Tauopathies,diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of fro ntotemporal dementia,make up the vast majority of dementia cases.Although there have been...Tauopathies,diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of fro ntotemporal dementia,make up the vast majority of dementia cases.Although there have been recent developments in tauopathy biomarkers and disease-modifying treatments,ongoing progress is required to ensure these are effective,economical,and accessible for the globally ageing population.As such,continued identification of new potential drug targets and biomarkers is critical."Big data"studies,such as proteomics,can generate information on thousands of possible new targets for dementia diagnostics and therapeutics,but currently remain underutilized due to the lack of a clear process by which targets are selected for future drug development.In this review,we discuss current tauopathy biomarkers and therapeutics,and highlight areas in need of improvement,particularly when addressing the needs of frail,comorbid and cognitively impaired populations.We highlight biomarkers which have been developed from proteomic data,and outline possible future directions in this field.We propose new criteria by which potential targets in proteomics studies can be objectively ranked as favorable for drug development,and demonstrate its application to our group's recent tau interactome dataset as an example.展开更多
Purpose: The late Don R. Swanson was well appreciated during his lifetime as Dean of the Graduate Library School at University of Chicago, as winner of the American Society for Information Science Award of Merit for ...Purpose: The late Don R. Swanson was well appreciated during his lifetime as Dean of the Graduate Library School at University of Chicago, as winner of the American Society for Information Science Award of Merit for 2000, and as author of many seminal articles. In this informal essay, I will give my personal perspective on Don's contributions to science, and outline some current and future directions in literature-based discovery that are rooted in concepts that he developed.Design/methodology/approach: Personal recollections and literature review. Findings: The Swanson A-B-C model of literature-based discovery has been successfully used by laboratory investigators analyzing their findings and hypotheses. It continues to be a fertile area of research in a wide range of application areas including text mining, drug repurposing, studies of scientific innovation, knowledge discovery in databases, and bioinformatics. Recently, additional modes of discovery that do not follow the A-B-C model have also been proposed and explored (e.g. so-called storytelling, gaps, analogies, link prediction, negative consensus, outliers, and revival of neglected or discarded research questions). Research limitations: This paper reflects the opinions of the author and is not a comprehensive nor technically based review of literature-based discovery. Practical implications: The general scientific public is still not aware of the availability of tools for literature-based discovery. Our Arrowsmith project site maintains a suite of discovery tools that are free and open to the public (http://arrowsmith.psych.uic.edu), as does BITOLA which is maintained by Dmitar Hristovski (http:// http://ibmi.mf.uni-lj.si/bitola), and Epiphanet which is maintained by Trevor Cohen (http://epiphanet.uth.tme.edu/). Bringing user-friendly tools to the public should be a high priority, since even more than advancing basic research in informatics, it is vital that we ensure that scientists actually use discovery tools and that these are actually able to help them make experimental discoveries in the lab and in the clinic. Originality/value: This paper discusses problems and issues which were inherent in Don's thoughts during his life, including those which have not yet been fully taken up and studied systematically.展开更多
Discovering floating wastes,especially bottles on water,is a crucial research problem in environmental hygiene.Nevertheless,real-world applications often face challenges such as interference from irrelevant objects an...Discovering floating wastes,especially bottles on water,is a crucial research problem in environmental hygiene.Nevertheless,real-world applications often face challenges such as interference from irrelevant objects and the high cost associated with data collection.Consequently,devising algorithms capable of accurately localizing specific objects within a scene in scenarios where annotated data is limited remains a formidable challenge.To solve this problem,this paper proposes an object discovery by request problem setting and a corresponding algorithmic framework.The proposed problem setting aims to identify specified objects in scenes,and the associated algorithmic framework comprises pseudo data generation and object discovery by request network.Pseudo-data generation generates images resembling natural scenes through various data augmentation rules,using a small number of object samples and scene images.The network structure of object discovery by request utilizes the pre-trained Vision Transformer(ViT)model as the backbone,employs object-centric methods to learn the latent representations of foreground objects,and applies patch-level reconstruction constraints to the model.During the validation phase,we use the generated pseudo datasets as training sets and evaluate the performance of our model on the original test sets.Experiments have proved that our method achieves state-of-the-art performance on Unmanned Aerial Vehicles-Bottle Detection(UAV-BD)dataset and self-constructed dataset Bottle,especially in multi-object scenarios.展开更多
