A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and opt...A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and optimized.Then,the key sub-capabilities are identified by quantitatively calculating the contributions made by each sub-capability to the overall capability.Finally,the overall capability is improved by optimizing the identified key sub-capabilities.The theoretical contributions of the proposed approach are as follows.(i)An interpretable capability evaluation model is constructed by employing BRB which can provide complete access to decision-makers.(ii)Key sub-capabilities are identified according to the quantitative contribution analysis results.(iii)Accountable capability improvement is carried out by only optimizing the identified key sub-capabilities.Case study results show that“Surveillance”,“Positioning”,and“Identification”are identified as key sub-capabilities with a summed contribution of 75.55%in an analytical and deducible fashion based on the interpretable capability evaluation model.As a result,the overall capability is improved by optimizing only the identified key sub-capabilities.The overall capability can be greatly improved from 59.20%to 81.80%with a minimum cost of 397.Furthermore,this paper also investigates how optimizing the BRB with more collected data would affect the evaluation results:only optimizing“Surveillance”and“Positioning”can also improve the overall capability to 81.34%with a cost of 370,which thus validates the efficiency of the proposed approach.展开更多
Preparation of cast double-propellant grains depends on the ability of nitrocellulose powder to swell and coalesce into a coherent mass when treated with a suitable solvent.The cast double-base process has been develo...Preparation of cast double-propellant grains depends on the ability of nitrocellulose powder to swell and coalesce into a coherent mass when treated with a suitable solvent.The cast double-base process has been developed into a highly versatile technique for manufacturing solid rocket charges.Propellants manufactured by this process provide a wide range of energies and burning rates.Successful preparation of cast double-base propellant grains has been performed using compatible casting liquid with the casting powder.BuNENA was used as an energetic plasticizer for manufacturing of casting powder.Burning rate measurements have been performed using closed bomb SV-2to investigate the burning behavior along a wide range of operating pressure.Plateau burning had been detected in pressure range(50-70)×105 Pa for the composition included BuNENA.DTA and TGA thermal analysis were conducted to evaluate the thermal behavior of the prepared cast double-base propellants.Results from DTA were used to calculate the apparent activation energy.展开更多
Composite solid base catalysts derived from Ca‐M‐Al(M=Mg,La,Ce,Y)layered double hydroxides(LDH)were synthesized,characterized and applied to the transesterification of methanol with propylene carbonate.X‐ray diffra...Composite solid base catalysts derived from Ca‐M‐Al(M=Mg,La,Ce,Y)layered double hydroxides(LDH)were synthesized,characterized and applied to the transesterification of methanol with propylene carbonate.X‐ray diffraction analyses of the catalysts show that all of the catalysts were in the form of composite oxides.Compared with the Ca‐Al LDH catalyst,the specific surface areas and pore volumes of the catalysts were increased with the introduction of Mg,La or Ce.The catalytic performance of these catalysts increases in the order of Ca‐Y‐Al<Ca‐Al<Ca‐Ce‐Al<Ca‐La‐Al<Ca‐Mg‐Al,which is consistent with the total surface basic amounts of these materials and the formation of especially strong basic sites following modification with Mg and La.The Ca‐Mg‐Al catalyst shows the highest(Ca+Mg):Al atomic ratio,indicating that it likely contains more unsaturated O2?ions,providing it with the highest concentration of very strong basic sites.The recyclability of these catalysts is improved following the addition of Mg,La,Ce or Y,with the Ca‐Mg‐Al maintaining a high level of activity after ten recycling trials.X‐ray diffraction analyses of fresh and used Ca‐Mg‐Al demonstrate that this catalyst is exceptionally stable,which could be of value in practical applications related to heterogeneous catalysis.展开更多
The principle of ptychography is applied in known plain text attack on the double random phase encoding (DRPE) system. We find that with several pairs of plain texts and cipher texts, the model of attack on DRPE can...The principle of ptychography is applied in known plain text attack on the double random phase encoding (DRPE) system. We find that with several pairs of plain texts and cipher texts, the model of attack on DRPE can be converted to the model of ptyehographical imaging. Owing to the inherent merits of the ptyehographical imaging, the DRPE system can be breached totally in a fast and nearly perfect way, which is unavailable for currently existing attack methods. Further, since the decryption keys can be seen as an object to be imaged from the perspective of imaging, the ptychographical technique may be a kind of new direction to further analysis of the security of other encryption systems based on double random keys.展开更多
