Recently,the Chinese government has published a new policy,called“Double Reduction”,addressing the problems of the workloads of the students under high school,and in the after-school training institution.Under this ...Recently,the Chinese government has published a new policy,called“Double Reduction”,addressing the problems of the workloads of the students under high school,and in the after-school training institution.Under this current situation,many after-school training institutions are confronting serious difficulties,even have to shut down and exit the market.Thus,it is of great significance to carefully analyze and discuss the influence on a certain case and its countermeasures.The article discusses the background of the“Double Reduction”policy,which is exam-oriented education,quality-oriented education,and education modernization.The article analyzes the influence and countermeasures of the“Double Reduction”on a medium size after-school English training institution in Wenzhou,Zhejiang,China.By using the method of interview,this article presents specific data about the influence and detailed plans of transition.展开更多
This essay delves into the pivotal role of mathematics within the context of STEAM(science,technology,engineering,arts,and mathematics)education under China’s“Double Reduction”policy.Amidst a shifting global educat...This essay delves into the pivotal role of mathematics within the context of STEAM(science,technology,engineering,arts,and mathematics)education under China’s“Double Reduction”policy.Amidst a shifting global education landscape that emphasizes holistic growth,policies such as the“Double Reduction”strategy underscore the significance of well-rounded development alongside academic excellence.By advocating for a balanced approach to education,the policy resonates with the principles of STEAM education,which seeks to cultivate versatile and innovative individuals.Mathematics,acting as a unifying force,connects disparate STEAM disciplines,fostering interdisciplinary collaboration and preparing students to thrive in a rapidly evolving,technology-driven world.This essay provides an in-depth exploration of the multifaceted role of mathematics in STEAM education,drawing on specific cases and scholarly references to highlight its contributions to creativity,critical thinking,and holistic development.展开更多
Based on Cognitive Style Theory,Oxford’s Speaking Learning Theory and Communicative Competence Theory,this paper adopts questionnaire method,uses Sternberg’s Thinking Style Inventory modified by Zhang Lifang,as well...Based on Cognitive Style Theory,Oxford’s Speaking Learning Theory and Communicative Competence Theory,this paper adopts questionnaire method,uses Sternberg’s Thinking Style Inventory modified by Zhang Lifang,as well as Oxford’s Learning Strategies Scale,and combines with the actual situation of junior high school students’oral learning to design the questionnaire of speaking learning strategies.Eighth graders of a junior middle school in Sichuan Province are randomly selected as the research object.The statistical tool SPSS23.0 is used to conduct the descriptive analysis and Pearson correlation analysis of the questionnaire results to explore the overall situation of junior high school students’thinking styles and the use of English-speaking learning strategies as well as their correlation.According to the research,junior high school students generally tend to executive style,liberal style,conservative style,legislative style,hierarchic style.The use of speaking learning strategies is at an average level.They tend to use memory speaking strategies,social speaking strategies,affective speaking strategies,and cognitive speaking strategies.As a whole,there is a relatively significant correlation between thinking styles and speaking learning strategies.Specifically,there is a partial correlation between thinking styles and speaking learning strategies.展开更多
Under China’s“Double Reduction”policy,although the educational pressure has somewhat reduced,the mechanism of talent selection through examinations still exists,which means competition remains,leading to the intern...Under China’s“Double Reduction”policy,although the educational pressure has somewhat reduced,the mechanism of talent selection through examinations still exists,which means competition remains,leading to the internalization of education.This article analyzes the challenges faced by the“Double Reduction”policy from historical and current perspectives.The reasons for the internalization of education are examined and four recommendations for the further implementation of the“Double Reduction”policy are presented.展开更多
The “Double Reduction” policy is not only to reduce the excessive learning burden of students, but also to improve the quality of students’ learning and to promote their overall development. In order to achieve the...The “Double Reduction” policy is not only to reduce the excessive learning burden of students, but also to improve the quality of students’ learning and to promote their overall development. In order to achieve the goal of the “Double Reduction” policy, it is necessary to focus on the implementation of measures to strengthen process evaluation as proposed in the “General Plan for Deepening Education Evaluation Reform in a New Era”. Therefore, the article will analyze the current situation of the research from three aspects: the connotation of “Double Reduction” and process evaluation, process evaluation under “Double Reduction” and process evaluation in English teaching, and look forward to the future development trend, with the aim of implementing the “Double Reduction” policy and giving full play to process evaluation. The aim is to implement the policy of “Double Reduction” and give full play to the role of process evaluation, so as to effectively guide the practice of English teaching.展开更多
