Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) were determined in nineteen surface sediment samples collected from Baiyangdian Lake and its inflow...Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) were determined in nineteen surface sediment samples collected from Baiyangdian Lake and its inflowing river (Fuhe River) in North China. Total concentrations of OCPs, PCBs and PAHs in sediments ranged from 5.4 to 707.6 ng]g, 2.3 to 197.8 ng/g, and 101.3 to 6360.5 ng]g, respectively. The levels of contaminants in Fuhe River were significantly higher than those in Baiyandian Lake. For hexachlorocyclohexane (HCHs) and dichlorodiphenytrich/oroethanes (DDTs), α-HCH and p,p'-DDT were predominant isomers; while for PCBs, PCB 28/31, PCB 40/103, PCB 60, PCB 101, and PCB 118 were predominant congeners. Possible sources derived from historical usage for OCPs and incomplete combustion fuel, wood, and coal and exhaustion of boats or cars for PAHs. Risk assessment of sediment indicated that sediments in Fuhe River were likely to pose potential biological adverse impact.展开更多
The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by...The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by global climate warming. For a better understanding of the cause, this study investigates the dynamic changes of Baiyangdian Lake wetland over the last 40 years. It is shown that since the 1980s, Baiyangdian Lake has suffered from an insufficient water input and shrunk considerably. By using SPSS 11.0, this study urines a detailed Analysis on the signifficance of the effects of the possible driving factors for the degradation. It is identified that the North China Plain has been warrnin~ up significantly in recent years, which causes a significant reduction in the precipitation and inflow to the lake. Although human disturbances such as the irrigation and storage of water in reservoirs do not play a decisive role, they accelerate the degradation and their effects should be minimized.展开更多
The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular,little is known about the impact of transferred water on surface...The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular,little is known about the impact of transferred water on surface water and groundwater.In this study,Baiyangdian Lake was selected as a typical area for extensive groundwater exploration and surface water transfer in the North China Plain.Surface water and groundwater samples were sampled in dry/wet seasons and then analyzed before/after the water transfer,respectively.Generally,surface water and groundwater are extensively hydrologically connected based on hydrochemical evidence.It was found that the hydrochemical composition of the shallow groundwater is affected by the surface water and that the water quality of the deep groundwater is stable.However,inter-aquifer recharge processes from the shallow groundwater to the deep groundwater existed in the anthropogenic region impacted with high nitrate-ion concentrations.Also,the hydrochemical composition of the surface water and groundwater was dominated by rock-weathering and evaporation-precipitation processes.Due to the existence of the deep vadose zone in the alluvial fan,Na^(+)was exchanged into soil matrices during the leakage of the surface water.In addition,the transferred water resulted in surface water with good quality,and it also played as an important recharge source to groundwater.As the most important water resource for irrigation and drinking,deep groundwater should be paid more attention in the alluvial fan with frequent water transfer and extensive groundwater exploration.展开更多
Water cycle and water quality in the Lake Baiyangdian watershed of the North China Plain have undergone great changes due to over-pumping of groundwater and wastewater discharge.In this paper,hydrogeochemical data was...Water cycle and water quality in the Lake Baiyangdian watershed of the North China Plain have undergone great changes due to over-pumping of groundwater and wastewater discharge.In this paper,hydrogeochemical data was collected to analyze the hydrochemical characteristics and geochemistry evolution of groundwater.The study area was divided into two typical parts.One was in the upstream plain area,where over-pumping had resulted in significant decline of groundwater level;the other one was located in the downstream area near the Fu River and Lake Baiyangdian(Lake BYD region).In addition to the natural weathering of minerals,excessive fertilizer was also a main factor of higher ion concentration in groundwater.According to studies,due to good permeability,these regions were easy to be polluted even with deep groundwater depth.However,upstream shallow groundwater and surface water,including lake water,domestic along with industrial wastewater were all sources of present shallow groundwater in the Lake BYD region.Results indicated that anthropogenic activities rather than minerals much matter to the groundwater in these regions.Particularly,wastewater largely decided the groundwater quality,which suggested that the management and restoration of surface water quality was crucial to groundwater protection.展开更多
Water quality evaluation entails both randomness and fuzziness. Considering that water eutrophication evaluation involves many indices, different classifications and interval values, fuzzy variable sets theory was dev...Water quality evaluation entails both randomness and fuzziness. Considering that water eutrophication evaluation involves many indices, different classifications and interval values, fuzzy variable sets theory was developed to Lake Baiyangdian as a study case. Taking reference to eutrophication standard of Chinese lakes and local characteristic of Lake Baiyangdian, eutrophication degree of lake was divided into 8 levels. Total phosphorus, total nitrogen, and CODMn were selected as evaluation indices in this research. Based on the measured data, index feature value matrix of sample was built. Index weights were determined by means of pure threshold value method. Relative membership degree of each index to each classification was calculated with relative difference function model. Then the stability of feature value of classification corresponding was received by the comprehensive calculation with the relative membership degree and index weights. The results show that the proposed models are effective tools for generating a set of realistic and flexible optimal solutions for complicated water quality evaluation issues. It concluded that the model was reasonable and practical.展开更多