The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with ...The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process.To improve the accuracy of the simulation results,material parameters and model structure were corrected based on actual conditions,and adaptive grid technology was applied in the local mesh refinement.In addition,the rheological behavior,motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps,rotational rates and temperatures of two rollers.The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet.Compared with the gap,the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging.Meanwhile,under the synergistic effect of contact heat transfer as well as convective heat exchange,heat accumulated near the outlet and diffused along the reflux movement,which led to the countercurrent heat dissipation behavior of CMDB propellant slurry.The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored,which provided theoretical guidance and reference data for the optimization of calendering process conditions.Based on the simulation results,the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle.展开更多
A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common ...A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common base configuration is compared with common emitter configuration, and shows a smaller K factor at high frequency span, indicating a larger breakpoint frequency of maximum stable gain/maximum available gain (MSG/MAG) and thus a higher gain near the cut-off frequency, which is useful in THz amplifier design.展开更多
Modified DB propellants, based on energetic nitramine(RDX) were manufactured by solventless extrusion process. Thermal stability and shelf life assessment of modified DB propellant were investigated. Shelf life assess...Modified DB propellants, based on energetic nitramine(RDX) were manufactured by solventless extrusion process. Thermal stability and shelf life assessment of modified DB propellant were investigated. Shelf life assessment was evaluated using Van’t Hoff’s formula and artificial aging at 70℃ up to120 days. Quantification of total heat released and heat flow with aging time was conducted using differential scanning calorimetry(DSC) and thermal activity monitoring(TAMIII) respectively. Modified DB formulation based on 20 wt % RDX demonstrated enhanced thermal stability in terms of controlled heat flow, and slow decomposition reactions at elevated temperature. This formulation demonstrated extended service life up to 56 years compared with reference formulation. These novel finding was ascribed to the high thermal stability of RDX and its compatibility with DB constituents. This manuscript shaded the light on novel and effective approach for thermal stability via monitoring thermal activity with aging.展开更多
Double base propellant suffers from lack of chemical stability; this could result in self ignition during storing. Modified double base(MDB) propellant based on stoichiometric binary mixture of oxidizermetal fuel(Ammo...Double base propellant suffers from lack of chemical stability; this could result in self ignition during storing. Modified double base(MDB) propellant based on stoichiometric binary mixture of oxidizermetal fuel(Ammonium perchlorate/Aluminum), and energetic nitramines(HMX) offered enhanced thrust as well as combustion characteristics. This study is devoted to evaluate the impact of such energetic additives on thermal behavior, chemical stability, and shelf life. Extruded MDB formulations were manufactured by extrusion process. Artificial aging at 80℃ for 28 days was conducted. Shelf life assessment was performed using Van't Hoff's equation. Quantification of evolved NOxgases with aging time was performed using quantitative stability tests. MDB formulation based on HMX demonstrated extended service life of 16 years compared with(AP/Al)-MDB which demonstrated 9 years. This finding was ascribed to the reactivity of AP with nitroglycerin with the formation of perchloric acid. Thermal behavior of aged MDB, exhibited an increase in heat released with time; this was ascribed to the autocatalytic thermal degradation during artificial aging. The increase in released heat by 31% was found to be equivalent to evolved NOx gases of 6.2 cm^3/5 g and 2.5 cm^3/1 g for Bergmann-Junk test, and Vacuum stability test respectively. This manuscript shaded the light on a novel approach to quantify evolved NOx gases to heat released with aging time. MDB based on HMX offered balanced ballistic performance,chemical stability, and service life.展开更多
The non-ideal effect of 4H-SiC bipolar junction transistor (BJT) with a double Gaussian-doped base is characterized and simulated in this paper. By adding a specific interface model between SiC and SiO2, the simulat...The non-ideal effect of 4H-SiC bipolar junction transistor (BJT) with a double Gaussian-doped base is characterized and simulated in this paper. By adding a specific interface model between SiC and SiO2, the simulation results are in good agreement with the experiment data. An obvious early effect is found from the output characteristic. As the temperature rises, the early voltage increases, while the current gain gradually decreases, which is totally different from the scenario of silicon BJT. With the same effective Gummet number in the base region, the double Gaussian-doped base structure can realize higher current gain than the single base BJT due to the built-in electric field, whereas the early effect will be more salient. Besides, the emitter current crowding effect is also analyzed. Due to the low sheet resistance in the first highly- doped base epilayer, the 4H-BJT with a double base has more uniform emitter current density across the base-emitter junction, leading to better thermal stability.展开更多
