The existing researches of stepless capacity regulation system by depressing the suction valve for reciprocation compressor always adopt hypothesis that the compressor valves are open or close instantaneously, the val...The existing researches of stepless capacity regulation system by depressing the suction valve for reciprocation compressor always adopt hypothesis that the compressor valves are open or close instantaneously, the valve dynamic has not been taken account into thermal cycle computation, the influence of capacity regulation system on suction valves dynamic performance and cylinder thermal cycle operation has not been considered. This paper focuses on theoretical and experimental analysis of the valve dynamic and thermal cycle for reciprocating compressor in the situation of stepless capacity regulation. The valve dynamics equation, gas forces for normal and back flow, and the cylinder pressure varying with suction valve unloader moment during compression thermal cycle are discussed. A new valve dynamic model based on L-K real gas state equation for reciprocating compressor is first deduced to reduce the calculation errors induced by the ideal gas state equation. The variations of valve dynamic and cylinder pressure during part of compression stroke are calculated numerically. The calculation results reveal the non-normal thermal cycle and operation condition of compressor in stepless capacity regulation situation. The numerical simulation results of the valve dynamic and thermal cycle parameters are also verified by the stepless capacity regulation experiments in the type of 3L-10/8 reciprocating compressor. The experimental results agree with the numerical simulation results, which show that the theoretical models proposed are effective and high-precision. The proposed theoretical models build the theoretical foundation to design the real stepless capacity regulation system.展开更多
A new dynamic model is developed in this paper based on the generic MATLAB battery model. The battery capacity is expressed as a function of the self-discharge rate, the discharge current, the cycling life and the tem...A new dynamic model is developed in this paper based on the generic MATLAB battery model. The battery capacity is expressed as a function of the self-discharge rate, the discharge current, the cycling life and the temperature of the battery. The dependence of the model parameters on cycle life and temperature are estimated from the first order approximation. The detailed procedures and formula to extract the model parameters are presented and the extraction relies only on the discharge curves at two different discharge currents, at two different life cycles, and at two different temperatures. These discharge curves are typically provided in the battery manufacturer’s datasheet. The proposed model is verified for both nickel-metal hydride and lithium-ion batteries by comparing the calculated discharge curves with the results from the generic MATLAB model. The model is further validated for the Sinopoly lithium-ion battery (SP-LFP1000AHA) by comparing the model results with the discharge curves from the manufacturer’s datasheet at different discharge currents, different cycling numbers, and different temperatures. Simulation results show that the new model can correctly predict voltage separation beyond the nominal zone while maintaining the same level of accuracy as the generic MATLAB model in the exponential and nominal zones.展开更多
基金supported by China National Key Technology R&D Program(Grant No. 2008BAF34B13)China Postdoctoral Science Foundation Funded Project(Grant No. 2011M501363)
文摘The existing researches of stepless capacity regulation system by depressing the suction valve for reciprocation compressor always adopt hypothesis that the compressor valves are open or close instantaneously, the valve dynamic has not been taken account into thermal cycle computation, the influence of capacity regulation system on suction valves dynamic performance and cylinder thermal cycle operation has not been considered. This paper focuses on theoretical and experimental analysis of the valve dynamic and thermal cycle for reciprocating compressor in the situation of stepless capacity regulation. The valve dynamics equation, gas forces for normal and back flow, and the cylinder pressure varying with suction valve unloader moment during compression thermal cycle are discussed. A new valve dynamic model based on L-K real gas state equation for reciprocating compressor is first deduced to reduce the calculation errors induced by the ideal gas state equation. The variations of valve dynamic and cylinder pressure during part of compression stroke are calculated numerically. The calculation results reveal the non-normal thermal cycle and operation condition of compressor in stepless capacity regulation situation. The numerical simulation results of the valve dynamic and thermal cycle parameters are also verified by the stepless capacity regulation experiments in the type of 3L-10/8 reciprocating compressor. The experimental results agree with the numerical simulation results, which show that the theoretical models proposed are effective and high-precision. The proposed theoretical models build the theoretical foundation to design the real stepless capacity regulation system.
文摘A new dynamic model is developed in this paper based on the generic MATLAB battery model. The battery capacity is expressed as a function of the self-discharge rate, the discharge current, the cycling life and the temperature of the battery. The dependence of the model parameters on cycle life and temperature are estimated from the first order approximation. The detailed procedures and formula to extract the model parameters are presented and the extraction relies only on the discharge curves at two different discharge currents, at two different life cycles, and at two different temperatures. These discharge curves are typically provided in the battery manufacturer’s datasheet. The proposed model is verified for both nickel-metal hydride and lithium-ion batteries by comparing the calculated discharge curves with the results from the generic MATLAB model. The model is further validated for the Sinopoly lithium-ion battery (SP-LFP1000AHA) by comparing the model results with the discharge curves from the manufacturer’s datasheet at different discharge currents, different cycling numbers, and different temperatures. Simulation results show that the new model can correctly predict voltage separation beyond the nominal zone while maintaining the same level of accuracy as the generic MATLAB model in the exponential and nominal zones.