Baiyangdian lake as the kidney of north China plays a huge ecological function, bringing about environmental and economic benefits as well as aesthetics value. It takes the role of adjusting climate, slowing flood, st...Baiyangdian lake as the kidney of north China plays a huge ecological function, bringing about environmental and economic benefits as well as aesthetics value. It takes the role of adjusting climate, slowing flood, storing water, alleviating drought, maintaining the water body's purifying capacity, protecting biodiversity as well as vegetating fish and reed, developing eco-tourism etc.. Now it is degenerating under the pressure from both physical and human society. This paper studied the process, condition and root causes of the lake shrinking, pollution, biodiversity losing and disasters. Adaptation and integrative management strategies are also put forward for maintaining the ecological function and sustainable development.展开更多
This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 yea...This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 years,significant glacier retreats,driven by rising temperatures and changing precipitation patterns,have led to the formation and expansion of several proglacial lakes.Fieldwork combined with satellite data and meteorological analysis was used to assess the dynamics of glacier and lake area changes,with particular focus on the flood events of July 2021.The research reveals a substantial reduction in glacier area,particularly in the Khukhnuruu E complex,where glacier area decreased by 19.3%.The study highlights the influence of increasing temperatures and summer precipitation,which have accelerated ice melt,contributing to the expansion and eventual breaching of lakes.Additionally,lake area changes were influenced by the steepness of the terrain,with steeper slopes exacerbating peak discharge during floods.Of the studied seven lakes(Lake 1 to Lake 7),Lake 1 experienced the most dramatic reduction,with a decrease in area by 73.51%and volume by 84.84%,followed by Lake 7.This study underscores the region's vulnerability to climate-induced hazards and stresses the need for a comprehensive early warning system and disaster preparedness measures to mitigate future risks.展开更多
Proliferation of microalgae is the result of a complex interaction between hydrological and physico-chemical variables influenced by climatic and anthropogenic factors. This study assessed algal communities in the Sam...Proliferation of microalgae is the result of a complex interaction between hydrological and physico-chemical variables influenced by climatic and anthropogenic factors. This study assessed algal communities in the Samendeni Dam Lake to serve as indicators of water quality for sustainable management of hydro-agricultural water resources. Therefore, physico-chemical parameters and microalgae were monitored in three sampling zones from November 2021 to October 2022. A comparison of physico-chemical parameters was realized between sampling zones and between seasons. CCA and RDA were used to establish the relationship between parameters and microalgae. The results show 96 species belonging to 46 genera, 30 families, 19 orders, 9 classes, and 7 phyla. Charophyta dominated microalgal communities in both dry and rainy seasons. Phytoplankton species reached 34 in the dry season and 41 in the rainy season, whereas periphyton revealed 41 species in both seasons. Phytoplankton abundances ranged from 213 to 5440 cells·mL−1 and 3 to 110 cells·cm−2 for periphyton. At p < 0.05, significant correlation of Charophyta with pH (r = 0.39, p-value = 0.04), EC (r = −0.41 - 0.91, p-value = 0.00 - 0.03), Transp (r = 0.73, p-value = 0.03), Ammo (r = 0.48, p-value = 0.01), Nitra (r = 0.81, p-value = 0.01), Nitri (r = 0.91, p-value = 0.00) was observed. Bacillariophyta significantly correlated to pH (r = 0.70, p-value = 0.04), EC (r = −0.51 - 0.94, p-value = 0.00 - 0.04), DO (r = −0.70 - 0.81, p-value = 0.01 - 0.04), Transp (r = −0.71 - 0.73, p-value = 0.02 - 0.03), Nitra (r = 0.84, p-value = 0.00) and OrthoP (r = 0.44 - 0.73, p-value = 0.02 - 0.03). Chlorophyta was significantly correlated to EC (r = −0.41 - 0.95, p-value = 0.00 - 0.03), Transp (r = −0.52, p-value = 0.01), Nitra (r = 0.71, p-value = 0.03), Ammo (r = 0.42, p-value = 0.03). Cyanophyta showed significant correlation with pH (r = 0.43, p-value = 0.02);EC (r = 0.68, p-value = 0.04), Transp (r = −0.44, p-value = 0.02), OrthoP (r = 0.44 - 0.54, p-value = 0.00 - 0.02) and Ammo (r = 0.43, p-value = 0.02). Ochrophyta significantly correlated to Nitra (r = 0.42, p-value = 0.03). While Charophyta and Chlorophyta species in the dam lake indicate relatively good water quality, recorded harmful Cyanophyta species show a possible deterioration of the habitat. Therefore, continuous water quality monitoring since the construction of dam lakes should be performed for careful water management.展开更多
The problem of access to quality water is a major challenge, as it has a major impact on the socio-economic conditions of people in developing countries. The water from the islands of Lake Fitri is one of the main sou...The problem of access to quality water is a major challenge, as it has a major impact on the socio-economic conditions of people in developing countries. The water from the islands of Lake Fitri is one of the main sources of drinking water for the population. The aim of this study is to characterise and assess the quality of the water and sediment from the islands (Moudou and Birguime) of Lake Fitri, and to confirm the strains isolated using the PCR method. A total of fifty (50) samples of water and fifty (50) sediments from the islands of Lake Fitri were analyzed. Standard methods of microbiological and biochemical analysis of water and sediments were used. Isolated Enterobacteriaceae strains were characterized by API 20 E and API Staph galleries and Salmonella was confirmed by PCR method. Antibiotic resistance was determined using a technique recommended by the antibiogram committee of the French microbiology society (CA-SFM, 2019). The microbiological results for the water showed an abundance of total aerobic mesophilic flora (TAMF) (4.31 × 106 ± 8.05 × 105 and 5.29 × 106 ± 2.55 × 105) on the Birguime and Moudou islands successively. The microbiological results for the sediment from Birguime and Moudou islands showed an abundance of thermotolerant coliforms (E. coli) (2.05 × 105 ± 5.43 × 104 and 2.27 × 105 ± 3.49 × 104) alternately. The results obtained after incubation of the biochemical tests by the API 20E, API Staph gallery and their numerical profile proposed by the Api software confirmed the contamination. The antibiogram results showed the emergence of certain resistances to the antibiotics Tobramycin, Flucytosine, Amikacin and Teicoplani. The PCR results for Salmonella spp strains were confirmed. As a result, strict monitoring of the water on the various islands of Lake Fitri must be carried out throughout the annual cycle, by specialized personnel, to ensure proper bio-monitoring of these ecosystems.展开更多
