This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(V...This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.展开更多
Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochast...Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.展开更多
BACKGROUND Clinical belonging refers to the feeling that clinical medical staff feel recognized and accepted by others or groups.The level of clinical belonging of nursing interns affects students’learning motivation...BACKGROUND Clinical belonging refers to the feeling that clinical medical staff feel recognized and accepted by others or groups.The level of clinical belonging of nursing interns affects students’learning motivation and confidence,which in turn affects their clinical practice behavior.AIM To explore the effects of professional identity and nursing information ability on clinical belonging among nursing interns and establish a relationship model for these factors.METHODS The researchers used the convenience sampling method to select 682 nursing interns from China.The survey was conducted using a general information questionnaire,clinical sense of belonging scale,nursing information ability self-assessment scale,and a nursing student professional identity questionnaire.The mediating effect of nursing information ability between their professional identity and clinical sense of belonging was analyzed using SPSS 21.0 and the path analysis in structural equation modeling.RESULTS The total scores of clinical belonging,professional identity,and nursing information ability of nursing interns were(104.29±13.11)points,(57.89±7.16)points,and(70.29±6.20)points,respectively.Nursing information ability had a direct effect on the clinical sense of belonging(effect value=0.46,P<0.05).Occupational identity had a direct effect(effect value=0.52,P<0.05)and an indirect effect(effect value=0.21,P<0.05)on clinical belonging.CONCLUSION Nursing administrators in nursing colleges and hospitals should take effective measures to improve the professional identity and nursing information ability of nursing interns,as well as the clinical sense of belonging among nursing interns.展开更多
Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic...Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.展开更多
Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SM...Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.展开更多
Clarifying the relationship between stress sensitivities of permeability and porosity is of great significance in guiding underground resource mining.More and more studies focus on how to construct stress sensitivity ...Clarifying the relationship between stress sensitivities of permeability and porosity is of great significance in guiding underground resource mining.More and more studies focus on how to construct stress sensitivity models to describe the relationship and obtain a comprehensive stress sensitivity of porous rock.However,the limitations of elastic deformation calculation and incompleteness of considered tortuosity sensitivity lead to the fact that the existing stress sensitivity models are still unsatisfactory in terms of accuracy and generalization.Therefore,a more accurate and generic stress sensitivity model considering elastic-structural deformation of capillary cross-section and tortuosity sensitivity is proposed in this paper.The elastic deformation is derived from the fractal scaling model and Hooke's law.Considering the effects of elastic-structural deformation on tortuosity sensitivity,an empirical formula is proposed,and the conditions for its applicability are clarified.The predictive performance of the proposed model for the permeability-porosity relationships is validated in several sets of publicly available experimental data.These experimental data are from different rocks under different pressure cycles.The mean and standard deviation of relative errors of predicted stress sensitivity with respect to experimental data are 2.63%and 1.91%.Compared with other models,the proposed model has higher accuracy and better predictive generalization performance.It is also found that the porosity sensitivity exponent a,which can describe permeability-porosity relationships,is 2 when only elastic deformation is considered.a decreases from 2 when structural deformation is also considered.In addition,a may be greater than 3 due to the increase in tortuosity sensitivity when tortuosity sensitivity is considered even if the rock is not fractured.展开更多
Computed Tomography(CT)is a commonly used technology in Printed Circuit Boards(PCB)non-destructive testing,and element segmentation of CT images is a key subsequent step.With the development of deep learning,researche...Computed Tomography(CT)is a commonly used technology in Printed Circuit Boards(PCB)non-destructive testing,and element segmentation of CT images is a key subsequent step.With the development of deep learning,researchers began to exploit the“pre-training and fine-tuning”training process for multi-element segmentation,reducing the time spent on manual annotation.However,the existing element segmentation model only focuses on the overall accuracy at the pixel level,ignoring whether the element connectivity relationship can be correctly identified.To this end,this paper proposes a PCB CT image element segmentation model optimizing the semantic