The continued expansion of the world population,increasingly inconsistent climate and shrinking agricultural resources present major challenges to crop breeding.Fortunately,the increasing ability to discover and manip...The continued expansion of the world population,increasingly inconsistent climate and shrinking agricultural resources present major challenges to crop breeding.Fortunately,the increasing ability to discover and manipulate genes creates new opportunities to develop more productive and resilient cultivars.Many genes have been described in papers as being beneficial for yield increase.However,few of them have been translated into increased yield on farms.In contrast,commercial breeders are facing gene decidophobia,i.e.,puzzled about which gene to choose for breeding among the many identified,a huge chasm between gene discovery and cultivar innovation.The purpose of this paper is to draw attention to the shortfalls in current gene discovery research and to emphasise the need to align with cultivar innovation.The methodology dictates that genetic studies not only focus on gene discovery but also pay good attention to the genetic backgrounds,experimental validation in relevant environments,appropriate crop management,and data reusability.The close of the gaps should accelerate the application of molecular study in breeding and contribute to future global food security.展开更多
Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extr...Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extract accurate governing equations under noisy conditions without prior knowledge.Specifically,the proposed method combines gene expression programming,one type of evolutionary algorithm capable of generating unseen terms based solely on basic operators and functional terms,with symbolic regression neural networks.These networks are designed to represent explicit functional expressions and optimize them with data gradients.In particular,the specifically designed neural networks can be easily transformed to physical constraints for the training data,embedding the discovered PDEs to further optimize the metadata used for iterative PDE identification.The proposed method has been tested in four canonical PDE cases,validating its effectiveness without preliminary information and confirming its suitability for practical applications across various noise levels.展开更多
In this paper,we propose a Multi-token Sector Antenna Neighbor Discovery(M-SAND)protocol to enhance the efficiency of neighbor discovery in asynchronous directional ad hoc networks.The central concept of our work invo...In this paper,we propose a Multi-token Sector Antenna Neighbor Discovery(M-SAND)protocol to enhance the efficiency of neighbor discovery in asynchronous directional ad hoc networks.The central concept of our work involves maintaining multiple tokens across the network.To prevent mutual interference among multi-token holders,we introduce the time and space non-interference theorems.Furthermore,we propose a master-slave strategy between tokens.When the master token holder(MTH)performs the neighbor discovery,it decides which 1-hop neighbor is the next MTH and which 2-hop neighbors can be the new slave token holders(STHs).Using this approach,the MTH and multiple STHs can simultaneously discover their neighbors without causing interference with each other.Building on this foundation,we provide a comprehensive procedure for the M-SAND protocol.We also conduct theoretical analyses on the maximum number of STHs and the lower bound of multi-token generation probability.Finally,simulation results demonstrate the time efficiency of the M-SAND protocol.When compared to the QSAND protocol,which uses only one token,the total neighbor discovery time is reduced by 28% when 6beams and 112 nodes are employed.展开更多
Marine natural products(MNPs)are valuable resources for drug development.To date,17 drugs from marine sources are in clinical use,and 33 pharmaceutical compounds are in clinical trials.Presently the success of drug de...Marine natural products(MNPs)are valuable resources for drug development.To date,17 drugs from marine sources are in clinical use,and 33 pharmaceutical compounds are in clinical trials.Presently the success of drug development from the marine resources is higher than the industry average.It is a feasible strategy to conduct the discovery of druglead compounds based on marine chemical ecology by fully exploiting the pharmacological potential of marine chemical defense matters.In the search for bioactive MNPs,our group has constructed a biological resources library including more than 1500 strains of fungi.Focusing on the strategy of Blue Drug Library,we have discovered a series of novel MNPs with abundant biological functions.Highly efficient and scalable total synthesis of(+)-aniduquinolone A(44)and pesimquinolone I(48)have