effects in the power system.By thoroughly analyzing the characteristics of CT secondary ca-ble lines and the design requirements of the calibrator,this paper proposes an innovative design scheme for the calibrator.This device demonstrates significant effects in enhancing the accuracy and stability of power system calibration,providing robust technical support for the optimization and upgrade of the power system.This research not only offers a theoretical basis and practical guidance for the design and application of CT secondary cable line calibrators but also contributes new ideas and methods for the precise calibration and efficient management of the power system.展开更多
Bridge engineering is highly specialized and has spatial characteristics,which puts forward higher requirements for design work.The advancement of information technology has provided ample tools to facilitate bridge d...Bridge engineering is highly specialized and has spatial characteristics,which puts forward higher requirements for design work.The advancement of information technology has provided ample tools to facilitate bridge design work,with building information modeling(BIM)technology being one of them.BIM technology ensures the efficiency and quality of the forward design of bridges,while also reducing construction costs.This article starts with defining the concept of BIM technology,followed by a discussion on its advantages in bridge design and application process,which serves as a reference for other bridge designers.展开更多
Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and ar...Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.展开更多
This paper discusses the digital application of building information model(BIM)technology in the architectural design stage.Taking the large-scale comprehensive development project of Guangxi headquarters base as an e...This paper discusses the digital application of building information model(BIM)technology in the architectural design stage.Taking the large-scale comprehensive development project of Guangxi headquarters base as an example,this paper analyzes in detail how BIM technology promotes the intelligence and refinement of the design process.Through the threedimensional modeling and simulation analysis of BIM technology,the project design has realized the accurate transformation from concept to operation,which not only improves the design efficiency,but also ensures the construction quality and economic benefits.This paper focuses on the application of BIM in the digital design of building structure,the deepening design of steel nodes,as well as the remarkable results in the comprehensive layout optimization of mechanical and electrical pipelines.Through the collision detection and optimization design of the BIM model,the potential design conflicts and construction problems were found and solved at the initial stage of the project,ensuring the efficient promotion and smooth implementation of the project.The research results show that BIM technology,as the core digital tool in the architectural design stage,is of great significance for improving the overall design level of the construction industry and realizing intelligent construction.展开更多
With the development of the society,the function of the building also becomes rich from single refuge,and modern architects can’t satisfy the pursuit of traditional architectural form,and design goal is transformed i...With the development of the society,the function of the building also becomes rich from single refuge,and modern architects can’t satisfy the pursuit of traditional architectural form,and design goal is transformed into emphasizing the dialogue between architecture and people,architecture and emotions,and architecture and environment.As a kind of new building materials,fair-faced concrete expresses almost any emotion and meets people’s emotional needs with its excellent structural performance and good plasticity.In this paper,the characteristics,expressive force and application of fair-faced concrete are studied and analyzed,and the application and development prospect of fair-faced concrete in architectural design are summarized.展开更多
The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its c...The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its concepts and characteristics,and made deep exploration to its application in landscape planning and design.The results indicated that modern construction art had a significant impact on landscape spatial planning and layout,spatial design forms,and spatial ornaments.The use of modern construction art concepts could make landscape design more scientific,artistic,and humane,creating higher quality leisure and entertainment venues for audiences.展开更多
In view of the problems of inconsistent data semantics,inconsistent data formats,and difficult data quality assurance between the railway engineering design phase and the construction and operation phase,as well as th...In view of the problems of inconsistent data semantics,inconsistent data formats,and difficult data quality assurance between the railway engineering design phase and the construction and operation phase,as well as the difficulty in fully realizing the value of design results,this paper proposes a design and implementation scheme for a railway engineering collaborative design platform.The railway engineering collaborative design platform mainly includes functional modules such as metadata management,design collaboration,design delivery management,model component library,model rendering services,and Building Information Modeling(BIM)application services.Based on this,research is conducted on multi-disciplinary parameterized collaborative design technology for railway engineering,infrastructure data management and delivery technology,and design multi-source data fusion and application technology.The railway engineering collaborative design platform is compared with other railway design software to further validate its advantages and advanced features.The platform has been widely applied in multiple railway construction projects,greatly improving the design and project management efficiency.展开更多