The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties...The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties of different soil layers of the slopes are different,so the single coefficient strength reduction method(SRM)is not enough to reflect the actual critical state of the slopes.Considering that the water content of the soil in the natural state is the main factor for the strength of the soil,the attenuation law of shear strength of clayey soil changing with water content is fitted.This paper also establishes the functional relationship between different reduction coefficients.Then,a USDFLD subroutine is programmed using the secondary development function of finite element software.Controlling the relationship between field variables and calculation time realizes double strength reduction applicable to the layered slope.Finally,by comparing the calculation results of different examples,it is proved that the stress and displacement distribution of the critical slope state obtained by the improved method is more realistic,and the calculated safety factor is more reliable.The newly proposedmethod considers the difference of intensity attenuation between different soil layers under natural conditions and avoids the disadvantage of the strength reduction method with uniform parameters,which provides a new idea and method for stability analysis of layered and complex slopes.展开更多
Compared with the traditional industrial nitrogen fixation, electrocatalytic methods, especially those utilizing double-atom catalysts containing nonmetals, can give good consideration to the economy and environmental...Compared with the traditional industrial nitrogen fixation, electrocatalytic methods, especially those utilizing double-atom catalysts containing nonmetals, can give good consideration to the economy and environmental protection. However, the existing “acceptance-donation” mechanism is only applicable to bimetallic catalysts and nonmetallic double-atom catalysts containing boron atoms. Herein, a novel “capture-activation-recapture” mechanism for metal-nonmetal double-atom catalyst is proposed to solve the problem by adjusting the coordination environments of nonmetallic atoms and utilizing the activation effect of metal atoms on nitrogen. Based on this mechanism, the nitrogen reduction reaction (NRR) activity of 48 structures is calculated by density functional theory calculation, and four candidates are selected as outstanding electrocatalytic nitrogen reduction catalysts: Si-Fe@NG (U_(L) = –0.14 V), Si-Co@NG (U_(L)= –0.15 V), Si-Mo@BP1 (U_(L) = 0 V), and Si-Re@BP1 (U_(L) = –0.02 V). The analyses of electronic properties further confirm “capture-activation-recapture” mechanism and suggest that the difference in valence electron distribution between metal and Si atoms triggers the activation of N≡N bonds. In addition, a machine learning approach is utilized to generate an expression and an intrinsic descriptor that considers the coordination environment to predict the limiting potential. This study offers profound insight into the synergistic mechanism of TM and Si for NRR and guidance in the design of novel double-atom nitrogen fixation catalysts.展开更多
Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction...Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique.展开更多
In order to develop green good, reduce the use of chemical fertilizer and pesticide, realize "double reduction" and synergism, improve safety and quality of products, protect the ecological environment and promote t...In order to develop green good, reduce the use of chemical fertilizer and pesticide, realize "double reduction" and synergism, improve safety and quality of products, protect the ecological environment and promote the healthy and steady development of strawberry industry, the goals and key technology of fertilizer-pesticide "double reduction" and synergism for greenhouse strawberry are summed up in this paper targeting at the current situation of strawberry production and combined with the new technology achievements at home and abroad. The key technology includes six items: healthy seedling cultivating technique, soil improvement and continuous cropping obstacle treatment technique, agricultural ecological prevention tech- nique, physicochemical trap of pest control technique, biological control technique and low residual risk chemical control technique.展开更多
In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of...In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of the cohesion and friction angle on the stability of the same slope and is defective to some extent.Regarding this defect,a strength reduction method based on double reduction parameters,which adopts different reduction parameters,is proposed.The core of the double-parameter reduction method is the matching reduction principle of the slope with different angles.This principle is represented by the ratio of the reduction parameter of the cohesion to that of the friction angle,described as η.With the increase in the slopeangle,ηincreases; in particular,when the slope angle is 45°,tηis 1.0.Through the matching reduction principle,different safety margin factors can be calculated for the cohesion and friction angle.In combination with these two safety margin factors,a formula for calculating the overall safety factor of the slope is proposed,reflecting the different contributions of the cohesion and friction angle to the slope stability.Finally,it is shown that the strength reduction method based on double reduction parameters acquires a larger safety factor than the classic limit equilibrium method,but the calculation results are very close to those obtained by the limit equilibrium method.展开更多