been completed,which will facilitate access to sufficient quantities of candidates for in vivo pharmacological and toxicological studies.As a nucleoprotein(NP)inhibitor,QLA(75)possesses significant anti-influenza A virus(IAV)activities both in vitro and in vivo.CHNQD-00803(76)is a potent and selective AMP-activated kinase(AMPK)activator that can effectively inhibit metabolic disorders and metabolic dysfunction-associated steatohepatitis(MASH)progression.Moreover,we identified two new candidate molecules with potent anti-hepatocellular carcinoma effects.Particularly,as a natural guanine-nucleotide exchange factors for ADP-ribosylation factor GTPases(Arf-GEFs)inhibitor prodrug,CHNQD-01255(78)is qualified to be developed as a targeted candidate anticancer drug,which may be promising to apply for cancer immunotherapy.Hence,it is evident that MNPs play an important role in drug development.展开更多
Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an ...Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an aperture of at least four meters. With the support of their governments in the US, Europe, and Canada, 20,000 people brought this vision to life as the 6.5-meter James Webb Space Telescope (JWST). The telescope is working perfectly, delivering much better image quality than expected [1]. JWST is one hundred times more powerful than the Hubble Space Telescope and has already captured spectacular images of the distant universe. A view of a tiny part of the sky reveals many well-formed spiral galaxies, some over thirteen billion light-years away. These observations challenge the standard Big Bang Model (BBM), which posits that early galaxies should be small and lack well-formed spiral structures. JWST’s findings are prompting scientists to reconsider the BBM in its current form. Throughout the history of science, technological advancements have led to new results that challenge established theories, sometimes necessitating their modification or even abandonment. This happened with the geocentric model four centuries ago, and the BBM may face a similar reevaluation as JWST provides more images of the distant universe. In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of Variable Gravitational Constant, later incorporating the concept of Continuous Creation of Matter in the universe. The Hypersphere World-Universe Model (WUM) builds on these ideas, introducing a distinct mechanism for matter creation. WUM is proposed as an alternative to the prevailing BBM. Its main advantage is the elimination of the “Initial Singularity” and “Inflation”, offering explanations for many unresolved problems in Cosmology. WUM is presented as a natural extension of Classical Physics with the potential to bring about a significant transformation in both Cosmology and Classical Physics. Considering JWST’s discoveries, WUM’s achievements, and 87 years of Dirac’s proposals, it is time to initiate a fundamental transformation in Astronomy, Cosmology, and Classical Physics. The present paper is a continuation of the published article “JWST Discoveries—Confirmation of World-Universe Model Predictions” [2] and a summary of the paper “Hypersphere World-Universe Model: Digest of Presentations John Chappell Natural Philosophy Society” [3]. Many results obtained there are quoted in the current work without full justification;interested readers are encouraged to view the referenced papers for detailed explanations.展开更多
The rapidly advancing field of artificial intelligence(AI)has garnered substantial attention for its potential application in drug discovery and development.This opinion review critically examined the feasibility and ...The rapidly advancing field of artificial intelligence(AI)has garnered substantial attention for its potential application in drug discovery and development.This opinion review critically examined the feasibility and prospects of integrating AI as a transformative tool in the pharmaceutical industry.AI,encompassing machine learning algorithms,deep learning,and data analytics,offers unprecedented opportunities to streamline and enhance various stages of drug development.This opinion review delved into the current landscape of AI-driven approaches,discussing their utilization in target identification,lead optimization,and predictive modeling of pharmacokinetics and toxicity.We aimed to scrutinize the integration of large-scale omics data,electronic health records,and chemical informatics,highlighting the power of AI in uncovering novel therapeutic targets and accelerating drug repurposing strategies.Despite the considerable potential of AI,the review also addressed inherent challenges,including data privacy concerns,interpretability of AI models,and the need for robust validation in realworld clinical settings.Additionally,we explored ethical considerations surrounding AI-driven decision-making in drug development.This opinion review provided a nuanced perspective on the transformative role of AI in drug discovery by discussing the existing literature and emerging trends,presenting critical insights and addressing potential hurdles.In conclusion,this study aimed to stimulate discourse within the scientific community and guide future endeavors to harness the full potential of AI in drug development.展开更多