To overcome hole-injection limitation of p^+-n emitter junction in 4H-SiC light triggered thyristor, a novel high- voltage 4H-SiC light triggered thyristor with double-deck thin n-base structure is proposed and demon...To overcome hole-injection limitation of p^+-n emitter junction in 4H-SiC light triggered thyristor, a novel high- voltage 4H-SiC light triggered thyristor with double-deck thin n-base structure is proposed and demonstrated by two- dimensional numerical simulations. In this new structure, the conventional thin n-base is split to double-deck. The hole- injection of p^+-n emitter junction is modulated by modulating the doping concentration and thickness of upper-deck thin n- base. With double-deck thin n-base, the current gain coefficient of the top pnp transistor in 4H-SiC light triggered thyristor is enhanced. As a result, the triggering light intensity and the turn-on delay time of 4H-SiC light triggered thyristor are both reduced. The simulation results show that the proposed 10-kV 4H-SiC light triggered thyristor is able to be triggered on by 500-mW/cm^2 ultraviolet light pulse. Meanwhile, the turn-on delay time of the proposed thyristor is reduced to 337 ns.展开更多
Double-base(DB) propellant is vulnerable to auto-catalytic decomposition reactions during storing with the evolution of nitrogen oxides. Modified DB propellant based on energetic nitramines(RDX) can offer enhanced thr...Double-base(DB) propellant is vulnerable to auto-catalytic decomposition reactions during storing with the evolution of nitrogen oxides. Modified DB propellant based on energetic nitramines(RDX) can offer enhanced thrust and action time. This study is devoted to evaluate the impact of RDX on chemical stability and shelf life of DB propellant. Extruded modified DB propellant based on RDX was manufactured by solventless extrusion process. Shelf life assessment was performed using an artificial aging at70 ℃ up to 120 days and employing Van't Hoffs formula. Quantification of evolved NOx gases and stabilizer depletion with aging time was conducted using Bergmann-Junk test and HPLC respectively.Modified DB formulation based on RDX 20 wt % demonstrated enhanced chemical stability and extended service life up to 46 years compared with reference formulation. This finding was ascribed to the high chemical and thermal stability of RDX as well as its compatibility with DB constituents; no side chemical reactions could take place during storing. This manuscript shaded the light on RDX as effective energetic constituent that offered DB propellants with enhanced performance, good chemical stability, and extended service life.展开更多
The purpose of initial orbit determination,especially in the case of angles-only data for observation,is to obtain an initial estimate that is close enough to the true orbit to enable subsequent precision orbit determ...The purpose of initial orbit determination,especially in the case of angles-only data for observation,is to obtain an initial estimate that is close enough to the true orbit to enable subsequent precision orbit determination processing to be successful.However,the classical angles-only initial orbit determination methods cannot deal with the observation data whose Earth-central angle is larger than 360°.In this paper,an improved double r-iteration initial orbit determination method to deal with the above case is presented to monitor geosynchronous Earth orbit objects for a spacebased surveillance system.Simulation results indicate that the improved double r-iteration method is feasible,and the accuracy of the obtained initial orbit meets the requirements of re-acquiring the object.展开更多
Excited-state double proton transfer(ESDPT)in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol(HYDRAVH_(2))ligand was studied by the density functional theory and time-dependent density functi...Excited-state double proton transfer(ESDPT)in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol(HYDRAVH_(2))ligand was studied by the density functional theory and time-dependent density functional theory method.The analysis of frontier molecular orbitals,infrared spectra,and non-covalent interactions have crossvalidated that the asymmetric structure has an influence on the proton transfer,which makes the proton transfer ability of the two hydrogen protons different.The potential energy surfaces in both S_(0)and S_1 states were scanned with varying O-H bond lengths.The results of potential energy surface analysis adequately proved that the HYDRAVH_(2)can undergo the ESDPT process in the S_1 state and the double proton transfer process is a stepwise proton transfer mechanism.Our work can pave the way towards the design and synthesis of new molecules.展开更多
Based on some necessary conditions for double pyramidal central configurations with a concave pentagonal base, for any given ratio of masses, the existence and uniqueness of a class of double pyramidal central configu...Based on some necessary conditions for double pyramidal central configurations with a concave pentagonal base, for any given ratio of masses, the existence and uniqueness of a class of double pyramidal central configurations with a concave pentagonal base in 7-body problems are proved and the range of the ratio between radius and half-height is obtained, within which the 7 bodies involved form a central configuration or form uniquely a central configuration.展开更多
A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothe...A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.展开更多
25,27-bis-(2-aminoethoxy)-p-tert-butylcalix[4]arene was linked to double calix[4]arene derivatives by the Schiff-base moiety in its lower rim. They behave strong ability to complex with Ph2+, Cu2+ and Co2+.