The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a ...The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required.展开更多
Since the production of tinplate with non-earing properties is difficult, especially when it is produced via the double-reduction process, the optimal degree of second cold reduction is particularly important for achi...Since the production of tinplate with non-earing properties is difficult, especially when it is produced via the double-reduction process, the optimal degree of second cold reduction is particularly important for achieving desirable drawing properties. The evolution of texture and the earing propensity of double-reduction tinplate with different extents of second reduction were investigated in this study. Optical microscopy and scanning electron microscopy were used to observe the changes in the microstructure at various extents of reduction. Two common testing methods, X-ray diffraction(XRD) and electron backscatter diffraction, were used to investigate the texture of the specimens, which revealed the effects of deformation percentage on the final texture development and the change in the grain boundary. The earing rate was determined via earing tests involving measurement of the height of any ear. The results obtained from both XRD analyses and earing tests revealed the same ideal value for the second cold reduction on the basis of the relationship between crystallographic texture and the degree of earing.展开更多
Photocatalytic reduction of CO2 with H2 O to syngas is an effective way for producing high value-added chemical feedstocks such as methanol and light olefins in industry.Nevertheless,the precise control of CO/H2 ratio...Photocatalytic reduction of CO2 with H2 O to syngas is an effective way for producing high value-added chemical feedstocks such as methanol and light olefins in industry.Nevertheless,the precise control of CO/H2 ratio from photocatalytic CO2 reduction reaction still poses a great challenge for the further application.Herein,we prepared a series of highly efficient heterostructure based on highly dispersed palladium supported on ultrathin Co Al-layered double hydroxide(LDH).In conjunction with a Ru-complex sensitizer,the molar ratios of CO/H2 can be tuned from 1:0.74 to 1:3 under visible-light irradiation(λ>400 nm).More interestingly,the syngas can be obtained under light irradiation atλ>600 nm.Structure characterization and density functional theory calculations revealed that the remarkable catalytic activity can be due to the supported palladium,which improved the charge transfer efficiency.Meanwhile,more H atoms were used to generate H2 on the supported palladium for further tunable CO/H2 ratio.This work demonstrates a new strategy for harnessing abundant solar-energy to produce syngas from a CO2 feedstock.展开更多
When the slope is in critical limit equilibrium(LE) state, the strength parameters have different contribution to each other on maintaining slope stability. That is to say that the strength parameters are not simultan...When the slope is in critical limit equilibrium(LE) state, the strength parameters have different contribution to each other on maintaining slope stability. That is to say that the strength parameters are not simultaneously reduced. Hence, the LE stress method is established to analyze the slope stability by employing the double strengthreduction(DSR) technique in this work. For calculation model of slope stability under the DSR technique, the general nonlinear Mohr–Coulomb(M–C) criterion is used to describe the shear failure of slope. Meanwhile, the average and polar diameter methods via the DSR technique are both adopted to calculate the comprehensive factor of safety(FOS) of slope. To extend the application of the polar diameter method, the original method is improved in the proposed method. After comparison and analysis on some slope examples, the proposed method's feasibility is verified. Thereafter, the stability charts of slope suitable for engineering application are drawn. Moreover, the studies show that:(1) the average method yields similar results as that of the polardiameter method;(2) compared with the traditional uniform strength-reduction(USR) technique, the slope stability obtained using the DSR techniquetends to be more unsafe; and(3) for a slope in the critical LE state, the strength parameter φ, i.e., internal friction angle, has greater contribution on the slope stability than the strength parameters c, i.e., cohesion.展开更多
A double-tapered AlGaN electron blocking layer (EBL) is proposed to apply in a deep ultraviolet semiconductor laser diode. Compared with the inverse double-tapered EBL, the laser with the double-tapered EBL shows a hi...A double-tapered AlGaN electron blocking layer (EBL) is proposed to apply in a deep ultraviolet semiconductor laser diode. Compared with the inverse double-tapered EBL, the laser with the double-tapered EBL shows a higher slope efficiency, which indicates that effective enhancement in the transportation of electrons and holes is achieved. Particularly, comparisons among the double-tapered EBL, the inverse double-tapered EBL, the singletapered EBL and the inverse single-tapered EBL show that the double-tapered EBL has the best performance in terms of current leakage.展开更多