In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communicati...In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communication(ISAC),as an emerging technology in 6G mobile networks,has shown great potential in improving communication performance with the assistance of sensing information.ISAC obtains the prior information about node distribution,reducing the ND time.However,the prior information obtained through ISAC may be imperfect.Hence,an ND algorithm based on reinforcement learning is proposed.The learning automaton(LA)is applied to interact with the environment and continuously adjust the probability of selecting beams to accelerate the convergence speed of ND algorithms.Besides,an efficient ND algorithm in the neighbor maintenance phase is designed,which applies the Kalman filter to predict node movement.Simulation results show that the LA-based ND algorithm reduces the ND time by up to 32%compared with the Scan-Based Algorithm(SBA),which proves the efficiency of the proposed ND algorithms.展开更多
During geopolitical crises,the price stability of agricultural commodities is critical for national security.Understanding the dynamics of pricing power between the U.S.and China and how it varies over time can help s...During geopolitical crises,the price stability of agricultural commodities is critical for national security.Understanding the dynamics of pricing power between the U.S.and China and how it varies over time can help smaller nations navigate unpredictable moments.This study uses a unified framework and wavelet approach to examine soybean price discovery in the U.S.and China from the standpoints of price interdependence and information flows.We begin by illustrating the integrated link between the soybean futures markets in the U.S.and China,which includes multiple structural breaks.The pricing difference between the two nations acts as the primary information spillover route for their integrated relationship.Furthermore,we show that the direction and degree of information spillover change dramatically in proportion to the strength of the U.S.–Chinese soybean interaction.Finally,we find that China’s recent retaliatory tax on the U.S.soybeans gave the Chinese market a more powerful position in soybean futures price discovery.After the first-stage trade deal was reached,and during the epidemic phase of the coronavirus pandemic,the pricing power of the U.S.soybean market showed no signs of full recovery.展开更多
The latest review published in Nature Reviews Drug Discovery by Michael W.Mullowney and co-authors focuses on the use of artificial intelligence techniques,specifically machine learning,in natural product drug discove...The latest review published in Nature Reviews Drug Discovery by Michael W.Mullowney and co-authors focuses on the use of artificial intelligence techniques,specifically machine learning,in natural product drug discovery.The authors discussed various applications of AI in this field,such as genome and metabolome mining,structural characterization of natural products,and predicting targets and biological activities of these compounds.They also highlighted the challenges associated with creating and managing large datasets for training algorithms,as well as strategies to address these obstacles.Additionally,the authors examine common pitfalls in algorithm training and offer suggestions for avoiding them.展开更多
非键相互作用对于生物体系中的分子识别和结合过程起着关键作用。然而,传统的方法并不能在残基水平自动批量计算非键相互作用。近年来,已经发展了一些方法和工具进行非键相互作用的计算分析。该文研究发展了一种可以自动计算残基间非键...非键相互作用对于生物体系中的分子识别和结合过程起着关键作用。然而,传统的方法并不能在残基水平自动批量计算非键相互作用。近年来,已经发展了一些方法和工具进行非键相互作用的计算分析。该文研究发展了一种可以自动计算残基间非键相互作用的方法,即用Perl脚本调用Discovery Studio 2.0(DS 2.0,Accelrys Inc.)底层模块中的非键相互作用协议,实现了直接利用命令行批量计算非键相互作用能量,而无需通过DS2.0的图形界面。该方法扩展了DS2.0的计算模块,并于近期运用到了复合结构的研究分析中。展开更多
基金supported by funding from the Bluesand Foundation,Alzheimer's Association(AARG-21-852072 and Bias Frangione Early Career Achievement Award)to EDan Australian Government Research Training Program scholarship and the University of Sydney's Brain and Mind Centre fellowship to AH。
文摘Tauopathies,diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of fro ntotemporal dementia,make up the vast majority of dementia cases.Although there have been recent developments in tauopathy biomarkers and disease-modifying treatments,ongoing progress is required to ensure these are effective,economical,and accessible for the globally ageing population.As such,continued identification of new potential drug targets and biomarkers is critical."Big data"studies,such as proteomics,can generate information on thousands of possible new targets for dementia diagnostics and therapeutics,but currently remain underutilized due to the lack of a clear process by which targets are selected for future drug development.In this review,we discuss current tauopathy biomarkers and therapeutics,and highlight areas in need of improvement,particularly when addressing the needs of frail,comorbid and cognitively impaired populations.We highlight biomarkers which have been developed from proteomic data,and outline possible future directions in this field.We propose new criteria by which potential targets in proteomics studies can be objectively ranked as favorable for drug development,and demonstrate its application to our group's recent tau interactome dataset as an example.