perception of connectivity relationship(OSPC-seg).The overall training process adopts a“pre-training and fine-tuning”training process.A loss function that optimizes the semantic perception of circuit connectivity relationship(OSPC Loss)is designed from the aspect of alleviating the class imbalance problem and improving the correct connectivity rate.Also,the correct connectivity rate index(CCR)is proposed to evaluate the model’s connectivity relationship recognition capabilities.Experiments show that mIoU and CCR of OSPC-seg on our datasets are 90.1%and 97.0%,improved by 1.5%and 1.6%respectively compared with the baseline model.From visualization results,it can be seen that the segmentation performance of connection positions is significantly improved,which also demonstrates the effectiveness of OSPC-seg.展开更多
This study aims to analyze and predict the relationship between the average price per box in the cigarette market of City A and government procurement,providing a scientific basis and support for decision-making.By re...This study aims to analyze and predict the relationship between the average price per box in the cigarette market of City A and government procurement,providing a scientific basis and support for decision-making.By reviewing relevant theories and literature,qualitative prediction methods,regression prediction models,and other related theories were explored.Through the analysis of annual cigarette sales data and government procurement data in City A,a comprehensive understanding of the development of the tobacco industry and the economic trends of tobacco companies in the county was obtained.By predicting and analyzing the average price per box of cigarette sales across different years,corresponding prediction results were derived and compared with actual sales data.The prediction results indicate that the correlation coefficient between the average price per box of cigarette sales and government procurement is 0.982,implying that government procurement accounts for 96.4%of the changes in the average price per box of cigarettes.These findings offer an in-depth exploration of the relationship between the average price per box of cigarettes in City A and government procurement,providing a scientific foundation for corporate decision-making and market operations.展开更多
This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid t...This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education.展开更多
We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. ...We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.展开更多
Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(ex...Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.展开更多
BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,ofte...BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,often failing to capture the complexity of the disease.The hypoxic tumor microenvironment has been recognized as a significant factor influencing cancer progression and resistance to treatment.This study aims to develop a prognostic model based on key hypoxia-related molecules to enhance prediction accuracy for patient outcomes and to guide more effective treatment strategies in pancreatic cancer.AIM To develop and validate a prognostic model for predicting outcomes in patients with pancreatic cancer using key hypoxia-related molecules.METHODS This pancreatic cancer prognostic model was developed based on the expression levels of the hypoxia-associated genes CAPN2,PLAU,and CCNA2.The results were validated in an independent dataset.This study also examined the correlations between the model risk score and various clinical features,components of the immune microenvironment,chemotherapeutic drug sensitivity,and metabolism-related pathways.Real-time quantitative PCR verification was conducted to confirm the differential expression of the target genes in hypoxic and normal pancreatic cancer cell lines.RESULTS The prognostic model demonstrated significant predictive value,with the risk score showing a strong correlation with clinical features:It was significantly associated with tumor grade(G)(bP<0.01),moderately associated with tumor stage(T)(aP<0.05),and significantly correlated with residual tumor(R)status(bP<0.01).There was also a significant negative correlation between the risk score and the half-maximal inhibitory concentration of some chemotherapeutic drugs.Furthermore,the risk score was linked to the enrichment of metabolism-related pathways in pancreatic cancer.CONCLUSION The prognostic model based on hypoxia-related genes effectively predicts pancreatic cancer outcomes with improved accuracy over traditional factors and can guide treatment selection based on risk assessment.展开更多
In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple e...In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach.展开更多
BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their assoc...BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.展开更多