Metal particles such as aluminum( Al),magnesium( Mg),boron( B) and nickel( Ni),as well as Mg/Al alloy( Mg/Al = 3/4) are currently the most widely used ingredients in modified doublebase propellants. In this ...Metal particles such as aluminum( Al),magnesium( Mg),boron( B) and nickel( Ni),as well as Mg/Al alloy( Mg/Al = 3/4) are currently the most widely used ingredients in modified doublebase propellants. In this contribution,the combustion properties of the metal species are studied by means of the high-speed photography technique and the non-contact wavelet-based measurement of flame temperature distribution. The combustion process of the Al,Mg and Mg/Al samples shows both gas phase reaction and surface oxidation,which yield volatile and nonvolatile products,corresponding to the oxide and suboxide respectively. However,the combustion of B and Ni shows only gas phase reaction,due to their high melting point as well as high enthalpy of vaporization. In addition to the experiments,a hypothetical combustion model has been proposed to clarify the combustion characteristics of metal species in modified double-base propellants.展开更多
The cheap commercial activated carbon (AC) was improved through the secondary activation under steam in the presence of FeCl2 catalyst in the temperature range of 800-950℃ and its application in electric double layer...The cheap commercial activated carbon (AC) was improved through the secondary activation under steam in the presence of FeCl2 catalyst in the temperature range of 800-950℃ and its application in electric double layer capacitors (EDLCs) with organic electrolyte was studied. The re-activation of AC results in the increases in both specific capacitance and high rate capability of EDLCs. For AC treated under optimized conditions, its discharge specific capacitance increases up to 55.65 F/g, an increase of about 33% as compared to the original AC, and the high rate capability was increased significantly. The good performances of EDLC with improved AC were correlated to the increasing mesoporous ratio.展开更多
In this paper, we find the optimal precursors which can cause double-gyre regime transitions based on conditional nonlinear optimal perturbation (CNOP) method with Regional Ocean Modeling System (ROMS). Firstly, we si...In this paper, we find the optimal precursors which can cause double-gyre regime transitions based on conditional nonlinear optimal perturbation (CNOP) method with Regional Ocean Modeling System (ROMS). Firstly, we simulate the multiple-equilibria regimes of double-gyre circulation under different viscosity coefficient and obtain the bifurcation diagram, then choose two equilibrium states (called jet-up state and jet-down state) as reference states respectively, propose Principal Component Analysis-based Simulated Annealing (PCASA) algorithm to solve CNOP-type initial perturbations which can induce double-gyre regime transitions between jet-up state and jet-down state. PCASA algorithm is an adjoint-free method which searches optimal solution randomly in the whole solution space. In addition, we investigate CNOP-type initial perturbations how to evolve with time. The results show:(1) the CNOP-type perturbations present a two-cell structure, and gradually evolves into a three-cell structure at predictive time;(2) by superimposing CNOP-type perturbations on the jet-up state and integrating ROMS, double-gyre circulation transfers from jet-up state to jet-down state, and vice versa, and random initial perturbations don't cause the transitions, which means CNOP-type perturbations are the optimal precursors of double-gyre regime transitions;(3) by analyzing the transition process of double-gyre regime transitions, we find that CNOP-type initial perturbations obtain energy from the background state through both barotropic and baroclinic instabilities, and barotropic instability contributes more significantly to the fast-growth of the perturbations. The optimal precursors and the dynamic mechanism of double-gyre regime transitions revealed in this paper have an important significance to enhance the predictability of double-gyre circulation.展开更多
基金supported by the National Natural Science Foundation of China(72471067,72431011,72471238,72231011,62303474,72301286)the Fundamental Research Funds for the Provincial Universities of Zhejiang(GK239909299001-010).