基金supported by NIH grants R01LM010817 and P01AG039347
文摘Purpose: The late Don R. Swanson was well appreciated during his lifetime as Dean of the Graduate Library School at University of Chicago, as winner of the American Society for Information Science Award of Merit for 2000, and as author of many seminal articles. In this informal essay, I will give my personal perspective on Don's contributions to science, and outline some current and future directions in literature-based discovery that are rooted in concepts that he developed.Design/methodology/approach: Personal recollections and literature review. Findings: The Swanson A-B-C model of literature-based discovery has been successfully used by laboratory investigators analyzing their findings and hypotheses. It continues to be a fertile area of research in a wide range of application areas including text mining, drug repurposing, studies of scientific innovation, knowledge discovery in databases, and bioinformatics. Recently, additional modes of discovery that do not follow the A-B-C model have also been proposed and explored (e.g. so-called storytelling, gaps, analogies, link prediction, negative consensus, outliers, and revival of neglected or discarded research questions). Research limitations: This paper reflects the opinions of the author and is not a comprehensive nor technically based review of literature-based discovery. Practical implications: The general scientific public is still not aware of the availability of tools for literature-based discovery. Our Arrowsmith project site maintains a suite of discovery tools that are free and open to the public (http://arrowsmith.psych.uic.edu), as does BITOLA which is maintained by Dmitar Hristovski (http:// http://ibmi.mf.uni-lj.si/bitola), and Epiphanet which is maintained by Trevor Cohen (http://epiphanet.uth.tme.edu/). Bringing user-friendly tools to the public should be a high priority, since even more than advancing basic research in informatics, it is vital that we ensure that scientists actually use discovery tools and that these are actually able to help them make experimental discoveries in the lab and in the clinic. Originality/value: This paper discusses problems and issues which were inherent in Don's thoughts during his life, including those which have not yet been fully taken up and studied systematically.
文摘Discovering floating wastes,especially bottles on water,is a crucial research problem in environmental hygiene.Nevertheless,real-world applications often face challenges such as interference from irrelevant objects and the high cost associated with data collection.Consequently,devising algorithms capable of accurately localizing specific objects within a scene in scenarios where annotated data is limited remains a formidable challenge.To solve this problem,this paper proposes an object discovery by request problem setting and a corresponding algorithmic framework.The proposed problem setting aims to identify specified objects in scenes,and the associated algorithmic framework comprises pseudo data generation and object discovery by request network.Pseudo-data generation generates images resembling natural scenes through various data augmentation rules,using a small number of object samples and scene images.The network structure of object discovery by request utilizes the pre-trained Vision Transformer(ViT)model as the backbone,employs object-centric methods to learn the latent representations of foreground objects,and applies patch-level reconstruction constraints to the model.During the validation phase,we use the generated pseudo datasets as training sets and evaluate the performance of our model on the original test sets.Experiments have proved that our method achieves state-of-the-art performance on Unmanned Aerial Vehicles-Bottle Detection(UAV-BD)dataset and self-constructed dataset Bottle,especially in multi-object scenarios.