Polycyclic aromatic hydrocarbons(PAHs)are ubiquitous environmental contaminants of growing concern due to their potential ecological and human health risks.This study presents a comprehensive assessment of PAHs contam...Polycyclic aromatic hydrocarbons(PAHs)are ubiquitous environmental contaminants of growing concern due to their potential ecological and human health risks.This study presents a comprehensive assessment of PAHs contamination in the surface sediments of Burullus Lake,a vital and second largest delta lake in Egypt.The aim was to evaluate the eco-toxicity and potential health risks associated with the presence of these compounds.Surface seven sediment samples were collected from various drains in the southern part of Burullus Lake.Soxhlet extraction method was employed to extract PAHs(16PAHs)from the sediment sample.Analytically,target compounds were located using HPLC.The results showed that samples contained PAHs levels ranging from 0.038×10^(-6)to 0.459×10^(-6),which is considered heavily polluted by the European standard for PAHs pollution.Additionally,there was no apparent source of PAHs in the ElKhashah drain or the Brinbal Canal,as HPLC found none of the compounds.The most prevalent compound in sediment samples along the study area was fluoranthene.The diagnostic indices in the present study indicated that the hydrocarbons in the region originated from pyrolytic and man-made sources along the drains of Burullus Lake.The principal component analysis(PCA)and diagnostic ratios revealed that coal combustion and pyrolytic sources were responsible for the PAHs contamination in the surface sediments.The non-carcinogenic risk(HI),which is the product of the HQs for the adult and child populations,respectively,was calculated.HI values under 1,therefore,demonstrated that they had no carcinogenic effects on human health.TEQs and MEQs in the sediments of Burullus Lake do not have a cancer-causing impact on people.For the safety of nearby wildlife,aquatic life,and people,all activities that raise petroleum hydrocarbon levels in Burullus Lake must be adequately regulated and controlled.According to the ecological risk assessment,there is little chance that PAHs will be found in the sediments of Burullus Lake.This study underscores the urgent need for effective pollution control measures and regular monitoring of PAHs levels in Burullus Lake sediments to protect the aquatic ecosystem and public health.It also highlights the importance of considering eco-toxicity and human health risks in integrated risk assessments of PAHs-contaminated environments.展开更多
Recent climate dynamics denote patterns and variations in climatic conditions and associated cryospheric changes in the Pamir region,affecting downstream ecosystems and communities.The present investigation describes ...Recent climate dynamics denote patterns and variations in climatic conditions and associated cryospheric changes in the Pamir region,affecting downstream ecosystems and communities.The present investigation describes changes in Baralmos glacier and supraglacial lakes,along with related hazards,using meteorological observations,reanalysis products,and high-resolution satellite imagery from 2002 to 2022.Moreover,observations using Unmanned Aerial Vehicles(UAVs)were conducted between 2020 and 2022 to document recent variations.Reanalysis data suggested that there are no obvious trends in annual air temperature and precipitation except for a significant temperature rise in July(the warmest month)of about 1.34°C/decade(p<0.05)and precipitation decrease in December(p<0.05).During the last two decades of investigation,lake areas expanded from 20500 to 62800±21 m2,representing an approximately threefold increase,leading to increased mudflows in the Surkhob river and causing severe damage to property and infrastructures,most prominently during 2020 and 2022.The UAV data reveal an average decrease of-2.7±0.5 m in surface elevation downstream of Baralmos glacier between 2020 and 2022.This study is vital for implementing more intensive measures of the glacial environment and defining suitable mitigation strategies in the Pamir region.展开更多
The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of l...The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.展开更多
Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years...Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin.展开更多
Volcanic lakes in the Kuril-Kamchatka region are difficult to access,and for this reason,they remain poorly studied,with only scattered and brief data available.The authors have conducted a study of 10 lake basins usi...Volcanic lakes in the Kuril-Kamchatka region are difficult to access,and for this reason,they remain poorly studied,with only scattered and brief data available.The authors have conducted a study of 10 lake basins using modern digital echolocation survey techniques and have also compiled and summarized published data for 15 lakes in the region,calculating their main morphometric characteristics.It has been established that many caldera lake basins are modified by young explosive funnels,extrusive or effusive domes,and exhibit traces of hydrothermal activity.While lakes of the same genetic type in the Kuril-Kamchatka region are similar in depth and depression forms,the group of caldera lakes shows less homogeneity across all morphometric indicators.It was found that the absolute heights of the reservoirs on Kamchatka Peninsula are generally greater than those on the Kuril Islands,as is often the case with the size of their basins.The volcanic lakes under study can rapidly change their volume and shape under the influence of endogenous processes.For the first time for this region,on the base of repeated observations,underwater extrusive dome rate growth and the approximate rates of 2 lake level changes were calculated.Repeated observations of lakes in the Ksudach calderas(Kamchatka)and on Simushir Island indicate approximate rates of level changes:a decrease ranging within 0.5-0.6 m per year(over a 27-year observation interval)and an increase reaching up to 0.26 m per year(over a 48-year interval).The growth rate of the underwater extrusive dome in Lake Shtyubel has averaged 1-1.6 m per year over the past 25 years.This analysis has facilitated the first generalization regarding the morphology and developmental features of crater and caldera lakes in the Kuril-Kamchatka region of Russia,representing an important step in their study.The results obtained will provide a solid foundation for subsequent research in this region and may be of interest to researchers studying other volcanic lakes.展开更多
In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, whi...In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.展开更多