BACKGROUND Peripherally inserted central catheters(PICCs)are commonly used in hospitalized patients with liver cancer for the administration of chemotherapy,nutrition,and other medications.However,PICC-related thrombo...BACKGROUND Peripherally inserted central catheters(PICCs)are commonly used in hospitalized patients with liver cancer for the administration of chemotherapy,nutrition,and other medications.However,PICC-related thrombosis is a serious complication that can lead to morbidity and mortality in this patient population.Several risk factors have been identified for the development of PICC-related thrombosis,including cancer type,stage,comorbidities,and catheter characteristics.Understanding these risk factors and developing a predictive model can help healthcare providers identify high-risk patients and implement preventive measures to reduce the incidence of thrombosis.AIM To analyze the influencing factors of PICC-related thrombosis in hospitalized patients with liver cancer,construct a predictive model,and validate it.METHODS Clinical data of hospitalized patients with liver cancer admitted from January 2020 to December 2023 were collected.Thirty-five cases of PICC-related thrombosis in hospitalized patients with liver cancer were collected,and 220 patients who underwent PICC placement during the same period but did not develop PICC-related thrombosis were randomly selected as controls.A total of 255 samples were collected and used as the training set,and 77 cases were collected as the validation set in a 7:3 ratio.General patient information,case data,catheterization data,coagulation indicators,and Autar Thrombosis Risk Assessment Scale scores were analyzed.Univariate and multivariate unconditional logistic regression analyses were performed on relevant factors,and the value of combined indicators in predicting PICC-related thrombosis in hospitalized patients with liver cancer was evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Univariate analysis showed statistically significant differences(P<0.05)in age,sex,Karnofsky performance status score(KPS),bedridden time,activities of daily living impairment,parenteral nutrition,catheter duration,distant metastasis,and bone marrow suppression between the thrombosis group and the non-thrombosis group.Other aspects had no statistically significant differences(P>0.05).Multivariate regression analysis showed that age≥60 years,KPS score≤50 points,parenteral nutrition,stage III to IV,distant metastasis,bone marrow suppression,and activities of daily living impairment were independent risk factors for PICC-related thrombosis in hospitalized patients with liver cancer(P<0.05).Catheter duration of 1-6 months and catheter duration>6 months were protective factors for PICC-related thrombosis(P<0.05).The predictive model for PICC-related thrombosis was obtained as follows:P predictive probability=[exp(Logit P)]/[1+exp(Logit P)],where Logit P=age×1.907+KPS score×2.045+parenteral nutrition×9.467+catheter duration×0.506+tumor-node-metastasis(TNM)staging×2.844+distant metastasis×2.065+bone marrow suppression×2.082+activities of daily living impairment×13.926.ROC curve analysis showed an area under the curve(AUC)of 0.827(95%CI:0.724-0.929,P<0.001),with a corresponding optimal cut-off value of 0.612,sensitivity of 0.755,and specificity of 0.857.Calibration curve analysis showed good consistency between the predicted occurrence of PICC-related thrombosis and actual occurrence(P>0.05).ROC analysis showed AUCs of 0.888 and 0.729 for the training and validation sets,respectively.CONCLUSION Age,KPS score,parenteral nutrition,TNM staging,distant metastasis,bone marrow suppression,and activities of daily living impairment are independent risk factors for PICC-related thrombosis in hospitalized patients with liver cancer,while catheter duration is a protective factor for the disease.The predictive model has an AUC of 0.827,indicating high predictive accuracy and clinical value.展开更多
The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of...The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of defining the semantic template of relation manually is particularly prominent in the extraction effect because it can obtain the deep semantic information of relation.However,this method has some problems,such as relying on expert experience and poor portability.Inspired by the rule-based entity relation extraction method,this paper proposes a joint entity relation extraction model based on a relation semantic template automatically constructed,which is abbreviated as RSTAC.This model refines the extraction rules of relation semantic templates from relation corpus through dependency parsing and realizes the automatic construction of relation semantic templates.Based on the relation semantic template,the process of relation classification and triplet extraction is constrained,and finally,the entity relation triplet is obtained.The experimental results on the three major Chinese datasets of DuIE,SanWen,and FinRE showthat the RSTAC model successfully obtains rich deep semantics of relation,improves the extraction effect of entity relation triples,and the F1 scores are increased by an average of 0.96% compared with classical joint extraction models such as CasRel,TPLinker,and RFBFN.展开更多
In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class Σ<sub>8</sub>(X, 5). Found uniquely irreducible generating set for...In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class Σ<sub>8</sub>(X, 5). Found uniquely irreducible generating set for the given semigroups and when X is finite set formulas for calculating the number of elements in generating sets are derived.展开更多