基金supported by the Sichuan province Science&Technology Department Crops Breeding Project(2021YFYZ0002)。
文摘The continued expansion of the world population,increasingly inconsistent climate and shrinking agricultural resources present major challenges to crop breeding.Fortunately,the increasing ability to discover and manipulate genes creates new opportunities to develop more productive and resilient cultivars.Many genes have been described in papers as being beneficial for yield increase.However,few of them have been translated into increased yield on farms.In contrast,commercial breeders are facing gene decidophobia,i.e.,puzzled about which gene to choose for breeding among the many identified,a huge chasm between gene discovery and cultivar innovation.The purpose of this paper is to draw attention to the shortfalls in current gene discovery research and to emphasise the need to align with cultivar innovation.The methodology dictates that genetic studies not only focus on gene discovery but also pay good attention to the genetic backgrounds,experimental validation in relevant environments,appropriate crop management,and data reusability.The close of the gaps should accelerate the application of molecular study in breeding and contribute to future global food security.
基金supported by the National Natural Science Foundation of China(Grant Nos.92152102 and 92152202)the Advanced Jet Propulsion Innovation Center/AEAC(Grant No.HKCX2022-01-010)。
文摘Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extract accurate governing equations under noisy conditions without prior knowledge.Specifically,the proposed method combines gene expression programming,one type of evolutionary algorithm capable of generating unseen terms based solely on basic operators and functional terms,with symbolic regression neural networks.These networks are designed to represent explicit functional expressions and optimize them with data gradients.In particular,the specifically designed neural networks can be easily transformed to physical constraints for the training data,embedding the discovered PDEs to further optimize the metadata used for iterative PDE identification.The proposed method has been tested in four canonical PDE cases,validating its effectiveness without preliminary information and confirming its suitability for practical applications across various noise levels.
基金supported in part by the National Natural Science Foundations of CHINA(Grant No.61771392,No.61771390,No.61871322 and No.61501373)Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China(Grant No.201955053002 and No.20185553035)。
文摘In this paper,we propose a Multi-token Sector Antenna Neighbor Discovery(M-SAND)protocol to enhance the efficiency of neighbor discovery in asynchronous directional ad hoc networks.The central concept of our work involves maintaining multiple tokens across the network.To prevent mutual interference among multi-token holders,we introduce the time and space non-interference theorems.Furthermore,we propose a master-slave strategy between tokens.When the master token holder(MTH)performs the neighbor discovery,it decides which 1-hop neighbor is the next MTH and which 2-hop neighbors can be the new slave token holders(STHs).Using this approach,the MTH and multiple STHs can simultaneously discover their neighbors without causing interference with each other.Building on this foundation,we provide a comprehensive procedure for the M-SAND protocol.We also conduct theoretical analyses on the maximum number of STHs and the lower bound of multi-token generation probability.Finally,simulation results demonstrate the time efficiency of the M-SAND protocol.When compared to the QSAND protocol,which uses only one token,the total neighbor discovery time is reduced by 28% when 6beams and 112 nodes are employed.