The application significance of Fuyang paper cutting art in cultural and creative design from the perspective of rural revitalization was discussed,and the implementation principles and specific practices of applying ...The application significance of Fuyang paper cutting art in cultural and creative design from the perspective of rural revitalization was discussed,and the implementation principles and specific practices of applying the elements and techniques of Fuyang traditional paper cutting art in cultural and creative products with local features were analyzed to provide reference for rural revitalization and development of cultural industry.展开更多
To revive the nation,the rural area must be revitalized.Every regional cultural and creative industry has its own development path and practical mode.From the perspective of rural revitalization,this paper conducts re...To revive the nation,the rural area must be revitalized.Every regional cultural and creative industry has its own development path and practical mode.From the perspective of rural revitalization,this paper conducts research on the development model of cultural and creative design,and analyzes the significance of the integration of creative design with rural regional culture.Based on the current situation of rural cultural and creative development in Shanxi Province,this study proposes to form a brand communication chain through the integration between cultural design and rural culture,and the establishment of cultural and creative brands,furthermore,to establish trending topics through multiple channels.Finally,the important practical significance of cultural and creative design in promoting rural economic development and enhancing rural culture value is discussed in this design strategy,so as to actively help the new journey of rural revitalization.展开更多
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
Highway bridges are an important part of transportation infrastructure.With the rapid development of transportation,the design of bridge construction has received significant attention.The complex environment of some ...Highway bridges are an important part of transportation infrastructure.With the rapid development of transportation,the design of bridge construction has received significant attention.The complex environment of some regions necessitates the selection of seismic design to improve the stability of the structure during the design phase of highway bridge construction.This article briefly discusses bridge structures that may be subject to seismic hazards and analyzes seismic design standards to explore their application in the design process of highway bridges,with the aim of providing support for bridge construction.展开更多
The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strat...The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strategy of this structure,encompassing overall design strategy,structural design strategy,and structural calculation strategy.The aim is to offer insights that can enhance the quality of bridge design.展开更多
The purpose of this analysis is to delve into the application of color psychology in the logo design of Korean cosmetic brands,using Etude House as an example for an exhaustive analysis.By examining the history of the...The purpose of this analysis is to delve into the application of color psychology in the logo design of Korean cosmetic brands,using Etude House as an example for an exhaustive analysis.By examining the history of the Etude House brand,the evolution of the logo design,and the changes in color choices,we analyze the traditional concepts of color symbolism in Korean culture and the culture of color in contemporary society in order to reveal the important role of color in cosmetic brand image.Through an in-depth analysis of the use of color in Etude House’s brand identity,we further analyze the impact of color on consumer emotions and purchasing behavior,as well as the potential impact of brand identity changes on market performance.Finally,the conclusions of the analysis summarize the practical application of color psychology in Etude House’s brand logo design,suggest recommendations for other Korean cosmetic brands to draw upon in their logo design,and discuss future directions.展开更多
As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its applic...As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.展开更多
The concept of“STEM+”integrates art,humanistic literacy,and social values in the traditional STEM education concept,advocates cross-disciplinary integration,and aims to cultivate compound talents equipped to tackle ...The concept of“STEM+”integrates art,humanistic literacy,and social values in the traditional STEM education concept,advocates cross-disciplinary integration,and aims to cultivate compound talents equipped to tackle future challenges.In 2022,the Ministry of Education issued the“Compulsory Education Information Technology Curriculum(2022 Edition),”emphasizing the core literacy of information science and technology and the integration of interdisciplinary disciplines,and encouraging the teaching mode suitable for discipline characteristics.The 6E teaching mode is a student-centered teaching strategy characterized by active exploration and cross-disciplinary integration.This article innovatively designed the“STEM+”6E teaching mode,which is applied to junior high school information technology teaching,which can better achieve core literacy teaching goals.展开更多
基金The authors would like to acknowledge the support from the Natural Sciences and Engineering Research Council of Canada in the form of Discovery Grants to ARR and SS(RGPIN-2019-07246 and RGPIN-2022-04988).A.Rosenkranz greatly acknowledges the financial support given by ANID-Chile within the project Fondecyt Regular 1220331 and Fondequip EQM190057.B.Wang gratefully acknowledges the financial support given by the Alexander von Humboldt Foundation.