文摘A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and optimized.Then,the key sub-capabilities are identified by quantitatively calculating the contributions made by each sub-capability to the overall capability.Finally,the overall capability is improved by optimizing the identified key sub-capabilities.The theoretical contributions of the proposed approach are as follows.(i)An interpretable capability evaluation model is constructed by employing BRB which can provide complete access to decision-makers.(ii)Key sub-capabilities are identified according to the quantitative contribution analysis results.(iii)Accountable capability improvement is carried out by only optimizing the identified key sub-capabilities.Case study results show that“Surveillance”,“Positioning”,and“Identification”are identified as key sub-capabilities with a summed contribution of 75.55%in an analytical and deducible fashion based on the interpretable capability evaluation model.As a result,the overall capability is improved by optimizing only the identified key sub-capabilities.The overall capability can be greatly improved from 59.20%to 81.80%with a minimum cost of 397.Furthermore,this paper also investigates how optimizing the BRB with more collected data would affect the evaluation results:only optimizing“Surveillance”and“Positioning”can also improve the overall capability to 81.34%with a cost of 370,which thus validates the efficiency of the proposed approach.
文摘Preparation of cast double-propellant grains depends on the ability of nitrocellulose powder to swell and coalesce into a coherent mass when treated with a suitable solvent.The cast double-base process has been developed into a highly versatile technique for manufacturing solid rocket charges.Propellants manufactured by this process provide a wide range of energies and burning rates.Successful preparation of cast double-base propellant grains has been performed using compatible casting liquid with the casting powder.BuNENA was used as an energetic plasticizer for manufacturing of casting powder.Burning rate measurements have been performed using closed bomb SV-2to investigate the burning behavior along a wide range of operating pressure.Plateau burning had been detected in pressure range(50-70)×105 Pa for the composition included BuNENA.DTA and TGA thermal analysis were conducted to evaluate the thermal behavior of the prepared cast double-base propellants.Results from DTA were used to calculate the apparent activation energy.
基金supported by the Natural Science Foundation of Shanxi Province(201601D102006)the Key Science and Technology Program of Shanxi Province,China(MD2014-09,MD2014-10)~~
文摘Composite solid base catalysts derived from Ca‐M‐Al(M=Mg,La,Ce,Y)layered double hydroxides(LDH)were synthesized,characterized and applied to the transesterification of methanol with propylene carbonate.X‐ray diffraction analyses of the catalysts show that all of the catalysts were in the form of composite oxides.Compared with the Ca‐Al LDH catalyst,the specific surface areas and pore volumes of the catalysts were increased with the introduction of Mg,La or Ce.The catalytic performance of these catalysts increases in the order of Ca‐Y‐Al<Ca‐Al<Ca‐Ce‐Al<Ca‐La‐Al<Ca‐Mg‐Al,which is consistent with the total surface basic amounts of these materials and the formation of especially strong basic sites following modification with Mg and La.The Ca‐Mg‐Al catalyst shows the highest(Ca+Mg):Al atomic ratio,indicating that it likely contains more unsaturated O2?ions,providing it with the highest concentration of very strong basic sites.The recyclability of these catalysts is improved following the addition of Mg,La,Ce or Y,with the Ca‐Mg‐Al maintaining a high level of activity after ten recycling trials.X‐ray diffraction analyses of fresh and used Ca‐Mg‐Al demonstrate that this catalyst is exceptionally stable,which could be of value in practical applications related to heterogeneous catalysis.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61575197 and 61307018the K.C.Wong Education Foundation,the President Fund of University of Chinese Academy of Sciencesthe Fusion Funds of Research and Education of Chinese Academy of Sciences
文摘The principle of ptychography is applied in known plain text attack on the double random phase encoding (DRPE) system. We find that with several pairs of plain texts and cipher texts, the model of attack on DRPE can be converted to the model of ptyehographical imaging. Owing to the inherent merits of the ptyehographical imaging, the DRPE system can be breached totally in a fast and nearly perfect way, which is unavailable for currently existing attack methods. Further, since the decryption keys can be seen as an object to be imaged from the perspective of imaging, the ptychographical technique may be a kind of new direction to further analysis of the security of other encryption systems based on double random keys.