The salinization process resulted in agricultural damage in the Hula Valley and water quality deterioration in Lake Kinneret. Therefore, salinization-desalinization (SDS) processes have been emphasized in the last two...The salinization process resulted in agricultural damage in the Hula Valley and water quality deterioration in Lake Kinneret. Therefore, salinization-desalinization (SDS) processes have been emphasized in the last two decades. Global and regional extreme climatological events and water scarcity strengthen the link between Hula Valley and Lake Kinneret management design. A bond between optimizing Hula agricultural maintenance and Kinneret water quality protection is conclusively suggested. Saline contribution originated from the southern Hula Valley region to the underground and surface water is higher than from the northern organic soil. The impact of eastern water Intrusion from the Golan Heights as surface waters, river discharge and underground seepage into the Hula Valley represent north-south gradient enhancement. Salinized surface water contribution from the Hula Valley to Lake Kinneret is unwanted because presently Kinneret desalinization management policy is critically required. The present salinization of surface and underground water in the Hula Valley indicates the upper limit suitable for agricultural crop optimization and the decline of salinity is crucial. Enhancement of the portion of Jordan water within the total balance in the valley is beneficial for Hula agricultural crops but serves as a disadvantage to Kinneret desalinization implementation. Therefore, the enhancement of lake water exchange is recommended.展开更多
The ice phenology of alpine lakes on the Tibetan Plateau(TP)is a rapid and direct responder to climate changes,and the variations in lake ice exhibit high temporal frequency characteristics.MODIS and passive microwave...The ice phenology of alpine lakes on the Tibetan Plateau(TP)is a rapid and direct responder to climate changes,and the variations in lake ice exhibit high temporal frequency characteristics.MODIS and passive microwave data are widely used to monitor lake ice changes with high temporal resolution.However,the low spatial resolutions make it difficult to effectively quantify the freeze-melt dynamics of lakes.This work used Sentinel-1 synthetic aperture radar(SAR)data to derive high-resolution ice maps(about 6 days),then with the aid of Sentinel-2 optical images to quantify freeze-melt processes in three typical lakes on the TP(e.g.Selin Co,Ayakekumu Lake,and Nam Co).The results showed that three lakes had an average annual ice period of 125-157 days and a complete ice cover period of 72-115 days,from 2018 to 2022.They exhibit different ice phenology patterns.Nam Co is characterized by repeated episodes of freezing,melting,and refreezing,resulting in a prolonged freeze-up period.Meanwhile,the break-up period of Nam Co lasts for a longer duration(about 19 days),and the break-up exhibits a smooth process.Similarly,Ayakekumu Lake showed more significant inter-annual fluctuations in the freeze-up period,with deviations of up to 28 days observed among different years.Compared to the other two lakes,Selin Co experienced a relatively short freeze-up and break-up period.In short,Sentinel-1 SAR data can effectively monitor the weekly and seasonal variations in lake ice on the TP.Particularly,this data facilitates quantification of the freeze-melt dynamics.展开更多
Extreme hydrological events such as droughts and floods have been increasingly influenced by abnormal atmospheric disturbances caused by human activity and global warming.The Dongting Lake Basin(DLB)has experienced ch...Extreme hydrological events such as droughts and floods have been increasingly influenced by abnormal atmospheric disturbances caused by human activity and global warming.The Dongting Lake Basin(DLB)has experienced challenging circumstances over the past 20 years due to complex climatic variations,leading to extreme flooding and drought.This study aims to investigate the spatiotemporal variation in terrestrial water storage anomalies(TWSA)over the DLB using data from the GRACE/GRACE-FO and GLDAS spanning the latest two decades.A significant decline trend in TWSA is unveiled from July 2019 to May 2023,with the rate of change determined as-1.94 cm/year and-1.99 cm/year based on the GRACE/GRACE-FO and GLDAS,respectively.The GRACE-Drought Severity Index(DSI)is employed to identify and evaluate the severity and spatiotemporal evolution of the 2022 drought event in the DLB.The results accurately capture the drought event,which began in July 2022 and continued until March 2023,with the most severe conditions occurring in October 2022,when the GRACE-DSI value stood at-2.06 and the TWSA decreased by 15.24 cm and 33.51 cm relative to the same month in 2021 and 2020,respectively.Additionally,the daily water level variation at the Chenglingji hydrological gauging station in 2022 broke previous records,reaching a minimum of only 19 m.Comparing the 2022 drought event with the drought events in 2006 and 2011,the impact of drought on vegetation growth conditions was relatively small,but there was still significant vegetation degradation across the DLB.展开更多
Extreme droughts are increasing in frequency and severity globally as a result of climate change.Developing understanding of species’responses to drought is crucial for their conservation,especially in regions experi...Extreme droughts are increasing in frequency and severity globally as a result of climate change.Developing understanding of species’responses to drought is crucial for their conservation,especially in regions experi-encing increased aridity.Although numerous studies have investigated birds’responses to drought,the emphasis has primarily been on landbirds.Drought can significantly alter the wetland environments that waterbirds inhabit,but the response of waterbirds to drought remains understudied.In this study,we surveyed the distri-bution and behavior of Oriental Storks(Ciconia boyciana)in Poyang Lake,which is the largest freshwater lake in China.Results indicate that drought-induced catchment areas at the lowest water level limited the total popu-lation size of Oriental Storks in the sub-lakes.Sub-lakes with large catchment areas at the lowest water level demonstrated a capacity to support a larger population of wintering Oriental Storks.Over time,Oriental Storks exhibited a gradual concentration in Changhu Lake,characterized by larger catchments,after resource depletion in sub-lakes with smaller catchments.Additionally,the duration of Oriental Storks’vigilance and moving be-haviors decreased significantly compared with that observed before the drought.After the drought,Oriental Storks increased their foraging efforts,as evidenced by increased presence in deeper water and reaching their heads and necks into deeper water to forage,higher search rates,but lower foraging rates.In accordance with area-restricted search theory,reductions in habitat quality resulting from drought,including extensive fish die-offs,forced Oriental Storks to increase their foraging efforts.Sustaining a specific water area in sub-lakes during droughts can preserve resource availability,which is crucial for the conservation of Oriental Storks.Imple-menting measures such as water level control and micro-modification of lake bottoms in sub-lakes might mitigate the impact of drought on the piscivorous Oriental Storks.展开更多