BACKGROUND Gastric cancer(GC)is a common malignancy of the digestive system.According to global 2018 cancer data,GC has the fifth-highest incidence and the thirdhighest fatality rate among malignant tumors.More than 6...BACKGROUND Gastric cancer(GC)is a common malignancy of the digestive system.According to global 2018 cancer data,GC has the fifth-highest incidence and the thirdhighest fatality rate among malignant tumors.More than 60%of GC are linked to infection with Helicobacter pylori(H.pylori),a gram-negative,active,microaerophilic,and helical bacterium.This parasite induces GC by producing toxic factors,such as cytotoxin-related gene A,vacuolar cytotoxin A,and outer membrane proteins.Ferroptosis,or iron-dependent programmed cell death,has been linked to GC,although there has been little research on the link between H.pylori infection-related GC and ferroptosis.AIM To identify coregulated differentially expressed genes among ferroptosis-related genes(FRGs)in GC patients and develop a ferroptosis-related prognostic model with discrimination ability.METHODS Gene expression profiles of GC patients and those with H.pylori-associated GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus(GEO)databases.The FRGs were acquired from the FerrDb database.A ferroptosis-related gene prognostic index(FRGPI)was created using least absolute shrinkage and selection operator–Cox regression.The predictive ability of the FRGPI was validated in the GEO cohort.Finally,we verified the expression of the hub genes and the activity of the ferroptosis inducer FIN56 in GC cell lines and tissues.RESULTS Four hub genes were identified(NOX4,MTCH1,GABARAPL2,and SLC2A3)and shown to accurately predict GC and H.pylori-associated GC.The FRGPI based on the hub genes could independently predict GC patient survival;GC patients in the high-risk group had considerably worse overall survival than did those in the low-risk group.The FRGPI was a significant predictor of GC prognosis and was strongly correlated with disease progression.Moreover,the gene expression levels of common immune checkpoint proteins dramatically increased in the highrisk subgroup of the FRGPI cohort.The hub genes were also confirmed to be highly overexpressed in GC cell lines and tissues and were found to be primarily localized at the cell membrane.The ferroptosis inducer FIN56 inhibited GC cell proliferation in a dose-dependent manner.CONCLUSION In this study,we developed a predictive model based on four FRGs that can accurately predict the prognosis of GC patients and the efficacy of immunotherapy in this population.展开更多
In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the...In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the origin. On the other hand, we prove that the wave-function of a generalized diffraction in time problem is just the Fourier-transform of a truncated function. Consequently, the existence of dispersion relations for the diffraction in time wave-function follows. We derive these explicit dispersion relations.展开更多
Objectives:The arrival of cancer in adolescents and young adults(aged 15 to 24 years)-Adolescents and young adults(AJA)-corresponds to a fragile period during which the adulthood of the young person and the evolution ...Objectives:The arrival of cancer in adolescents and young adults(aged 15 to 24 years)-Adolescents and young adults(AJA)-corresponds to a fragile period during which the adulthood of the young person and the evolution of family ties mobilize the family as a whole.Therefore,cancer,beyond its individual traumatic dimension,affects the whole family,which can modify family ties and family functioning.Our objective is to evaluate family functioning from the complex model evaluating cohesion and adaptability when an adolescent or young adult has cancer.Methods:Adolescents and young adults with cancer(n=41),mothers(n=41),and fathers(n=13)participated in this study.They completed the Family Adaptation and Cohesion Scales(FACES Ⅲ)questionnaire.Family functioning when an aya is ill has been compared to that of families without any disease.Results:a comparison of the mean scores of perceived cohesion and adaptability of face Ⅲ indicates no significant difference for cohesion.In contrast,the averages of the adaptability scores of our sample with those of the general population indicate that families with cancer hais generally feel more“adaptable”than the non-clinical population.These results are statistically significant for AJA,but also for mothers and fathers.Regarding the mean scores of ideal cohesion and ideal adaptability,there are no significant differences between fathers in our sample and fathers in the general population.In contrast,mothers in our sample had less ideal adaptability than those in the general population.In aya patients with cancer,the scores of both adaptability and cohesion were significantly different from those of non-diseased adolescents.Conclusion:Cancer leads to many changes in family relationships,making it difficult to empower the young patient and latent the evolution of the relationship.展开更多
基金supported by the research funds for Coupling Research on Industrial Upgrade and Environmental Management in the Bohai Rim-Technique,methodology,and Environmental Economic Policies(No.42076221).
文摘This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.