The rational design of a novel catalytic center with a sound basis remains both challenging and rewarding for the electrochemical reduction of N2(e NRR),which has provided a feasible route for achieving clean and sust...The rational design of a novel catalytic center with a sound basis remains both challenging and rewarding for the electrochemical reduction of N2(e NRR),which has provided a feasible route for achieving clean and sustainable NH3production under ambient conditions.Herein,using density functional theory calculations,we demonstrate that hybrid metal(M)-boron(B)double-atom catalysts(DACs)embedded in gC_(2)N substrate(M-B@C_(2)N,M=3d,4d and 5d transition metals)can achieve both high catalytic activity and high selectivity in e NRR.The proposed M-B@C_(2)N DACs have exhibited impressive feasibility and stability thanks to the resilient and robust C_(2)N substrate with abundant pyridinic N atoms distributed among right-sized pore structures.Our results reveal that like the metal center,the embedded B atom can actively involve in N≡N bond activation viaπ*-backdonation mechanism concomitant with the substantial charge transfer to adsorbed*N2,leading to sizable NAN bond elongation.Accordingly,both adsorption energy and NAN bond length of*N2can be employed as catalytic descriptors for predicting e NRR activity in terms of the limiting potentials(UL).Using high-throughput screening method,we found that six M-B@C_(2)N candidates have stood out as the outstanding electrocatalysts for driving e NRR,namely,M=Ti(UL=0 V),Mo(UL=0 V),Nb(UL=-0.04 V),W(UL=-0.23 V),Zr(UL=-0.26 V),V(UL=-0.28 V).The underlying origin is attributed to the balanced and constrained N-affinity of M-B dual site working in synergy,which can thus be used as one important guide of catalyst design.展开更多
The severe environmental problems and the demand for energy urgently require electrocatalysis to replace Haber-Bosch for the nitrogen reduction reaction(NRR).The descriptors and important properties of single-atom and...The severe environmental problems and the demand for energy urgently require electrocatalysis to replace Haber-Bosch for the nitrogen reduction reaction(NRR).The descriptors and important properties of single-atom and homonuclear double-atom catalysts have been preliminarily explored,but the relationship between the inherent properties and catalytic activity of heteronuclear double-atom catalysts with better performance remains unclear.Therefore,it is very significant to explore the prediction expressions of catalytic activity of heteronuclear double-atom catalysts based on their inherent properties and find the rule for selecting catalytic centers.Herein,by summarizing the free energy for the key steps of NRR on 55 catalysts calculated through the first-principle,the expressions of predicting the free energy and the corresponding descriptors are deduced by the machine learning,and the strategy for selecting the appropriate catalytic center is proposed.The selection strategy for the central atom of heteronuclear double-atom catalysts is that the atomic number of central B atom should be between group VB and VIIIB,and the electron difference between central A atom and B atom should be large enough,and the selectivity of NRR or hydrogen evolution reaction(HER)could be calculated through the prediction formula.Moreover,five catalysts are screened to have low limiting potential and excellent selectivity,and are further analyzed by electron transfer.This work explores the relationship between the inherent properties of heteronuclear double-atom catalysts and the catalytic activity,and puts forward the rules for selecting the heteronuclear double-atom catalytic center,which has guiding significance for the experiment.展开更多
Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction...Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction.展开更多
The main technical content of full mechanized corn production in Daiyue District is explained,and the problems of disease and insect pest control in the middle and late growth stage of corn in full mechanized producti...The main technical content of full mechanized corn production in Daiyue District is explained,and the problems of disease and insect pest control in the middle and late growth stage of corn in full mechanized production are analyzed."One prevention double reduction"of corn performed by unmanned aerial vehicle(UAV)and self-propelled sprayer is compared and analyzed,and some suggestions are put forward for further popularization and application of full mechanized corn production.展开更多
In this paper, based on classical Lie group method, we study a multidimensional double dispersion equation, and get its infinitesimal generator, symmetry group and similarity reductions. In particular, similarity solu...In this paper, based on classical Lie group method, we study a multidimensional double dispersion equation, and get its infinitesimal generator, symmetry group and similarity reductions. In particular, similarity solutions and travelling wave solutions of the multidimensional double dispersion equation are derived from the reduction equations.展开更多
文摘Recently,the Chinese government has published a new policy,called“Double Reduction”,addressing the problems of the workloads of the students under high school,and in the after-school training institution.Under this current situation,many after-school training institutions are confronting serious difficulties,even have to shut down and exit the market.Thus,it is of great significance to carefully analyze and discuss the influence on a certain case and its countermeasures.The article discusses the background of the“Double Reduction”policy,which is exam-oriented education,quality-oriented education,and education modernization.The article analyzes the influence and countermeasures of the“Double Reduction”on a medium size after-school English training institution in Wenzhou,Zhejiang,China.By using the method of interview,this article presents specific data about the influence and detailed plans of transition.
