Benefits of the red seaweed <i>Asparagopsis</i> <i>taxiformis</i> as an ingredient to manage methane (CH<sub>4</sub>) emissions from the red meat and dairy industries continue to ev...Benefits of the red seaweed <i>Asparagopsis</i> <i>taxiformis</i> as an ingredient to manage methane (CH<sub>4</sub>) emissions from the red meat and dairy industries continue to evolve. <i>Asparagopsis</i> has been demonstrated to eliminate enteric CH<sub>4</sub> emissions <i>in</i> <i>vitro</i> and reduce it greater than 80% in animals. Variability in animal studies is suspected to be associated with variable inclusion and proportions of grass and grain in the diet. This <i>in</i> <i>vitro</i> study aimed to elucidate effects of gradient grass to grain proportions in the fermentation using five steps from 100% Rhodes grass (RG) to 100% barley grain (BG). Gradient inclusion of <i>Asparagopsis</i> was in six steps of Control with no inclusion (C), Low (L), Low-Medium (LM), Medium (M), Medium-High (MH), and High (H) levels tested in three fermentation durations (24 h, 48 h, 72 h). There was significant effect of RG/BG and inclusion of <i>Asparagopsis</i> such that CH<sub>4</sub> production decreased with increasing <i>Asparagopsis</i> independent of RG/BG;however, there was enhanced reduction at greater proportions of BG. Thus, the level of <i>Asparagopsis</i> required to completely inhibit CH<sub>4</sub> production <i>in</i> <i>vitro</i> was decreased with decreasing RG/BG. Increasing the duration of fermentation had greatest effect on CH<sub>4</sub> at C, L, and LM levels of <i>Asparagopsis</i> independent of RG/BG, although magnitude of CH<sub>4</sub> production was greater for higher proportions of BG for the C and L levels. Digestibility of <i>in</i> <i>vitro</i> substrate increased with fermentation duration and increasing BG;however, there was no change associated with inclusion levels of <i>Asparagopsis</i>. Increases in total volatile fatty acids (tVFA) were observed with increased fermentation duration and concomitant with increasing substrate digestion. Increasing proportions of BG induced increase in tVFA. In contrast, and independent of changes in substrate, increasing inclusion of <i>Asparagopsis</i> had little effect on tVFA. The acetic and propionic acid ratio (AA:PA) decreased with decreasing RG/BG and increasing <i>Asparagopsis</i>. This pattern was most pronounced with 100% BG and MH-H <i>Asparagopsis</i> levels. Compared to control, there was decrease in the AA:PA ratio with addition of even L levels of <i>Asparagopsis</i> and with L compared to LM inclusion levels. Increasing levels of BG and <i>Asparagopsis</i> resulted in significant decreases in AA:PA ratios and CH4 production. This study has confirmed that gradient levels (ratio) of grass and grain in a feed mix impact the antimethanogenic efficacy of <i>Asparagopsis</i> during <i>in</i> <i>vitro</i> fermentation with rumen fluid.展开更多
The Wesel-Xanten stretch of the fiver Rhine between km-812.5 and km-821.5 is one of the reaches where strong erosion leads to high maintenance efforts conceming navigability.In order to improve the naviga- tion condit...The Wesel-Xanten stretch of the fiver Rhine between km-812.5 and km-821.5 is one of the reaches where strong erosion leads to high maintenance efforts conceming navigability.In order to improve the naviga- tion conditions without aggravating the flood protection,but also ensuring that the ecological system of the river is not damaged,investigations of the morphodynamical processes in connection with artificial grain feeding ac- tivities have to be carried out by Federal Waterways Engineering and Research...展开更多
文摘Benefits of the red seaweed <i>Asparagopsis</i> <i>taxiformis</i> as an ingredient to manage methane (CH<sub>4</sub>) emissions from the red meat and dairy industries continue to evolve. <i>Asparagopsis</i> has been demonstrated to eliminate enteric CH<sub>4</sub> emissions <i>in</i> <i>vitro</i> and reduce it greater than 80% in animals. Variability in animal studies is suspected to be associated with variable inclusion and proportions of grass and grain in the diet. This <i>in</i> <i>vitro</i> study aimed to elucidate effects of gradient grass to grain proportions in the fermentation using five steps from 100% Rhodes grass (RG) to 100% barley grain (BG). Gradient inclusion of <i>Asparagopsis</i> was in six steps of Control with no inclusion (C), Low (L), Low-Medium (LM), Medium (M), Medium-High (MH), and High (H) levels tested in three fermentation durations (24 h, 48 h, 72 h). There was significant effect of RG/BG and inclusion of <i>Asparagopsis</i> such that CH<sub>4</sub> production decreased with increasing <i>Asparagopsis</i> independent of RG/BG;however, there was enhanced reduction at greater proportions of BG. Thus, the level of <i>Asparagopsis</i> required to completely inhibit CH<sub>4</sub> production <i>in</i> <i>vitro</i> was decreased with decreasing RG/BG. Increasing the duration of fermentation had greatest effect on CH<sub>4</sub> at C, L, and LM levels of <i>Asparagopsis</i> independent of RG/BG, although magnitude of CH<sub>4</sub> production was greater for higher proportions of BG for the C and L levels. Digestibility of <i>in</i> <i>vitro</i> substrate increased with fermentation duration and increasing BG;however, there was no change associated with inclusion levels of <i>Asparagopsis</i>. Increases in total volatile fatty acids (tVFA) were observed with increased fermentation duration and concomitant with increasing substrate digestion. Increasing proportions of BG induced increase in tVFA. In contrast, and independent of changes in substrate, increasing inclusion of <i>Asparagopsis</i> had little effect on tVFA. The acetic and propionic acid ratio (AA:PA) decreased with decreasing RG/BG and increasing <i>Asparagopsis</i>. This pattern was most pronounced with 100% BG and MH-H <i>Asparagopsis</i> levels. Compared to control, there was decrease in the AA:PA ratio with addition of even L levels of <i>Asparagopsis</i> and with L compared to LM inclusion levels. Increasing levels of BG and <i>Asparagopsis</i> resulted in significant decreases in AA:PA ratios and CH4 production. This study has confirmed that gradient levels (ratio) of grass and grain in a feed mix impact the antimethanogenic efficacy of <i>Asparagopsis</i> during <i>in</i> <i>vitro</i> fermentation with rumen fluid.
文摘The Wesel-Xanten stretch of the fiver Rhine between km-812.5 and km-821.5 is one of the reaches where strong erosion leads to high maintenance efforts conceming navigability.In order to improve the naviga- tion conditions without aggravating the flood protection,but also ensuring that the ecological system of the river is not damaged,investigations of the morphodynamical processes in connection with artificial grain feeding ac- tivities have to be carried out by Federal Waterways Engineering and Research...