文摘Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.
基金supported in part by National Key R&D Program of China(2021YFB2500600),and in part by Chinese Academy of Sciences Youth multi-discipline project(JCTD-2021-09),and in part by Strategic Piority Research Program of Chinese Academy of Sciences(XDA28040100).
文摘In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby limiting their performance.This paper aims to review the underlying mechanisms of how irregularly arranged Pinfins influence the thermal characteristics of power modules and introduce collaborative thermal design with DC bus capacitor and motor.Literature considers chip size,placement,coolant flow direction with the goal of reducing thermal resistance of power modules,minimizing chip junction temperature differentials,and optimizing Pinfin layouts.In the first step,algorithms should efficiently generating numerous unique irregular Pinfin layouts to enhance optimization quality.The second step is to efficiently evaluate Pinfin layouts.Simulation accuracy and speed should be ensured to improve computational efficiency.Finally,to improve overall heat dissipation effectiveness,papers establish models for capacitors,motors,to aid collaborative Pinfin optimization.These research outcomes will provide essential support for future developments in high power density motor drive for vehicles.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,62201307)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297)+2 种基金the Shenzhen Science and Technology Program ZDSYS20210623091808025Stable Support Plan Program GXWD20231129102638002the Major Key Project of PCL(No.PCL2024A01)。
文摘Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.
基金sponsored by the Regional Joint Fund of the National Science Foundation of China via Grant No. U21A20492the National Natural Science Foundation of China (NSFC) via Grant No. 62275041+2 种基金the Sichuan Science and Technology Program via Grant Nos. 2022YFH0081, 2022YFG0012 and 2022YFG0013the Sichuan Youth Software Innovation Project Funding via Grant No. MZGC20230068the Sichuan Province Key Laboratory of Display Science and Technology。
文摘Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.
基金supported by the National Natural Science Foundation of China(No.52102470).
文摘To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In this paper,two deep learning models are developed and trained with two feature groups extracted from the Materials Project datasets to predict the battery electrochemical performances including average voltage,specific capacity and specific energy.The deep learning models are trained with the multilayer perceptron as the core.The Bayesian optimization and Monte Carlo methods are applied to improve the prediction accuracy of models.Based on 10 types of ion batteries,the correlation coefficients are maintained above 0.9 compared to DFT calculation results and the mean absolute error of the prediction results for voltages of two models can reach 0.41 V and 0.20 V,respectively.The electrochemical performance prediction times for the two trained models on thousands of batteries are only 72.9 ms and 75.7 ms.Besides,the two deep learning models are applied to approach the screening of emerging electrode materials for sodium-ion and potassium-ion batteries.This work can contribute to a high-throughput computational method to accelerate the rational and fast materials discovery and design.
文摘With the rapid development of electrical power systems,ensuring the accuracy and reliability of power transmis-sion has become particularly crucial.The secondary cable line calibrator for current transformers(CT)plays an essential role in calibrating electrical power systems.It is not only related to the safe operation of the system but also directly im-pacts the accuracy of energy metering.This study aims to design and analyze an efficient CT secondary cable line calibra-tor to explore its application effects in the power system.By thoroughly analyzing the characteristics of CT secondary ca-ble lines and the design requirements of the calibrator,this paper proposes an innovative design scheme for the calibrator.This device demonstrates significant effects in enhancing the accuracy and stability of power system calibration,providing robust technical support for the optimization and upgrade of the power system.This research not only offers a theoretical basis and practical guidance for the design and application of CT secondary cable line calibrators but also contributes new ideas and methods for the precise calibration and efficient management of the power system.