文摘The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process.To improve the accuracy of the simulation results,material parameters and model structure were corrected based on actual conditions,and adaptive grid technology was applied in the local mesh refinement.In addition,the rheological behavior,motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps,rotational rates and temperatures of two rollers.The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet.Compared with the gap,the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging.Meanwhile,under the synergistic effect of contact heat transfer as well as convective heat exchange,heat accumulated near the outlet and diffused along the reflux movement,which led to the countercurrent heat dissipation behavior of CMDB propellant slurry.The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored,which provided theoretical guidance and reference data for the optimization of calendering process conditions.Based on the simulation results,the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle.
基金Supported by the National Basic Research Program of China under Grant No 2011CB301900the Natural Science Foundation of Jiangsu Province under Grant Nos BK2011010 and BY2013077
文摘A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common base configuration is compared with common emitter configuration, and shows a smaller K factor at high frequency span, indicating a larger breakpoint frequency of maximum stable gain/maximum available gain (MSG/MAG) and thus a higher gain near the cut-off frequency, which is useful in THz amplifier design.
文摘Modified DB propellants, based on energetic nitramine(RDX) were manufactured by solventless extrusion process. Thermal stability and shelf life assessment of modified DB propellant were investigated. Shelf life assessment was evaluated using Van’t Hoff’s formula and artificial aging at 70℃ up to120 days. Quantification of total heat released and heat flow with aging time was conducted using differential scanning calorimetry(DSC) and thermal activity monitoring(TAMIII) respectively. Modified DB formulation based on 20 wt % RDX demonstrated enhanced thermal stability in terms of controlled heat flow, and slow decomposition reactions at elevated temperature. This formulation demonstrated extended service life up to 56 years compared with reference formulation. These novel finding was ascribed to the high thermal stability of RDX and its compatibility with DB constituents. This manuscript shaded the light on novel and effective approach for thermal stability via monitoring thermal activity with aging.
文摘Double base propellant suffers from lack of chemical stability; this could result in self ignition during storing. Modified double base(MDB) propellant based on stoichiometric binary mixture of oxidizermetal fuel(Ammonium perchlorate/Aluminum), and energetic nitramines(HMX) offered enhanced thrust as well as combustion characteristics. This study is devoted to evaluate the impact of such energetic additives on thermal behavior, chemical stability, and shelf life. Extruded MDB formulations were manufactured by extrusion process. Artificial aging at 80℃ for 28 days was conducted. Shelf life assessment was performed using Van't Hoff's equation. Quantification of evolved NOxgases with aging time was performed using quantitative stability tests. MDB formulation based on HMX demonstrated extended service life of 16 years compared with(AP/Al)-MDB which demonstrated 9 years. This finding was ascribed to the reactivity of AP with nitroglycerin with the formation of perchloric acid. Thermal behavior of aged MDB, exhibited an increase in heat released with time; this was ascribed to the autocatalytic thermal degradation during artificial aging. The increase in released heat by 31% was found to be equivalent to evolved NOx gases of 6.2 cm^3/5 g and 2.5 cm^3/1 g for Bergmann-Junk test, and Vacuum stability test respectively. This manuscript shaded the light on a novel approach to quantify evolved NOx gases to heat released with aging time. MDB based on HMX offered balanced ballistic performance,chemical stability, and service life.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60876061 and 61234006)the Natural Science Foundation of Shaanxi Province,China(Grant No.2013JQ8012)the Doctoral Fund of the Ministry of Education of China(Grant Nos.20130203120017 and 20110203110010)
文摘The non-ideal effect of 4H-SiC bipolar junction transistor (BJT) with a double Gaussian-doped base is characterized and simulated in this paper. By adding a specific interface model between SiC and SiO2, the simulation results are in good agreement with the experiment data. An obvious early effect is found from the output characteristic. As the temperature rises, the early voltage increases, while the current gain gradually decreases, which is totally different from the scenario of silicon BJT. With the same effective Gummet number in the base region, the double Gaussian-doped base structure can realize higher current gain than the single base BJT due to the built-in electric field, whereas the early effect will be more salient. Besides, the emitter current crowding effect is also analyzed. Due to the low sheet resistance in the first highly- doped base epilayer, the 4H-BJT with a double base has more uniform emitter current density across the base-emitter junction, leading to better thermal stability.