文摘This essay delves into the pivotal role of mathematics within the context of STEAM(science,technology,engineering,arts,and mathematics)education under China’s“Double Reduction”policy.Amidst a shifting global education landscape that emphasizes holistic growth,policies such as the“Double Reduction”strategy underscore the significance of well-rounded development alongside academic excellence.By advocating for a balanced approach to education,the policy resonates with the principles of STEAM education,which seeks to cultivate versatile and innovative individuals.Mathematics,acting as a unifying force,connects disparate STEAM disciplines,fostering interdisciplinary collaboration and preparing students to thrive in a rapidly evolving,technology-driven world.This essay provides an in-depth exploration of the multifaceted role of mathematics in STEAM education,drawing on specific cases and scholarly references to highlight its contributions to creativity,critical thinking,and holistic development.
文摘Based on Cognitive Style Theory,Oxford’s Speaking Learning Theory and Communicative Competence Theory,this paper adopts questionnaire method,uses Sternberg’s Thinking Style Inventory modified by Zhang Lifang,as well as Oxford’s Learning Strategies Scale,and combines with the actual situation of junior high school students’oral learning to design the questionnaire of speaking learning strategies.Eighth graders of a junior middle school in Sichuan Province are randomly selected as the research object.The statistical tool SPSS23.0 is used to conduct the descriptive analysis and Pearson correlation analysis of the questionnaire results to explore the overall situation of junior high school students’thinking styles and the use of English-speaking learning strategies as well as their correlation.According to the research,junior high school students generally tend to executive style,liberal style,conservative style,legislative style,hierarchic style.The use of speaking learning strategies is at an average level.They tend to use memory speaking strategies,social speaking strategies,affective speaking strategies,and cognitive speaking strategies.As a whole,there is a relatively significant correlation between thinking styles and speaking learning strategies.Specifically,there is a partial correlation between thinking styles and speaking learning strategies.
文摘Under China’s“Double Reduction”policy,although the educational pressure has somewhat reduced,the mechanism of talent selection through examinations still exists,which means competition remains,leading to the internalization of education.This article analyzes the challenges faced by the“Double Reduction”policy from historical and current perspectives.The reasons for the internalization of education are examined and four recommendations for the further implementation of the“Double Reduction”policy are presented.
文摘The “Double Reduction” policy is not only to reduce the excessive learning burden of students, but also to improve the quality of students’ learning and to promote their overall development. In order to achieve the goal of the “Double Reduction” policy, it is necessary to focus on the implementation of measures to strengthen process evaluation as proposed in the “General Plan for Deepening Education Evaluation Reform in a New Era”. Therefore, the article will analyze the current situation of the research from three aspects: the connotation of “Double Reduction” and process evaluation, process evaluation under “Double Reduction” and process evaluation in English teaching, and look forward to the future development trend, with the aim of implementing the “Double Reduction” policy and giving full play to process evaluation. The aim is to implement the policy of “Double Reduction” and give full play to the role of process evaluation, so as to effectively guide the practice of English teaching.
基金This research was funded by the National Natural Science Foundation of China(51709194),Qinglan Project of Jiangsu University,the Priority Academic Program Development of Jiangsu Higher Education Institutions,and Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering.
文摘The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties of different soil layers of the slopes are different,so the single coefficient strength reduction method(SRM)is not enough to reflect the actual critical state of the slopes.Considering that the water content of the soil in the natural state is the main factor for the strength of the soil,the attenuation law of shear strength of clayey soil changing with water content is fitted.This paper also establishes the functional relationship between different reduction coefficients.Then,a USDFLD subroutine is programmed using the secondary development function of finite element software.Controlling the relationship between field variables and calculation time realizes double strength reduction applicable to the layered slope.Finally,by comparing the calculation results of different examples,it is proved that the stress and displacement distribution of the critical slope state obtained by the improved method is more realistic,and the calculated safety factor is more reliable.The newly proposedmethod considers the difference of intensity attenuation between different soil layers under natural conditions and avoids the disadvantage of the strength reduction method with uniform parameters,which provides a new idea and method for stability analysis of layered and complex slopes.