基金supported by the National Natural Science Foundation of China(Grant Nos.82173620 to Yang Zhao and 82041024 to Feng Chen)partially supported by the Bill&Melinda Gates Foundation(Grant No.INV-006371 to Feng Chen)Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.
文摘BACKGROUND Clinical belonging refers to the feeling that clinical medical staff feel recognized and accepted by others or groups.The level of clinical belonging of nursing interns affects students’learning motivation and confidence,which in turn affects their clinical practice behavior.AIM To explore the effects of professional identity and nursing information ability on clinical belonging among nursing interns and establish a relationship model for these factors.METHODS The researchers used the convenience sampling method to select 682 nursing interns from China.The survey was conducted using a general information questionnaire,clinical sense of belonging scale,nursing information ability self-assessment scale,and a nursing student professional identity questionnaire.The mediating effect of nursing information ability between their professional identity and clinical sense of belonging was analyzed using SPSS 21.0 and the path analysis in structural equation modeling.RESULTS The total scores of clinical belonging,professional identity,and nursing information ability of nursing interns were(104.29±13.11)points,(57.89±7.16)points,and(70.29±6.20)points,respectively.Nursing information ability had a direct effect on the clinical sense of belonging(effect value=0.46,P<0.05).Occupational identity had a direct effect(effect value=0.52,P<0.05)and an indirect effect(effect value=0.21,P<0.05)on clinical belonging.CONCLUSION Nursing administrators in nursing colleges and hospitals should take effective measures to improve the professional identity and nursing information ability of nursing interns,as well as the clinical sense of belonging among nursing interns.
基金the funding support from the Ministry of Education,Government of India,under the Prime Minister Research Fellowship programme(Grant Nos.SB21221901CEPMRF008347 and SB22230217CEPMRF008347).
文摘Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.
基金supported by the National Natural Science Foundation of China(No.U2142206).
文摘Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.
基金funding support from the State Key Program of National Natural Science Foundation of China(Grant No.U1637206)Shanghai Sailing Program(Grant No.20YF1417200).
文摘Clarifying the relationship between stress sensitivities of permeability and porosity is of great significance in guiding underground resource mining.More and more studies focus on how to construct stress sensitivity models to describe the relationship and obtain a comprehensive stress sensitivity of porous rock.However,the limitations of elastic deformation calculation and incompleteness of considered tortuosity sensitivity lead to the fact that the existing stress sensitivity models are still unsatisfactory in terms of accuracy and generalization.Therefore,a more accurate and generic stress sensitivity model considering elastic-structural deformation of capillary cross-section and tortuosity sensitivity is proposed in this paper.The elastic deformation is derived from the fractal scaling model and Hooke's law.Considering the effects of elastic-structural deformation on tortuosity sensitivity,an empirical formula is proposed,and the conditions for its applicability are clarified.The predictive performance of the proposed model for the permeability-porosity relationships is validated in several sets of publicly available experimental data.These experimental data are from different rocks under different pressure cycles.The mean and standard deviation of relative errors of predicted stress sensitivity with respect to experimental data are 2.63%and 1.91%.Compared with other models,the proposed model has higher accuracy and better predictive generalization performance.It is also found that the porosity sensitivity exponent a,which can describe permeability-porosity relationships,is 2 when only elastic deformation is considered.a decreases from 2 when structural deformation is also considered.In addition,a may be greater than 3 due to the increase in tortuosity sensitivity when tortuosity sensitivity is considered even if the rock is not fractured.
文摘Computed Tomography(CT)is a commonly used technology in Printed Circuit Boards(PCB)non-destructive testing,and element segmentation of CT images is a key subsequent step.With the development of deep learning,researchers began to exploit the“pre-training and fine-tuning”training process for multi-element segmentation,reducing the time spent on manual annotation.However,the existing element segmentation model only focuses on the overall accuracy at the pixel level,ignoring whether the element connectivity relationship can be correctly identified.To this end,this paper proposes a PCB CT image element segmentation model optimizing the semantic perception of connectivity relationship(OSPC-seg).The overall training process adopts a“pre-training and fine-tuning”training process.A loss function that optimizes the semantic perception of circuit connectivity relationship(OSPC Loss)is designed from the aspect of alleviating the class imbalance problem and improving the correct connectivity rate.Also,the correct connectivity rate index(CCR)is proposed to evaluate the model’s connectivity relationship recognition capabilities.Experiments show that mIoU and CCR of OSPC-seg on our datasets are 90.1%and 97.0%,improved by 1.5%and 1.6%respectively compared with the baseline model.From visualization results,it can be seen that the segmentation performance of connection positions is significantly improved,which also demonstrates the effectiveness of OSPC-seg.