For migratory waterbirds,the quality of wintering habitat is related to spring migration and successful breeding in the next year.The availability of food resources in the habitat is critical and varies within water l...For migratory waterbirds,the quality of wintering habitat is related to spring migration and successful breeding in the next year.The availability of food resources in the habitat is critical and varies within water levels.Although the water-level fluctuations in Poyang Lake have been extremely variable interannually in recent years,the wintering waterbird populations have remained relatively stable.Hence,the mechanism of maintaining the stability is worth exploring.This study aimed to compare the distribution of vegetation and herbivorous wa-terbirds in 2015-2016 and 2016-2017,focusing on three shallow sub-lakes and one main lake are.The results showed that the emergence of tubers and the growth of Carex spp.provided a continuous food supply and habitat for wintering waterbirds with a gradual decline in the water level.Shallow sub-lakes supported almost all of the tuber-eating waterbirds(1.42-1.62×10^(5))and most geese(1.34-1.53×10^(6)).However,the main lake area,covered with Persicaria hydropiper,did not provide adequate and accessible food.This resulted in almost no distribution of tuber-eating waterbirds,with only a few geese congregating in early winter.Our results demonstrated that the shallow sub-lakes under human control provided a different environment from the main lake and are key to sustaining the successful wintering of hundreds of thousands of migratory waterbirds in Poyang Lake.Therefore,we recommend refining the anthropogenic management of the shallow sub-lakes to regulate the water level to ensure the carrying capacity of Poyang Lake.展开更多
基金supported by the National Basic Research Program (973) of China (No.2006CB403306)the National Natural Science Foundation of China (No.30870311)
文摘Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) were determined in nineteen surface sediment samples collected from Baiyangdian Lake and its inflowing river (Fuhe River) in North China. Total concentrations of OCPs, PCBs and PAHs in sediments ranged from 5.4 to 707.6 ng]g, 2.3 to 197.8 ng/g, and 101.3 to 6360.5 ng]g, respectively. The levels of contaminants in Fuhe River were significantly higher than those in Baiyandian Lake. For hexachlorocyclohexane (HCHs) and dichlorodiphenytrich/oroethanes (DDTs), α-HCH and p,p'-DDT were predominant isomers; while for PCBs, PCB 28/31, PCB 40/103, PCB 60, PCB 101, and PCB 118 were predominant congeners. Possible sources derived from historical usage for OCPs and incomplete combustion fuel, wood, and coal and exhaustion of boats or cars for PAHs. Risk assessment of sediment indicated that sediments in Fuhe River were likely to pose potential biological adverse impact.
基金Under the auspices of the National Natural Science Foundation of China (No. 30570303)
文摘The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by global climate warming. For a better understanding of the cause, this study investigates the dynamic changes of Baiyangdian Lake wetland over the last 40 years. It is shown that since the 1980s, Baiyangdian Lake has suffered from an insufficient water input and shrunk considerably. By using SPSS 11.0, this study urines a detailed Analysis on the signifficance of the effects of the possible driving factors for the degradation. It is identified that the North China Plain has been warrnin~ up significantly in recent years, which causes a significant reduction in the precipitation and inflow to the lake. Although human disturbances such as the irrigation and storage of water in reservoirs do not play a decisive role, they accelerate the degradation and their effects should be minimized.
基金financially supported by the National Key Research and Development Program of China(Grant Nos.2016YFC0401407 and 2018YFC0506904)the National Natural Science Foundation of China(Grant No.41971037)。
文摘The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular,little is known about the impact of transferred water on surface water and groundwater.In this study,Baiyangdian Lake was selected as a typical area for extensive groundwater exploration and surface water transfer in the North China Plain.Surface water and groundwater samples were sampled in dry/wet seasons and then analyzed before/after the water transfer,respectively.Generally,surface water and groundwater are extensively hydrologically connected based on hydrochemical evidence.It was found that the hydrochemical composition of the shallow groundwater is affected by the surface water and that the water quality of the deep groundwater is stable.However,inter-aquifer recharge processes from the shallow groundwater to the deep groundwater existed in the anthropogenic region impacted with high nitrate-ion concentrations.Also,the hydrochemical composition of the surface water and groundwater was dominated by rock-weathering and evaporation-precipitation processes.Due to the existence of the deep vadose zone in the alluvial fan,Na^(+)was exchanged into soil matrices during the leakage of the surface water.In addition,the transferred water resulted in surface water with good quality,and it also played as an important recharge source to groundwater.As the most important water resource for irrigation and drinking,deep groundwater should be paid more attention in the alluvial fan with frequent water transfer and extensive groundwater exploration.
基金supported by the National Natural Science Foundations of China(No.41471028No.40830636)+1 种基金the National Key Research and Development Program of China(2016YFD0800100)the 100-Talent Project of Chinese Academy of Sciences
文摘Water cycle and water quality in the Lake Baiyangdian watershed of the North China Plain have undergone great changes due to over-pumping of groundwater and wastewater discharge.In this paper,hydrogeochemical data was collected to analyze the hydrochemical characteristics and geochemistry evolution of groundwater.The study area was divided into two typical parts.One was in the upstream plain area,where over-pumping had resulted in significant decline of groundwater level;the other one was located in the downstream area near the Fu River and Lake Baiyangdian(Lake BYD region).In addition to the natural weathering of minerals,excessive fertilizer was also a main factor of higher ion concentration in groundwater.According to studies,due to good permeability,these regions were easy to be polluted even with deep groundwater depth.However,upstream shallow groundwater and surface water,including lake water,domestic along with industrial wastewater were all sources of present shallow groundwater in the Lake BYD region.Results indicated that anthropogenic activities rather than minerals much matter to the groundwater in these regions.Particularly,wastewater largely decided the groundwater quality,which suggested that the management and restoration of surface water quality was crucial to groundwater protection.
