In this work,we report the preparation of 1T'-MoS_(2)/g-C_(3)N_(4) nanocage(NC)heterostructure by loading 2D semi-metal noble-metal-free 1T'-MoS_(2) on the g-C_(3)N_(4) nanocages(NCs).DFT calculation and exper...In this work,we report the preparation of 1T'-MoS_(2)/g-C_(3)N_(4) nanocage(NC)heterostructure by loading 2D semi-metal noble-metal-free 1T'-MoS_(2) on the g-C_(3)N_(4) nanocages(NCs).DFT calculation and experimental data have shown that the 1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure has a stronger light absorption capacity and larger specific surface area than pure g-C_(3)N_(4) NCs and g-C_(3)N_(4) nanosheets(NSs),and the presence of the co-catalysts 1T'-MoS_(2) can effectively inhibit the photoinduced carrier recombination.As a result,the 1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure with an optimum 1T'-MoS_(2) loading of 9 wt%displays a hydrogen evolution rate of 1949 mmol h^(-1) g^(-1),162.4,1.2,1.5,1.6 and 1.2 times than pure g-C_(3)N_(4) NCs(12 mmol h^(-1) g^(-1)),Pt/g-C_(3)N_(4) NCs(1615 mmol h^(-1) g^(-1))and Pt/g-C_(3)N_(4) nanosheets(NSs,1297 mmol h^(-1) g^(-1)),1T'-MoS_(2)/g-C_(3)N_(4) nanosheets(1216 mmol h^(-1) g^(-1))and 2H-MoS_(2)/g-C_(3)N_(4) nanocages(1573 mmol h^(-1) g^(-1)),respectively,and exhibits excellent cycle stability.Therefore,1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure is a suitable photocatalyst for green H_(2) production.展开更多
In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in thi...In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.展开更多
基金funding from the National Natural Science Foundation of China (No.51872173)Taishan Scholar Foundation of Shandong Province (No.tsqn201812068)+2 种基金Youth Innovation Technology Project of Higher School in Shandong Province (No.2019KJA013)Science and Technology Special Project of Qingdao City (No.20-3-4-3-nsh)the Opening Fund of State Key Laboratory of Heavy Oil Processing (No.SKLOP202002006)。
文摘In this work,we report the preparation of 1T'-MoS_(2)/g-C_(3)N_(4) nanocage(NC)heterostructure by loading 2D semi-metal noble-metal-free 1T'-MoS_(2) on the g-C_(3)N_(4) nanocages(NCs).DFT calculation and experimental data have shown that the 1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure has a stronger light absorption capacity and larger specific surface area than pure g-C_(3)N_(4) NCs and g-C_(3)N_(4) nanosheets(NSs),and the presence of the co-catalysts 1T'-MoS_(2) can effectively inhibit the photoinduced carrier recombination.As a result,the 1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure with an optimum 1T'-MoS_(2) loading of 9 wt%displays a hydrogen evolution rate of 1949 mmol h^(-1) g^(-1),162.4,1.2,1.5,1.6 and 1.2 times than pure g-C_(3)N_(4) NCs(12 mmol h^(-1) g^(-1)),Pt/g-C_(3)N_(4) NCs(1615 mmol h^(-1) g^(-1))and Pt/g-C_(3)N_(4) nanosheets(NSs,1297 mmol h^(-1) g^(-1)),1T'-MoS_(2)/g-C_(3)N_(4) nanosheets(1216 mmol h^(-1) g^(-1))and 2H-MoS_(2)/g-C_(3)N_(4) nanocages(1573 mmol h^(-1) g^(-1)),respectively,and exhibits excellent cycle stability.Therefore,1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure is a suitable photocatalyst for green H_(2) production.
文摘In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.