基金supported by the National Natural Science Foundation of China(Grant No.51677149)
文摘To overcome hole-injection limitation of p^+-n emitter junction in 4H-SiC light triggered thyristor, a novel high- voltage 4H-SiC light triggered thyristor with double-deck thin n-base structure is proposed and demonstrated by two- dimensional numerical simulations. In this new structure, the conventional thin n-base is split to double-deck. The hole- injection of p^+-n emitter junction is modulated by modulating the doping concentration and thickness of upper-deck thin n- base. With double-deck thin n-base, the current gain coefficient of the top pnp transistor in 4H-SiC light triggered thyristor is enhanced. As a result, the triggering light intensity and the turn-on delay time of 4H-SiC light triggered thyristor are both reduced. The simulation results show that the proposed 10-kV 4H-SiC light triggered thyristor is able to be triggered on by 500-mW/cm^2 ultraviolet light pulse. Meanwhile, the turn-on delay time of the proposed thyristor is reduced to 337 ns.
文摘Double-base(DB) propellant is vulnerable to auto-catalytic decomposition reactions during storing with the evolution of nitrogen oxides. Modified DB propellant based on energetic nitramines(RDX) can offer enhanced thrust and action time. This study is devoted to evaluate the impact of RDX on chemical stability and shelf life of DB propellant. Extruded modified DB propellant based on RDX was manufactured by solventless extrusion process. Shelf life assessment was performed using an artificial aging at70 ℃ up to 120 days and employing Van't Hoffs formula. Quantification of evolved NOx gases and stabilizer depletion with aging time was conducted using Bergmann-Junk test and HPLC respectively.Modified DB formulation based on RDX 20 wt % demonstrated enhanced chemical stability and extended service life up to 46 years compared with reference formulation. This finding was ascribed to the high chemical and thermal stability of RDX as well as its compatibility with DB constituents; no side chemical reactions could take place during storing. This manuscript shaded the light on RDX as effective energetic constituent that offered DB propellants with enhanced performance, good chemical stability, and extended service life.
文摘The purpose of initial orbit determination,especially in the case of angles-only data for observation,is to obtain an initial estimate that is close enough to the true orbit to enable subsequent precision orbit determination processing to be successful.However,the classical angles-only initial orbit determination methods cannot deal with the observation data whose Earth-central angle is larger than 360°.In this paper,an improved double r-iteration initial orbit determination method to deal with the above case is presented to monitor geosynchronous Earth orbit objects for a spacebased surveillance system.Simulation results indicate that the improved double r-iteration method is feasible,and the accuracy of the obtained initial orbit meets the requirements of re-acquiring the object.
基金Project supported by the National Basic Research Program of China(Grant No.2019YFA0307701)the National Natural Science Foundation of China(Grant No.11874180)the Young and Middle-aged Scientific and Technological Innovation leaders and Team Projects in Jilin Province,China(Grant No.20200301020RQ)。
文摘Excited-state double proton transfer(ESDPT)in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol(HYDRAVH_(2))ligand was studied by the density functional theory and time-dependent density functional theory method.The analysis of frontier molecular orbitals,infrared spectra,and non-covalent interactions have crossvalidated that the asymmetric structure has an influence on the proton transfer,which makes the proton transfer ability of the two hydrogen protons different.The potential energy surfaces in both S_(0)and S_1 states were scanned with varying O-H bond lengths.The results of potential energy surface analysis adequately proved that the HYDRAVH_(2)can undergo the ESDPT process in the S_1 state and the double proton transfer process is a stepwise proton transfer mechanism.Our work can pave the way towards the design and synthesis of new molecules.