基金supports by the National Natural Science Foundation of China(52271113)the Natural Science Foundation of Shaanxi Province,China(2020JM 218)+1 种基金the Fundamental Research Funds for the Central Universities(CHD300102311405)HPC platform,Xi’an Jiaotong University.
文摘Compared with the traditional industrial nitrogen fixation, electrocatalytic methods, especially those utilizing double-atom catalysts containing nonmetals, can give good consideration to the economy and environmental protection. However, the existing “acceptance-donation” mechanism is only applicable to bimetallic catalysts and nonmetallic double-atom catalysts containing boron atoms. Herein, a novel “capture-activation-recapture” mechanism for metal-nonmetal double-atom catalyst is proposed to solve the problem by adjusting the coordination environments of nonmetallic atoms and utilizing the activation effect of metal atoms on nitrogen. Based on this mechanism, the nitrogen reduction reaction (NRR) activity of 48 structures is calculated by density functional theory calculation, and four candidates are selected as outstanding electrocatalytic nitrogen reduction catalysts: Si-Fe@NG (U_(L) = –0.14 V), Si-Co@NG (U_(L)= –0.15 V), Si-Mo@BP1 (U_(L) = 0 V), and Si-Re@BP1 (U_(L) = –0.02 V). The analyses of electronic properties further confirm “capture-activation-recapture” mechanism and suggest that the difference in valence electron distribution between metal and Si atoms triggers the activation of N≡N bonds. In addition, a machine learning approach is utilized to generate an expression and an intrinsic descriptor that considers the coordination environment to predict the limiting potential. This study offers profound insight into the synergistic mechanism of TM and Si for NRR and guidance in the design of novel double-atom nitrogen fixation catalysts.
基金supported in part by the China Postdoctoral Science Foundation (No. 2020M673341)in part by the Natural Science Basic Research Program of Shaanxi (No.2023-JC-YB-549)+1 种基金in part by National Natural Science Foundation of China (Nos. 62371375 and 62371372)Innovation Capability Support Program of Shaanxi (No. 2022TD-37)。
文摘Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique.
基金Supported by Demonstration and Promotion Project of Shanghai Municipal Committee of Agriculture[HNKT(2015)2-7]Jiangsu Agricultural"Three New Engineering"Project[SXGC(2017)208]Jiangsu Agricultural Science and Technology Innovation Fund[CX(15)1029]~~
文摘In order to develop green good, reduce the use of chemical fertilizer and pesticide, realize "double reduction" and synergism, improve safety and quality of products, protect the ecological environment and promote the healthy and steady development of strawberry industry, the goals and key technology of fertilizer-pesticide "double reduction" and synergism for greenhouse strawberry are summed up in this paper targeting at the current situation of strawberry production and combined with the new technology achievements at home and abroad. The key technology includes six items: healthy seedling cultivating technique, soil improvement and continuous cropping obstacle treatment technique, agricultural ecological prevention tech- nique, physicochemical trap of pest control technique, biological control technique and low residual risk chemical control technique.
基金Project(KZCX2-YW-T12)supported by the Chinese Academy of Science,China
文摘In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of the cohesion and friction angle on the stability of the same slope and is defective to some extent.Regarding this defect,a strength reduction method based on double reduction parameters,which adopts different reduction parameters,is proposed.The core of the double-parameter reduction method is the matching reduction principle of the slope with different angles.This principle is represented by the ratio of the reduction parameter of the cohesion to that of the friction angle,described as η.With the increase in the slopeangle,ηincreases; in particular,when the slope angle is 45°,tηis 1.0.Through the matching reduction principle,different safety margin factors can be calculated for the cohesion and friction angle.In combination with these two safety margin factors,a formula for calculating the overall safety factor of the slope is proposed,reflecting the different contributions of the cohesion and friction angle to the slope stability.Finally,it is shown that the strength reduction method based on double reduction parameters acquires a larger safety factor than the classic limit equilibrium method,but the calculation results are very close to those obtained by the limit equilibrium method.
基金Project(11102218) supported by the National Natural Science Foundation of China
文摘The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required.