基金National Social Science Fund Project“Research on the Operational Risks and Prevention of Government Procurement of Community Services Project System”(Project No.21CSH018)Research and Application of SDM Cigarette Supply Strategy Based on Consumer Data Analysis(Project No.2023ASXM07)。
文摘This study aims to analyze and predict the relationship between the average price per box in the cigarette market of City A and government procurement,providing a scientific basis and support for decision-making.By reviewing relevant theories and literature,qualitative prediction methods,regression prediction models,and other related theories were explored.Through the analysis of annual cigarette sales data and government procurement data in City A,a comprehensive understanding of the development of the tobacco industry and the economic trends of tobacco companies in the county was obtained.By predicting and analyzing the average price per box of cigarette sales across different years,corresponding prediction results were derived and compared with actual sales data.The prediction results indicate that the correlation coefficient between the average price per box of cigarette sales and government procurement is 0.982,implying that government procurement accounts for 96.4%of the changes in the average price per box of cigarettes.These findings offer an in-depth exploration of the relationship between the average price per box of cigarettes in City A and government procurement,providing a scientific foundation for corporate decision-making and market operations.
文摘This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education.
文摘We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.
基金Under the auspices of National Natural Science Foundation of China(No.42071222,41771194)。
文摘Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.
基金Supported by National Natural Science Foundation of China,No.82100581。
文摘BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,often failing to capture the complexity of the disease.The hypoxic tumor microenvironment has been recognized as a significant factor influencing cancer progression and resistance to treatment.This study aims to develop a prognostic model based on key hypoxia-related molecules to enhance prediction accuracy for patient outcomes and to guide more effective treatment strategies in pancreatic cancer.AIM To develop and validate a prognostic model for predicting outcomes in patients with pancreatic cancer using key hypoxia-related molecules.METHODS This pancreatic cancer prognostic model was developed based on the expression levels of the hypoxia-associated genes CAPN2,PLAU,and CCNA2.The results were validated in an independent dataset.This study also examined the correlations between the model risk score and various clinical features,components of the immune microenvironment,chemotherapeutic drug sensitivity,and metabolism-related pathways.Real-time quantitative PCR verification was conducted to confirm the differential expression of the target genes in hypoxic and normal pancreatic cancer cell lines.RESULTS The prognostic model demonstrated significant predictive value,with the risk score showing a strong correlation with clinical features:It was significantly associated with tumor grade(G)(bP<0.01),moderately associated with tumor stage(T)(aP<0.05),and significantly correlated with residual tumor(R)status(bP<0.01).There was also a significant negative correlation between the risk score and the half-maximal inhibitory concentration of some chemotherapeutic drugs.Furthermore,the risk score was linked to the enrichment of metabolism-related pathways in pancreatic cancer.CONCLUSION The prognostic model based on hypoxia-related genes effectively predicts pancreatic cancer outcomes with improved accuracy over traditional factors and can guide treatment selection based on risk assessment.
基金Science and Technology Innovation 2030-Major Project of“New Generation Artificial Intelligence”granted by Ministry of Science and Technology,Grant Number 2020AAA0109300.
文摘In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach.
基金Supported by the National Natural Science Foundation of China,No.81960100Applied Basic Foundation of Yunnan Province,No.202001AY070001-192+2 种基金Young and Middle-aged Academic and Technical Leaders Reserve Talents Program in Yunnan Province,No.202305AC160018Yunnan Revitalization Talent Support Program,No.RLQB20200004 and No.RLMY20220013and Yunnan Health Training Project of High-Level Talents,No.H-2017002。
文摘BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.