文摘Water quality evaluation entails both randomness and fuzziness. Considering that water eutrophication evaluation involves many indices, different classifications and interval values, fuzzy variable sets theory was developed to Lake Baiyangdian as a study case. Taking reference to eutrophication standard of Chinese lakes and local characteristic of Lake Baiyangdian, eutrophication degree of lake was divided into 8 levels. Total phosphorus, total nitrogen, and CODMn were selected as evaluation indices in this research. Based on the measured data, index feature value matrix of sample was built. Index weights were determined by means of pure threshold value method. Relative membership degree of each index to each classification was calculated with relative difference function model. Then the stability of feature value of classification corresponding was received by the comprehensive calculation with the relative membership degree and index weights. The results show that the proposed models are effective tools for generating a set of realistic and flexible optimal solutions for complicated water quality evaluation issues. It concluded that the model was reasonable and practical.
文摘Baiyangdian lake as the kidney of north China plays a huge ecological function, bringing about environmental and economic benefits as well as aesthetics value. It takes the role of adjusting climate, slowing flood, storing water, alleviating drought, maintaining the water body's purifying capacity, protecting biodiversity as well as vegetating fish and reed, developing eco-tourism etc.. Now it is degenerating under the pressure from both physical and human society. This paper studied the process, condition and root causes of the lake shrinking, pollution, biodiversity losing and disasters. Adaptation and integrative management strategies are also put forward for maintaining the ecological function and sustainable development.
基金funded by the National University of Mongolia under grant agreement P2023(grant number P2023-4578)。
文摘This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 years,significant glacier retreats,driven by rising temperatures and changing precipitation patterns,have led to the formation and expansion of several proglacial lakes.Fieldwork combined with satellite data and meteorological analysis was used to assess the dynamics of glacier and lake area changes,with particular focus on the flood events of July 2021.The research reveals a substantial reduction in glacier area,particularly in the Khukhnuruu E complex,where glacier area decreased by 19.3%.The study highlights the influence of increasing temperatures and summer precipitation,which have accelerated ice melt,contributing to the expansion and eventual breaching of lakes.Additionally,lake area changes were influenced by the steepness of the terrain,with steeper slopes exacerbating peak discharge during floods.Of the studied seven lakes(Lake 1 to Lake 7),Lake 1 experienced the most dramatic reduction,with a decrease in area by 73.51%and volume by 84.84%,followed by Lake 7.This study underscores the region's vulnerability to climate-induced hazards and stresses the need for a comprehensive early warning system and disaster preparedness measures to mitigate future risks.
文摘Proliferation of microalgae is the result of a complex interaction between hydrological and physico-chemical variables influenced by climatic and anthropogenic factors. This study assessed algal communities in the Samendeni Dam Lake to serve as indicators of water quality for sustainable management of hydro-agricultural water resources. Therefore, physico-chemical parameters and microalgae were monitored in three sampling zones from November 2021 to October 2022. A comparison of physico-chemical parameters was realized between sampling zones and between seasons. CCA and RDA were used to establish the relationship between parameters and microalgae. The results show 96 species belonging to 46 genera, 30 families, 19 orders, 9 classes, and 7 phyla. Charophyta dominated microalgal communities in both dry and rainy seasons. Phytoplankton species reached 34 in the dry season and 41 in the rainy season, whereas periphyton revealed 41 species in both seasons. Phytoplankton abundances ranged from 213 to 5440 cells·mL−1 and 3 to 110 cells·cm−2 for periphyton. At p < 0.05, significant correlation of Charophyta with pH (r = 0.39, p-value = 0.04), EC (r = −0.41 - 0.91, p-value = 0.00 - 0.03), Transp (r = 0.73, p-value = 0.03), Ammo (r = 0.48, p-value = 0.01), Nitra (r = 0.81, p-value = 0.01), Nitri (r = 0.91, p-value = 0.00) was observed. Bacillariophyta significantly correlated to pH (r = 0.70, p-value = 0.04), EC (r = −0.51 - 0.94, p-value = 0.00 - 0.04), DO (r = −0.70 - 0.81, p-value = 0.01 - 0.04), Transp (r = −0.71 - 0.73, p-value = 0.02 - 0.03), Nitra (r = 0.84, p-value = 0.00) and OrthoP (r = 0.44 - 0.73, p-value = 0.02 - 0.03). Chlorophyta was significantly correlated to EC (r = −0.41 - 0.95, p-value = 0.00 - 0.03), Transp (r = −0.52, p-value = 0.01), Nitra (r = 0.71, p-value = 0.03), Ammo (r = 0.42, p-value = 0.03). Cyanophyta showed significant correlation with pH (r = 0.43, p-value = 0.02);EC (r = 0.68, p-value = 0.04), Transp (r = −0.44, p-value = 0.02), OrthoP (r = 0.44 - 0.54, p-value = 0.00 - 0.02) and Ammo (r = 0.43, p-value = 0.02). Ochrophyta significantly correlated to Nitra (r = 0.42, p-value = 0.03). While Charophyta and Chlorophyta species in the dam lake indicate relatively good water quality, recorded harmful Cyanophyta species show a possible deterioration of the habitat. Therefore, continuous water quality monitoring since the construction of dam lakes should be performed for careful water management.