基金Natural Science Foundation of China (No.19871096)
文摘Based on some necessary conditions for double pyramidal central configurations with a concave pentagonal base, for any given ratio of masses, the existence and uniqueness of a class of double pyramidal central configurations with a concave pentagonal base in 7-body problems are proved and the range of the ratio between radius and half-height is obtained, within which the 7 bodies involved form a central configuration or form uniquely a central configuration.
基金We are grateful to the National Natural Science Foundation of China (No. 20573098)
文摘A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.
文摘25,27-bis-(2-aminoethoxy)-p-tert-butylcalix[4]arene was linked to double calix[4]arene derivatives by the Schiff-base moiety in its lower rim. They behave strong ability to complex with Ph2+, Cu2+ and Co2+.
基金Supported by the Science and Technology on Combustion and Explosion Laboratory Foundation(9140C350319140C35161)
文摘Metal particles such as aluminum( Al),magnesium( Mg),boron( B) and nickel( Ni),as well as Mg/Al alloy( Mg/Al = 3/4) are currently the most widely used ingredients in modified doublebase propellants. In this contribution,the combustion properties of the metal species are studied by means of the high-speed photography technique and the non-contact wavelet-based measurement of flame temperature distribution. The combustion process of the Al,Mg and Mg/Al samples shows both gas phase reaction and surface oxidation,which yield volatile and nonvolatile products,corresponding to the oxide and suboxide respectively. However,the combustion of B and Ni shows only gas phase reaction,due to their high melting point as well as high enthalpy of vaporization. In addition to the experiments,a hypothetical combustion model has been proposed to clarify the combustion characteristics of metal species in modified double-base propellants.
基金The authors are grateful for the National Natural Science Foundation of China (20003005) the Natural Science Foundation of Jiangsu Province (BQ2000009).
文摘The cheap commercial activated carbon (AC) was improved through the secondary activation under steam in the presence of FeCl2 catalyst in the temperature range of 800-950℃ and its application in electric double layer capacitors (EDLCs) with organic electrolyte was studied. The re-activation of AC results in the increases in both specific capacitance and high rate capability of EDLCs. For AC treated under optimized conditions, its discharge specific capacitance increases up to 55.65 F/g, an increase of about 33% as compared to the original AC, and the high rate capability was increased significantly. The good performances of EDLC with improved AC were correlated to the increasing mesoporous ratio.
基金Supported by the National Natural Science Foundation of China(No.41405097)the Fundamental Research Funds for the Central Universities of China in 2017
文摘In this paper, we find the optimal precursors which can cause double-gyre regime transitions based on conditional nonlinear optimal perturbation (CNOP) method with Regional Ocean Modeling System (ROMS). Firstly, we simulate the multiple-equilibria regimes of double-gyre circulation under different viscosity coefficient and obtain the bifurcation diagram, then choose two equilibrium states (called jet-up state and jet-down state) as reference states respectively, propose Principal Component Analysis-based Simulated Annealing (PCASA) algorithm to solve CNOP-type initial perturbations which can induce double-gyre regime transitions between jet-up state and jet-down state. PCASA algorithm is an adjoint-free method which searches optimal solution randomly in the whole solution space. In addition, we investigate CNOP-type initial perturbations how to evolve with time. The results show:(1) the CNOP-type perturbations present a two-cell structure, and gradually evolves into a three-cell structure at predictive time;(2) by superimposing CNOP-type perturbations on the jet-up state and integrating ROMS, double-gyre circulation transfers from jet-up state to jet-down state, and vice versa, and random initial perturbations don't cause the transitions, which means CNOP-type perturbations are the optimal precursors of double-gyre regime transitions;(3) by analyzing the transition process of double-gyre regime transitions, we find that CNOP-type initial perturbations obtain energy from the background state through both barotropic and baroclinic instabilities, and barotropic instability contributes more significantly to the fast-growth of the perturbations. The optimal precursors and the dynamic mechanism of double-gyre regime transitions revealed in this paper have an important significance to enhance the predictability of double-gyre circulation.