文摘BACKGROUND Peripherally inserted central catheters(PICCs)are commonly used in hospitalized patients with liver cancer for the administration of chemotherapy,nutrition,and other medications.However,PICC-related thrombosis is a serious complication that can lead to morbidity and mortality in this patient population.Several risk factors have been identified for the development of PICC-related thrombosis,including cancer type,stage,comorbidities,and catheter characteristics.Understanding these risk factors and developing a predictive model can help healthcare providers identify high-risk patients and implement preventive measures to reduce the incidence of thrombosis.AIM To analyze the influencing factors of PICC-related thrombosis in hospitalized patients with liver cancer,construct a predictive model,and validate it.METHODS Clinical data of hospitalized patients with liver cancer admitted from January 2020 to December 2023 were collected.Thirty-five cases of PICC-related thrombosis in hospitalized patients with liver cancer were collected,and 220 patients who underwent PICC placement during the same period but did not develop PICC-related thrombosis were randomly selected as controls.A total of 255 samples were collected and used as the training set,and 77 cases were collected as the validation set in a 7:3 ratio.General patient information,case data,catheterization data,coagulation indicators,and Autar Thrombosis Risk Assessment Scale scores were analyzed.Univariate and multivariate unconditional logistic regression analyses were performed on relevant factors,and the value of combined indicators in predicting PICC-related thrombosis in hospitalized patients with liver cancer was evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Univariate analysis showed statistically significant differences(P<0.05)in age,sex,Karnofsky performance status score(KPS),bedridden time,activities of daily living impairment,parenteral nutrition,catheter duration,distant metastasis,and bone marrow suppression between the thrombosis group and the non-thrombosis group.Other aspects had no statistically significant differences(P>0.05).Multivariate regression analysis showed that age≥60 years,KPS score≤50 points,parenteral nutrition,stage III to IV,distant metastasis,bone marrow suppression,and activities of daily living impairment were independent risk factors for PICC-related thrombosis in hospitalized patients with liver cancer(P<0.05).Catheter duration of 1-6 months and catheter duration>6 months were protective factors for PICC-related thrombosis(P<0.05).The predictive model for PICC-related thrombosis was obtained as follows:P predictive probability=[exp(Logit P)]/[1+exp(Logit P)],where Logit P=age×1.907+KPS score×2.045+parenteral nutrition×9.467+catheter duration×0.506+tumor-node-metastasis(TNM)staging×2.844+distant metastasis×2.065+bone marrow suppression×2.082+activities of daily living impairment×13.926.ROC curve analysis showed an area under the curve(AUC)of 0.827(95%CI:0.724-0.929,P<0.001),with a corresponding optimal cut-off value of 0.612,sensitivity of 0.755,and specificity of 0.857.Calibration curve analysis showed good consistency between the predicted occurrence of PICC-related thrombosis and actual occurrence(P>0.05).ROC analysis showed AUCs of 0.888 and 0.729 for the training and validation sets,respectively.CONCLUSION Age,KPS score,parenteral nutrition,TNM staging,distant metastasis,bone marrow suppression,and activities of daily living impairment are independent risk factors for PICC-related thrombosis in hospitalized patients with liver cancer,while catheter duration is a protective factor for the disease.The predictive model has an AUC of 0.827,indicating high predictive accuracy and clinical value.
基金supported by the National Natural Science Foundation of China(Nos.U1804263,U1736214,62172435)the Zhongyuan Science and Technology Innovation Leading Talent Project(No.214200510019).
文摘The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of defining the semantic template of relation manually is particularly prominent in the extraction effect because it can obtain the deep semantic information of relation.However,this method has some problems,such as relying on expert experience and poor portability.Inspired by the rule-based entity relation extraction method,this paper proposes a joint entity relation extraction model based on a relation semantic template automatically constructed,which is abbreviated as RSTAC.This model refines the extraction rules of relation semantic templates from relation corpus through dependency parsing and realizes the automatic construction of relation semantic templates.Based on the relation semantic template,the process of relation classification and triplet extraction is constrained,and finally,the entity relation triplet is obtained.The experimental results on the three major Chinese datasets of DuIE,SanWen,and FinRE showthat the RSTAC model successfully obtains rich deep semantics of relation,improves the extraction effect of entity relation triples,and the F1 scores are increased by an average of 0.96% compared with classical joint extraction models such as CasRel,TPLinker,and RFBFN.