基金financially supported by the National Natural Science Foundation of China (No.U1460101)
文摘Since the production of tinplate with non-earing properties is difficult, especially when it is produced via the double-reduction process, the optimal degree of second cold reduction is particularly important for achieving desirable drawing properties. The evolution of texture and the earing propensity of double-reduction tinplate with different extents of second reduction were investigated in this study. Optical microscopy and scanning electron microscopy were used to observe the changes in the microstructure at various extents of reduction. Two common testing methods, X-ray diffraction(XRD) and electron backscatter diffraction, were used to investigate the texture of the specimens, which revealed the effects of deformation percentage on the final texture development and the change in the grain boundary. The earing rate was determined via earing tests involving measurement of the height of any ear. The results obtained from both XRD analyses and earing tests revealed the same ideal value for the second cold reduction on the basis of the relationship between crystallographic texture and the degree of earing.
基金supported by the Fundamental Research Funds for the Central Universities(XK1802-6,XK1902,XK1803-05,12060093063,2312018RC07)the National Natural Science Foundation of China(U1707603,21878008,21625101,20190816)。
文摘Photocatalytic reduction of CO2 with H2 O to syngas is an effective way for producing high value-added chemical feedstocks such as methanol and light olefins in industry.Nevertheless,the precise control of CO/H2 ratio from photocatalytic CO2 reduction reaction still poses a great challenge for the further application.Herein,we prepared a series of highly efficient heterostructure based on highly dispersed palladium supported on ultrathin Co Al-layered double hydroxide(LDH).In conjunction with a Ru-complex sensitizer,the molar ratios of CO/H2 can be tuned from 1:0.74 to 1:3 under visible-light irradiation(λ>400 nm).More interestingly,the syngas can be obtained under light irradiation atλ>600 nm.Structure characterization and density functional theory calculations revealed that the remarkable catalytic activity can be due to the supported palladium,which improved the charge transfer efficiency.Meanwhile,more H atoms were used to generate H2 on the supported palladium for further tunable CO/H2 ratio.This work demonstrates a new strategy for harnessing abundant solar-energy to produce syngas from a CO2 feedstock.
基金funded by the National Natural Science Foundation of China (Grant No. 51608541)the Postdoctoral Science Foundation of China (Grant No. 2015M580702)the Guizhou Provincial Department of Transportation of China (Grant No. 2014122006)
文摘When the slope is in critical limit equilibrium(LE) state, the strength parameters have different contribution to each other on maintaining slope stability. That is to say that the strength parameters are not simultaneously reduced. Hence, the LE stress method is established to analyze the slope stability by employing the double strengthreduction(DSR) technique in this work. For calculation model of slope stability under the DSR technique, the general nonlinear Mohr–Coulomb(M–C) criterion is used to describe the shear failure of slope. Meanwhile, the average and polar diameter methods via the DSR technique are both adopted to calculate the comprehensive factor of safety(FOS) of slope. To extend the application of the polar diameter method, the original method is improved in the proposed method. After comparison and analysis on some slope examples, the proposed method's feasibility is verified. Thereafter, the stability charts of slope suitable for engineering application are drawn. Moreover, the studies show that:(1) the average method yields similar results as that of the polardiameter method;(2) compared with the traditional uniform strength-reduction(USR) technique, the slope stability obtained using the DSR techniquetends to be more unsafe; and(3) for a slope in the critical LE state, the strength parameter φ, i.e., internal friction angle, has greater contribution on the slope stability than the strength parameters c, i.e., cohesion.
基金Supported by the National Key Research and Development Program under Grant No 2016YFE0118400the Key Project of Science and Technology of Henan Province under Grant No 172102410062+1 种基金the National Natural Science Foundation of China under Grant No 61176008the National Natural Science Foundation of China Henan Provincial Joint Fund Key Project under Grant No U1604263
文摘A double-tapered AlGaN electron blocking layer (EBL) is proposed to apply in a deep ultraviolet semiconductor laser diode. Compared with the inverse double-tapered EBL, the laser with the double-tapered EBL shows a higher slope efficiency, which indicates that effective enhancement in the transportation of electrons and holes is achieved. Particularly, comparisons among the double-tapered EBL, the inverse double-tapered EBL, the singletapered EBL and the inverse single-tapered EBL show that the double-tapered EBL has the best performance in terms of current leakage.