基金supported by the Shandong Province Special Fund ‘Frontier Technology and Free Exploration’ from Laoshan Laboratory (No. 8-01)the National Natural Science Foundation of China (No. 42376116)+3 种基金the Special Funds of Shandong Province for Qingdao National Laboratory of Marine Science and Technology (No. 2022QN LM030003)the State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University (No. CMEMR2023-B16)the National Key Research and Development Program of China (No. 2022YFC2601305)the Innovation Center for Academicians of Hainan Province, and the Fundamental Research Funds for the Central Universities (No. 202461059)
文摘Marine natural products(MNPs)are valuable resources for drug development.To date,17 drugs from marine sources are in clinical use,and 33 pharmaceutical compounds are in clinical trials.Presently the success of drug development from the marine resources is higher than the industry average.It is a feasible strategy to conduct the discovery of druglead compounds based on marine chemical ecology by fully exploiting the pharmacological potential of marine chemical defense matters.In the search for bioactive MNPs,our group has constructed a biological resources library including more than 1500 strains of fungi.Focusing on the strategy of Blue Drug Library,we have discovered a series of novel MNPs with abundant biological functions.Highly efficient and scalable total synthesis of(+)-aniduquinolone A(44)and pesimquinolone I(48)have been completed,which will facilitate access to sufficient quantities of candidates for in vivo pharmacological and toxicological studies.As a nucleoprotein(NP)inhibitor,QLA(75)possesses significant anti-influenza A virus(IAV)activities both in vitro and in vivo.CHNQD-00803(76)is a potent and selective AMP-activated kinase(AMPK)activator that can effectively inhibit metabolic disorders and metabolic dysfunction-associated steatohepatitis(MASH)progression.Moreover,we identified two new candidate molecules with potent anti-hepatocellular carcinoma effects.Particularly,as a natural guanine-nucleotide exchange factors for ADP-ribosylation factor GTPases(Arf-GEFs)inhibitor prodrug,CHNQD-01255(78)is qualified to be developed as a targeted candidate anticancer drug,which may be promising to apply for cancer immunotherapy.Hence,it is evident that MNPs play an important role in drug development.
文摘Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an aperture of at least four meters. With the support of their governments in the US, Europe, and Canada, 20,000 people brought this vision to life as the 6.5-meter James Webb Space Telescope (JWST). The telescope is working perfectly, delivering much better image quality than expected [1]. JWST is one hundred times more powerful than the Hubble Space Telescope and has already captured spectacular images of the distant universe. A view of a tiny part of the sky reveals many well-formed spiral galaxies, some over thirteen billion light-years away. These observations challenge the standard Big Bang Model (BBM), which posits that early galaxies should be small and lack well-formed spiral structures. JWST’s findings are prompting scientists to reconsider the BBM in its current form. Throughout the history of science, technological advancements have led to new results that challenge established theories, sometimes necessitating their modification or even abandonment. This happened with the geocentric model four centuries ago, and the BBM may face a similar reevaluation as JWST provides more images of the distant universe. In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of Variable Gravitational Constant, later incorporating the concept of Continuous Creation of Matter in the universe. The Hypersphere World-Universe Model (WUM) builds on these ideas, introducing a distinct mechanism for matter creation. WUM is proposed as an alternative to the prevailing BBM. Its main advantage is the elimination of the “Initial Singularity” and “Inflation”, offering explanations for many unresolved problems in Cosmology. WUM is presented as a natural extension of Classical Physics with the potential to bring about a significant transformation in both Cosmology and Classical Physics. Considering JWST’s discoveries, WUM’s achievements, and 87 years of Dirac’s proposals, it is time to initiate a fundamental transformation in Astronomy, Cosmology, and Classical Physics. The present paper is a continuation of the published article “JWST Discoveries—Confirmation of World-Universe Model Predictions” [2] and a summary of the paper “Hypersphere World-Universe Model: Digest of Presentations John Chappell Natural Philosophy Society” [3]. Many results obtained there are quoted in the current work without full justification;interested readers are encouraged to view the referenced papers for detailed explanations.
基金Supported by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,No.BG-RRP-2.004-0008.