文摘Bridge engineering is highly specialized and has spatial characteristics,which puts forward higher requirements for design work.The advancement of information technology has provided ample tools to facilitate bridge design work,with building information modeling(BIM)technology being one of them.BIM technology ensures the efficiency and quality of the forward design of bridges,while also reducing construction costs.This article starts with defining the concept of BIM technology,followed by a discussion on its advantages in bridge design and application process,which serves as a reference for other bridge designers.
文摘Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.
基金The 2023 Guangxi University Young and Middle-Aged Teachers’Scientific Research Basic Ability Improvement Project“Research on Seismic Performance of Prefabricated CFST Column-SRC Beam Composite Joints”(Project No.2023KY1204)The 2023 Guangxi Vocational Education Teaching Reform Research Project“Research and Practice on the Cultivation of Digital Talents in Prefabricated Buildings in the Context of Deepening the Integration of Industry and Education”(Project No.GXGZJG2023B052)The 2022 Guangxi Polytechnic of Construction School-Level Teaching Innovation Team Project“Prefabricated and Intelligent Teaching Innovation Team”(Project No.Gui Jian Yuan Ren[2022]No.15)。
文摘This paper discusses the digital application of building information model(BIM)technology in the architectural design stage.Taking the large-scale comprehensive development project of Guangxi headquarters base as an example,this paper analyzes in detail how BIM technology promotes the intelligence and refinement of the design process.Through the threedimensional modeling and simulation analysis of BIM technology,the project design has realized the accurate transformation from concept to operation,which not only improves the design efficiency,but also ensures the construction quality and economic benefits.This paper focuses on the application of BIM in the digital design of building structure,the deepening design of steel nodes,as well as the remarkable results in the comprehensive layout optimization of mechanical and electrical pipelines.Through the collision detection and optimization design of the BIM model,the potential design conflicts and construction problems were found and solved at the initial stage of the project,ensuring the efficient promotion and smooth implementation of the project.The research results show that BIM technology,as the core digital tool in the architectural design stage,is of great significance for improving the overall design level of the construction industry and realizing intelligent construction.
文摘With the development of the society,the function of the building also becomes rich from single refuge,and modern architects can’t satisfy the pursuit of traditional architectural form,and design goal is transformed into emphasizing the dialogue between architecture and people,architecture and emotions,and architecture and environment.As a kind of new building materials,fair-faced concrete expresses almost any emotion and meets people’s emotional needs with its excellent structural performance and good plasticity.In this paper,the characteristics,expressive force and application of fair-faced concrete are studied and analyzed,and the application and development prospect of fair-faced concrete in architectural design are summarized.
基金Sponsored by Germplasm Collection and Conservation Project for the Forest and Grass Germplasm Resources in Anhui Province in 2024(hxkt2024111)Science and Technology Plan Project of Huangshan(2022KN-02)+1 种基金Humanities and Social Sciences Research Project of Anhui Higher Education Institutions(SKHS2019B07)Key School-level Project of Huangshan University(2022xkjzd004).
文摘The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its concepts and characteristics,and made deep exploration to its application in landscape planning and design.The results indicated that modern construction art had a significant impact on landscape spatial planning and layout,spatial design forms,and spatial ornaments.The use of modern construction art concepts could make landscape design more scientific,artistic,and humane,creating higher quality leisure and entertainment venues for audiences.
基金supported by the National Key Research and Development Program of China(2021YFB2600405).