基金supported by the National Natural Science Foundation of China(21673137)the support from the Program for Top Talents in Songjiang District of Shanghai。
文摘The rational design of a novel catalytic center with a sound basis remains both challenging and rewarding for the electrochemical reduction of N2(e NRR),which has provided a feasible route for achieving clean and sustainable NH3production under ambient conditions.Herein,using density functional theory calculations,we demonstrate that hybrid metal(M)-boron(B)double-atom catalysts(DACs)embedded in gC_(2)N substrate(M-B@C_(2)N,M=3d,4d and 5d transition metals)can achieve both high catalytic activity and high selectivity in e NRR.The proposed M-B@C_(2)N DACs have exhibited impressive feasibility and stability thanks to the resilient and robust C_(2)N substrate with abundant pyridinic N atoms distributed among right-sized pore structures.Our results reveal that like the metal center,the embedded B atom can actively involve in N≡N bond activation viaπ*-backdonation mechanism concomitant with the substantial charge transfer to adsorbed*N2,leading to sizable NAN bond elongation.Accordingly,both adsorption energy and NAN bond length of*N2can be employed as catalytic descriptors for predicting e NRR activity in terms of the limiting potentials(UL).Using high-throughput screening method,we found that six M-B@C_(2)N candidates have stood out as the outstanding electrocatalysts for driving e NRR,namely,M=Ti(UL=0 V),Mo(UL=0 V),Nb(UL=-0.04 V),W(UL=-0.23 V),Zr(UL=-0.26 V),V(UL=-0.28 V).The underlying origin is attributed to the balanced and constrained N-affinity of M-B dual site working in synergy,which can thus be used as one important guide of catalyst design.
基金supports by the National Natural Science Foundation of China(NSFC,52271113)the Natural Science Foundation of Shaanxi Province,China(2020JM 218)+1 种基金the Fundamental Research Funds for the Central Universities(CHD300102311405)HPC platform,Xi’an Jiaotong University。
文摘The severe environmental problems and the demand for energy urgently require electrocatalysis to replace Haber-Bosch for the nitrogen reduction reaction(NRR).The descriptors and important properties of single-atom and homonuclear double-atom catalysts have been preliminarily explored,but the relationship between the inherent properties and catalytic activity of heteronuclear double-atom catalysts with better performance remains unclear.Therefore,it is very significant to explore the prediction expressions of catalytic activity of heteronuclear double-atom catalysts based on their inherent properties and find the rule for selecting catalytic centers.Herein,by summarizing the free energy for the key steps of NRR on 55 catalysts calculated through the first-principle,the expressions of predicting the free energy and the corresponding descriptors are deduced by the machine learning,and the strategy for selecting the appropriate catalytic center is proposed.The selection strategy for the central atom of heteronuclear double-atom catalysts is that the atomic number of central B atom should be between group VB and VIIIB,and the electron difference between central A atom and B atom should be large enough,and the selectivity of NRR or hydrogen evolution reaction(HER)could be calculated through the prediction formula.Moreover,five catalysts are screened to have low limiting potential and excellent selectivity,and are further analyzed by electron transfer.This work explores the relationship between the inherent properties of heteronuclear double-atom catalysts and the catalytic activity,and puts forward the rules for selecting the heteronuclear double-atom catalytic center,which has guiding significance for the experiment.
基金financially supported by the National Natural Science Foundation of China(No.52173055 and 21961132024)the Natural Science Foundation of Shanghai(No.19ZR1401100)+3 种基金the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality(No.21130750100)the Innovation Program of Shanghai Municipal Education Commission(No.2017-01-07-00-03-E00024)the Fundamental Research Funds for the Central Universities(No.18D310109)the DHU Distinguished Young Professor Program(No.LZA2020001).
文摘Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction.
文摘The main technical content of full mechanized corn production in Daiyue District is explained,and the problems of disease and insect pest control in the middle and late growth stage of corn in full mechanized production are analyzed."One prevention double reduction"of corn performed by unmanned aerial vehicle(UAV)and self-propelled sprayer is compared and analyzed,and some suggestions are put forward for further popularization and application of full mechanized corn production.
文摘In this paper, based on classical Lie group method, we study a multidimensional double dispersion equation, and get its infinitesimal generator, symmetry group and similarity reductions. In particular, similarity solutions and travelling wave solutions of the multidimensional double dispersion equation are derived from the reduction equations.