文摘The problem of access to quality water is a major challenge, as it has a major impact on the socio-economic conditions of people in developing countries. The water from the islands of Lake Fitri is one of the main sources of drinking water for the population. The aim of this study is to characterise and assess the quality of the water and sediment from the islands (Moudou and Birguime) of Lake Fitri, and to confirm the strains isolated using the PCR method. A total of fifty (50) samples of water and fifty (50) sediments from the islands of Lake Fitri were analyzed. Standard methods of microbiological and biochemical analysis of water and sediments were used. Isolated Enterobacteriaceae strains were characterized by API 20 E and API Staph galleries and Salmonella was confirmed by PCR method. Antibiotic resistance was determined using a technique recommended by the antibiogram committee of the French microbiology society (CA-SFM, 2019). The microbiological results for the water showed an abundance of total aerobic mesophilic flora (TAMF) (4.31 × 106 ± 8.05 × 105 and 5.29 × 106 ± 2.55 × 105) on the Birguime and Moudou islands successively. The microbiological results for the sediment from Birguime and Moudou islands showed an abundance of thermotolerant coliforms (E. coli) (2.05 × 105 ± 5.43 × 104 and 2.27 × 105 ± 3.49 × 104) alternately. The results obtained after incubation of the biochemical tests by the API 20E, API Staph gallery and their numerical profile proposed by the Api software confirmed the contamination. The antibiogram results showed the emergence of certain resistances to the antibiotics Tobramycin, Flucytosine, Amikacin and Teicoplani. The PCR results for Salmonella spp strains were confirmed. As a result, strict monitoring of the water on the various islands of Lake Fitri must be carried out throughout the annual cycle, by specialized personnel, to ensure proper bio-monitoring of these ecosystems.
文摘Polycyclic aromatic hydrocarbons(PAHs)are ubiquitous environmental contaminants of growing concern due to their potential ecological and human health risks.This study presents a comprehensive assessment of PAHs contamination in the surface sediments of Burullus Lake,a vital and second largest delta lake in Egypt.The aim was to evaluate the eco-toxicity and potential health risks associated with the presence of these compounds.Surface seven sediment samples were collected from various drains in the southern part of Burullus Lake.Soxhlet extraction method was employed to extract PAHs(16PAHs)from the sediment sample.Analytically,target compounds were located using HPLC.The results showed that samples contained PAHs levels ranging from 0.038×10^(-6)to 0.459×10^(-6),which is considered heavily polluted by the European standard for PAHs pollution.Additionally,there was no apparent source of PAHs in the ElKhashah drain or the Brinbal Canal,as HPLC found none of the compounds.The most prevalent compound in sediment samples along the study area was fluoranthene.The diagnostic indices in the present study indicated that the hydrocarbons in the region originated from pyrolytic and man-made sources along the drains of Burullus Lake.The principal component analysis(PCA)and diagnostic ratios revealed that coal combustion and pyrolytic sources were responsible for the PAHs contamination in the surface sediments.The non-carcinogenic risk(HI),which is the product of the HQs for the adult and child populations,respectively,was calculated.HI values under 1,therefore,demonstrated that they had no carcinogenic effects on human health.TEQs and MEQs in the sediments of Burullus Lake do not have a cancer-causing impact on people.For the safety of nearby wildlife,aquatic life,and people,all activities that raise petroleum hydrocarbon levels in Burullus Lake must be adequately regulated and controlled.According to the ecological risk assessment,there is little chance that PAHs will be found in the sediments of Burullus Lake.This study underscores the urgent need for effective pollution control measures and regular monitoring of PAHs levels in Burullus Lake sediments to protect the aquatic ecosystem and public health.It also highlights the importance of considering eco-toxicity and human health risks in integrated risk assessments of PAHs-contaminated environments.
基金funded by the Gansu Provincial Science and Technology Program(22ZD6FA005)Gansu Postdoctoral Science Foundation(Grant number-E339880204)。
文摘Recent climate dynamics denote patterns and variations in climatic conditions and associated cryospheric changes in the Pamir region,affecting downstream ecosystems and communities.The present investigation describes changes in Baralmos glacier and supraglacial lakes,along with related hazards,using meteorological observations,reanalysis products,and high-resolution satellite imagery from 2002 to 2022.Moreover,observations using Unmanned Aerial Vehicles(UAVs)were conducted between 2020 and 2022 to document recent variations.Reanalysis data suggested that there are no obvious trends in annual air temperature and precipitation except for a significant temperature rise in July(the warmest month)of about 1.34°C/decade(p<0.05)and precipitation decrease in December(p<0.05).During the last two decades of investigation,lake areas expanded from 20500 to 62800±21 m2,representing an approximately threefold increase,leading to increased mudflows in the Surkhob river and causing severe damage to property and infrastructures,most prominently during 2020 and 2022.The UAV data reveal an average decrease of-2.7±0.5 m in surface elevation downstream of Baralmos glacier between 2020 and 2022.This study is vital for implementing more intensive measures of the glacial environment and defining suitable mitigation strategies in the Pamir region.
基金supported by Shaanxi Provincial Natural Science Foundation for Distinguished Young Scholars(2022JC)NSFC(41930863,42173023)The Science and Technology Plan Project of Qinghai Province Incentive Fund 2023。
文摘The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.
基金the Space Application Center, Ahmedabad (ISRO) for providing field support under “Integrated studies of Himalayan Cryosphere” programthe Glaciology Group, Jawaharlal Nehru University for providing necessary support for this research+1 种基金the grants from SERB (CRG/2020/004877) and MOES/16/19/2017-RDEAS projectsthe support from ISRO/RES/4/690/21-22 project
文摘Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin.
基金support of the State Assignments of the Institute of Marine Geology and Geophysics,Far Eastern Branch of the Russian Academy of Sciences and the Institute of Geography of the Russian Academy of Sciences(FMWS-2024-0005).