文摘In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class Σ<sub>8</sub>(X, 5). Found uniquely irreducible generating set for the given semigroups and when X is finite set formulas for calculating the number of elements in generating sets are derived.
文摘BACKGROUND Gastric cancer(GC)is a common malignancy of the digestive system.According to global 2018 cancer data,GC has the fifth-highest incidence and the thirdhighest fatality rate among malignant tumors.More than 60%of GC are linked to infection with Helicobacter pylori(H.pylori),a gram-negative,active,microaerophilic,and helical bacterium.This parasite induces GC by producing toxic factors,such as cytotoxin-related gene A,vacuolar cytotoxin A,and outer membrane proteins.Ferroptosis,or iron-dependent programmed cell death,has been linked to GC,although there has been little research on the link between H.pylori infection-related GC and ferroptosis.AIM To identify coregulated differentially expressed genes among ferroptosis-related genes(FRGs)in GC patients and develop a ferroptosis-related prognostic model with discrimination ability.METHODS Gene expression profiles of GC patients and those with H.pylori-associated GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus(GEO)databases.The FRGs were acquired from the FerrDb database.A ferroptosis-related gene prognostic index(FRGPI)was created using least absolute shrinkage and selection operator–Cox regression.The predictive ability of the FRGPI was validated in the GEO cohort.Finally,we verified the expression of the hub genes and the activity of the ferroptosis inducer FIN56 in GC cell lines and tissues.RESULTS Four hub genes were identified(NOX4,MTCH1,GABARAPL2,and SLC2A3)and shown to accurately predict GC and H.pylori-associated GC.The FRGPI based on the hub genes could independently predict GC patient survival;GC patients in the high-risk group had considerably worse overall survival than did those in the low-risk group.The FRGPI was a significant predictor of GC prognosis and was strongly correlated with disease progression.Moreover,the gene expression levels of common immune checkpoint proteins dramatically increased in the highrisk subgroup of the FRGPI cohort.The hub genes were also confirmed to be highly overexpressed in GC cell lines and tissues and were found to be primarily localized at the cell membrane.The ferroptosis inducer FIN56 inhibited GC cell proliferation in a dose-dependent manner.CONCLUSION In this study,we developed a predictive model based on four FRGs that can accurately predict the prognosis of GC patients and the efficacy of immunotherapy in this population.
文摘In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the origin. On the other hand, we prove that the wave-function of a generalized diffraction in time problem is just the Fourier-transform of a truncated function. Consequently, the existence of dispersion relations for the diffraction in time wave-function follows. We derive these explicit dispersion relations.
文摘Objectives:The arrival of cancer in adolescents and young adults(aged 15 to 24 years)-Adolescents and young adults(AJA)-corresponds to a fragile period during which the adulthood of the young person and the evolution of family ties mobilize the family as a whole.Therefore,cancer,beyond its individual traumatic dimension,affects the whole family,which can modify family ties and family functioning.Our objective is to evaluate family functioning from the complex model evaluating cohesion and adaptability when an adolescent or young adult has cancer.Methods:Adolescents and young adults with cancer(n=41),mothers(n=41),and fathers(n=13)participated in this study.They completed the Family Adaptation and Cohesion Scales(FACES Ⅲ)questionnaire.Family functioning when an aya is ill has been compared to that of families without any disease.Results:a comparison of the mean scores of perceived cohesion and adaptability of face Ⅲ indicates no significant difference for cohesion.In contrast,the averages of the adaptability scores of our sample with those of the general population indicate that families with cancer hais generally feel more“adaptable”than the non-clinical population.These results are statistically significant for AJA,but also for mothers and fathers.Regarding the mean scores of ideal cohesion and ideal adaptability,there are no significant differences between fathers in our sample and fathers in the general population.In contrast,mothers in our sample had less ideal adaptability than those in the general population.In aya patients with cancer,the scores of both adaptability and cohesion were significantly different from those of non-diseased adolescents.Conclusion:Cancer leads to many changes in family relationships,making it difficult to empower the young patient and latent the evolution of the relationship.