文摘The rapidly advancing field of artificial intelligence(AI)has garnered substantial attention for its potential application in drug discovery and development.This opinion review critically examined the feasibility and prospects of integrating AI as a transformative tool in the pharmaceutical industry.AI,encompassing machine learning algorithms,deep learning,and data analytics,offers unprecedented opportunities to streamline and enhance various stages of drug development.This opinion review delved into the current landscape of AI-driven approaches,discussing their utilization in target identification,lead optimization,and predictive modeling of pharmacokinetics and toxicity.We aimed to scrutinize the integration of large-scale omics data,electronic health records,and chemical informatics,highlighting the power of AI in uncovering novel therapeutic targets and accelerating drug repurposing strategies.Despite the considerable potential of AI,the review also addressed inherent challenges,including data privacy concerns,interpretability of AI models,and the need for robust validation in realworld clinical settings.Additionally,we explored ethical considerations surrounding AI-driven decision-making in drug development.This opinion review provided a nuanced perspective on the transformative role of AI in drug discovery by discussing the existing literature and emerging trends,presenting critical insights and addressing potential hurdles.In conclusion,this study aimed to stimulate discourse within the scientific community and guide future endeavors to harness the full potential of AI in drug development.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2024ZCJH01in part by the National Natural Science Foundation of China(NSFC)under Grant No.62271081in part by the National Key Research and Development Program of China under Grant No.2020YFA0711302.
文摘In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communication(ISAC),as an emerging technology in 6G mobile networks,has shown great potential in improving communication performance with the assistance of sensing information.ISAC obtains the prior information about node distribution,reducing the ND time.However,the prior information obtained through ISAC may be imperfect.Hence,an ND algorithm based on reinforcement learning is proposed.The learning automaton(LA)is applied to interact with the environment and continuously adjust the probability of selecting beams to accelerate the convergence speed of ND algorithms.Besides,an efficient ND algorithm in the neighbor maintenance phase is designed,which applies the Kalman filter to predict node movement.Simulation results show that the LA-based ND algorithm reduces the ND time by up to 32%compared with the Scan-Based Algorithm(SBA),which proves the efficiency of the proposed ND algorithms.
文摘During geopolitical crises,the price stability of agricultural commodities is critical for national security.Understanding the dynamics of pricing power between the U.S.and China and how it varies over time can help smaller nations navigate unpredictable moments.This study uses a unified framework and wavelet approach to examine soybean price discovery in the U.S.and China from the standpoints of price interdependence and information flows.We begin by illustrating the integrated link between the soybean futures markets in the U.S.and China,which includes multiple structural breaks.The pricing difference between the two nations acts as the primary information spillover route for their integrated relationship.Furthermore,we show that the direction and degree of information spillover change dramatically in proportion to the strength of the U.S.–Chinese soybean interaction.Finally,we find that China’s recent retaliatory tax on the U.S.soybeans gave the Chinese market a more powerful position in soybean futures price discovery.After the first-stage trade deal was reached,and during the epidemic phase of the coronavirus pandemic,the pricing power of the U.S.soybean market showed no signs of full recovery.
基金supported in part by the National Key Research and Development Program of China(2021YFD1700100,2023YFD1700500)the National Natural Science Foundation of China(22177051)+1 种基金the Fundamental Research Funds for the Central Universities(KYCYXT2022010)Sichuan Key Research and Development Program(22ZDYF0186,2021YFN0134).
文摘The latest review published in Nature Reviews Drug Discovery by Michael W.Mullowney and co-authors focuses on the use of artificial intelligence techniques,specifically machine learning,in natural product drug discovery.The authors discussed various applications of AI in this field,such as genome and metabolome mining,structural characterization of natural products,and predicting targets and biological activities of these compounds.They also highlighted the challenges associated with creating and managing large datasets for training algorithms,as well as strategies to address these obstacles.Additionally,the authors examine common pitfalls in algorithm training and offer suggestions for avoiding them.
文摘非键相互作用对于生物体系中的分子识别和结合过程起着关键作用。然而,传统的方法并不能在残基水平自动批量计算非键相互作用。近年来,已经发展了一些方法和工具进行非键相互作用的计算分析。该文研究发展了一种可以自动计算残基间非键相互作用的方法,即用Perl脚本调用Discovery Studio 2.0(DS 2.0,Accelrys Inc.)底层模块中的非键相互作用协议,实现了直接利用命令行批量计算非键相互作用能量,而无需通过DS2.0的图形界面。该方法扩展了DS2.0的计算模块,并于近期运用到了复合结构的研究分析中。