This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geom...This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geometric Theory of Phyl-lotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci -Goniometry ( is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scien-tific ideas—The “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—The “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New ...This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry (λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discove-ries—New...This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discove-ries—New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry ( λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas—the “golden mean”, which had been introduced by Euclid in his Elements, and its generalization—the “metallic means”, which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
We give a survey on the history, the main mathematical results and applications of the Mathematics of Harmony as a new interdisciplinary direction of modern science. In its origins, this direction goes back to Euclid...We give a survey on the history, the main mathematical results and applications of the Mathematics of Harmony as a new interdisciplinary direction of modern science. In its origins, this direction goes back to Euclid’s “Elements”. According to “Proclus hypothesis”, the main goal of Euclid was to create a full geometric theory of Platonic solids, associated with the ancient conception of the “Universe Harmony”. We consider the main periods in the development of the “Mathematics of Harmony” and its main mathematical results: algorithmic measurement theory, number systems with irrational bases and their applications in computer science, the hyperbolic Fibonacci functions, following from Binet’s formulas, and the hyperbolic Fibonacci l-functions (l = 1, 2, 3, …), following from Gazale’s formulas, and their applications for hyperbolic geometry, in particular, for the solution of Hilbert’s Fourth Problem.展开更多
We suggest an original approach to Lobachevski’s geometry and Hilbert’s Fourth Problem, based on the use of the “mathematics of harmony” and special class of hyperbolic functions, the so-called hyperbolic Fibonacc...We suggest an original approach to Lobachevski’s geometry and Hilbert’s Fourth Problem, based on the use of the “mathematics of harmony” and special class of hyperbolic functions, the so-called hyperbolic Fibonacci l-functions, which are based on the ancient “golden proportion” and its generalization, Spinadel’s “metallic proportions.” The uniqueness of these functions consists in the fact that they are inseparably connected with the Fibonacci numbers and their generalization― Fibonacci l-numbers (l > 0 is a given real number) and have recursive properties. Each of these new classes of hyperbolic functions, the number of which is theoretically infinite, generates Lobachevski’s new geometries, which are close to Lobachevski’s classical geometry and have new geometric and recursive properties. The “golden” hyperbolic geometry with the base (“Bodnar’s geometry) underlies the botanic phenomenon of phyllotaxis. The “silver” hyperbolic geometry with the base ?has the least distance to Lobachevski’s classical geometry. Lobachevski’s new geometries, which are an original solution of Hilbert’s Fourth Problem, are new hyperbolic geometries for physical world.展开更多
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geometric Theory of Phyl-lotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci -Goniometry ( is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scien-tific ideas—The “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—The “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry (λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discove-ries—New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry ( λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas—the “golden mean”, which had been introduced by Euclid in his Elements, and its generalization—the “metallic means”, which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
文摘We give a survey on the history, the main mathematical results and applications of the Mathematics of Harmony as a new interdisciplinary direction of modern science. In its origins, this direction goes back to Euclid’s “Elements”. According to “Proclus hypothesis”, the main goal of Euclid was to create a full geometric theory of Platonic solids, associated with the ancient conception of the “Universe Harmony”. We consider the main periods in the development of the “Mathematics of Harmony” and its main mathematical results: algorithmic measurement theory, number systems with irrational bases and their applications in computer science, the hyperbolic Fibonacci functions, following from Binet’s formulas, and the hyperbolic Fibonacci l-functions (l = 1, 2, 3, …), following from Gazale’s formulas, and their applications for hyperbolic geometry, in particular, for the solution of Hilbert’s Fourth Problem.
文摘We suggest an original approach to Lobachevski’s geometry and Hilbert’s Fourth Problem, based on the use of the “mathematics of harmony” and special class of hyperbolic functions, the so-called hyperbolic Fibonacci l-functions, which are based on the ancient “golden proportion” and its generalization, Spinadel’s “metallic proportions.” The uniqueness of these functions consists in the fact that they are inseparably connected with the Fibonacci numbers and their generalization― Fibonacci l-numbers (l > 0 is a given real number) and have recursive properties. Each of these new classes of hyperbolic functions, the number of which is theoretically infinite, generates Lobachevski’s new geometries, which are close to Lobachevski’s classical geometry and have new geometric and recursive properties. The “golden” hyperbolic geometry with the base (“Bodnar’s geometry) underlies the botanic phenomenon of phyllotaxis. The “silver” hyperbolic geometry with the base ?has the least distance to Lobachevski’s classical geometry. Lobachevski’s new geometries, which are an original solution of Hilbert’s Fourth Problem, are new hyperbolic geometries for physical world.