文摘In view of the problems of inconsistent data semantics,inconsistent data formats,and difficult data quality assurance between the railway engineering design phase and the construction and operation phase,as well as the difficulty in fully realizing the value of design results,this paper proposes a design and implementation scheme for a railway engineering collaborative design platform.The railway engineering collaborative design platform mainly includes functional modules such as metadata management,design collaboration,design delivery management,model component library,model rendering services,and Building Information Modeling(BIM)application services.Based on this,research is conducted on multi-disciplinary parameterized collaborative design technology for railway engineering,infrastructure data management and delivery technology,and design multi-source data fusion and application technology.The railway engineering collaborative design platform is compared with other railway design software to further validate its advantages and advanced features.The platform has been widely applied in multiple railway construction projects,greatly improving the design and project management efficiency.
基金Sponsored by the National Innovation and Entrepreneurship Training Planning Project for University Students(202410378293).
文摘The application significance of Fuyang paper cutting art in cultural and creative design from the perspective of rural revitalization was discussed,and the implementation principles and specific practices of applying the elements and techniques of Fuyang traditional paper cutting art in cultural and creative products with local features were analyzed to provide reference for rural revitalization and development of cultural industry.
文摘To revive the nation,the rural area must be revitalized.Every regional cultural and creative industry has its own development path and practical mode.From the perspective of rural revitalization,this paper conducts research on the development model of cultural and creative design,and analyzes the significance of the integration of creative design with rural regional culture.Based on the current situation of rural cultural and creative development in Shanxi Province,this study proposes to form a brand communication chain through the integration between cultural design and rural culture,and the establishment of cultural and creative brands,furthermore,to establish trending topics through multiple channels.Finally,the important practical significance of cultural and creative design in promoting rural economic development and enhancing rural culture value is discussed in this design strategy,so as to actively help the new journey of rural revitalization.
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
文摘Highway bridges are an important part of transportation infrastructure.With the rapid development of transportation,the design of bridge construction has received significant attention.The complex environment of some regions necessitates the selection of seismic design to improve the stability of the structure during the design phase of highway bridge construction.This article briefly discusses bridge structures that may be subject to seismic hazards and analyzes seismic design standards to explore their application in the design process of highway bridges,with the aim of providing support for bridge construction.
文摘The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strategy of this structure,encompassing overall design strategy,structural design strategy,and structural calculation strategy.The aim is to offer insights that can enhance the quality of bridge design.
文摘The purpose of this analysis is to delve into the application of color psychology in the logo design of Korean cosmetic brands,using Etude House as an example for an exhaustive analysis.By examining the history of the Etude House brand,the evolution of the logo design,and the changes in color choices,we analyze the traditional concepts of color symbolism in Korean culture and the culture of color in contemporary society in order to reveal the important role of color in cosmetic brand image.Through an in-depth analysis of the use of color in Etude House’s brand identity,we further analyze the impact of color on consumer emotions and purchasing behavior,as well as the potential impact of brand identity changes on market performance.Finally,the conclusions of the analysis summarize the practical application of color psychology in Etude House’s brand logo design,suggest recommendations for other Korean cosmetic brands to draw upon in their logo design,and discuss future directions.
文摘As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.
基金2024 Chongqing Normal University Graduate Research Innovation Project“Construction and Application of Information Technology Knowledge Map based on the Three-Layer Architecture”(CYS240395)。
文摘The concept of“STEM+”integrates art,humanistic literacy,and social values in the traditional STEM education concept,advocates cross-disciplinary integration,and aims to cultivate compound talents equipped to tackle future challenges.In 2022,the Ministry of Education issued the“Compulsory Education Information Technology Curriculum(2022 Edition),”emphasizing the core literacy of information science and technology and the integration of interdisciplinary disciplines,and encouraging the teaching mode suitable for discipline characteristics.The 6E teaching mode is a student-centered teaching strategy characterized by active exploration and cross-disciplinary integration.This article innovatively designed the“STEM+”6E teaching mode,which is applied to junior high school information technology teaching,which can better achieve core literacy teaching goals.