文摘Volcanic lakes in the Kuril-Kamchatka region are difficult to access,and for this reason,they remain poorly studied,with only scattered and brief data available.The authors have conducted a study of 10 lake basins using modern digital echolocation survey techniques and have also compiled and summarized published data for 15 lakes in the region,calculating their main morphometric characteristics.It has been established that many caldera lake basins are modified by young explosive funnels,extrusive or effusive domes,and exhibit traces of hydrothermal activity.While lakes of the same genetic type in the Kuril-Kamchatka region are similar in depth and depression forms,the group of caldera lakes shows less homogeneity across all morphometric indicators.It was found that the absolute heights of the reservoirs on Kamchatka Peninsula are generally greater than those on the Kuril Islands,as is often the case with the size of their basins.The volcanic lakes under study can rapidly change their volume and shape under the influence of endogenous processes.For the first time for this region,on the base of repeated observations,underwater extrusive dome rate growth and the approximate rates of 2 lake level changes were calculated.Repeated observations of lakes in the Ksudach calderas(Kamchatka)and on Simushir Island indicate approximate rates of level changes:a decrease ranging within 0.5-0.6 m per year(over a 27-year observation interval)and an increase reaching up to 0.26 m per year(over a 48-year interval).The growth rate of the underwater extrusive dome in Lake Shtyubel has averaged 1-1.6 m per year over the past 25 years.This analysis has facilitated the first generalization regarding the morphology and developmental features of crater and caldera lakes in the Kuril-Kamchatka region of Russia,representing an important step in their study.The results obtained will provide a solid foundation for subsequent research in this region and may be of interest to researchers studying other volcanic lakes.
基金supported by the Natural Science Foundation of Qinghai Province, China (No.2021-ZJ940Q)。
文摘In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.
文摘The salinization process resulted in agricultural damage in the Hula Valley and water quality deterioration in Lake Kinneret. Therefore, salinization-desalinization (SDS) processes have been emphasized in the last two decades. Global and regional extreme climatological events and water scarcity strengthen the link between Hula Valley and Lake Kinneret management design. A bond between optimizing Hula agricultural maintenance and Kinneret water quality protection is conclusively suggested. Saline contribution originated from the southern Hula Valley region to the underground and surface water is higher than from the northern organic soil. The impact of eastern water Intrusion from the Golan Heights as surface waters, river discharge and underground seepage into the Hula Valley represent north-south gradient enhancement. Salinized surface water contribution from the Hula Valley to Lake Kinneret is unwanted because presently Kinneret desalinization management policy is critically required. The present salinization of surface and underground water in the Hula Valley indicates the upper limit suitable for agricultural crop optimization and the decline of salinity is crucial. Enhancement of the portion of Jordan water within the total balance in the valley is beneficial for Hula agricultural crops but serves as a disadvantage to Kinneret desalinization implementation. Therefore, the enhancement of lake water exchange is recommended.
基金supported financially by the National Nature Science Foundation of China(No.41901129)the University Natural Sciences Research Project of Anhui Educational committee(KJ2020JD06)DUAN Zheng acknowledges the support from the Joint China-Sweden Mobility Grant funded by NSFC and STINT(CH2019-8250).
文摘The ice phenology of alpine lakes on the Tibetan Plateau(TP)is a rapid and direct responder to climate changes,and the variations in lake ice exhibit high temporal frequency characteristics.MODIS and passive microwave data are widely used to monitor lake ice changes with high temporal resolution.However,the low spatial resolutions make it difficult to effectively quantify the freeze-melt dynamics of lakes.This work used Sentinel-1 synthetic aperture radar(SAR)data to derive high-resolution ice maps(about 6 days),then with the aid of Sentinel-2 optical images to quantify freeze-melt processes in three typical lakes on the TP(e.g.Selin Co,Ayakekumu Lake,and Nam Co).The results showed that three lakes had an average annual ice period of 125-157 days and a complete ice cover period of 72-115 days,from 2018 to 2022.They exhibit different ice phenology patterns.Nam Co is characterized by repeated episodes of freezing,melting,and refreezing,resulting in a prolonged freeze-up period.Meanwhile,the break-up period of Nam Co lasts for a longer duration(about 19 days),and the break-up exhibits a smooth process.Similarly,Ayakekumu Lake showed more significant inter-annual fluctuations in the freeze-up period,with deviations of up to 28 days observed among different years.Compared to the other two lakes,Selin Co experienced a relatively short freeze-up and break-up period.In short,Sentinel-1 SAR data can effectively monitor the weekly and seasonal variations in lake ice on the TP.Particularly,this data facilitates quantification of the freeze-melt dynamics.
基金funded by the National Natural Science Foundation of China(grant numbers 42274111,41931074,42274113)。
文摘Extreme hydrological events such as droughts and floods have been increasingly influenced by abnormal atmospheric disturbances caused by human activity and global warming.The Dongting Lake Basin(DLB)has experienced challenging circumstances over the past 20 years due to complex climatic variations,leading to extreme flooding and drought.This study aims to investigate the spatiotemporal variation in terrestrial water storage anomalies(TWSA)over the DLB using data from the GRACE/GRACE-FO and GLDAS spanning the latest two decades.A significant decline trend in TWSA is unveiled from July 2019 to May 2023,with the rate of change determined as-1.94 cm/year and-1.99 cm/year based on the GRACE/GRACE-FO and GLDAS,respectively.The GRACE-Drought Severity Index(DSI)is employed to identify and evaluate the severity and spatiotemporal evolution of the 2022 drought event in the DLB.The results accurately capture the drought event,which began in July 2022 and continued until March 2023,with the most severe conditions occurring in October 2022,when the GRACE-DSI value stood at-2.06 and the TWSA decreased by 15.24 cm and 33.51 cm relative to the same month in 2021 and 2020,respectively.Additionally,the daily water level variation at the Chenglingji hydrological gauging station in 2022 broke previous records,reaching a minimum of only 19 m.Comparing the 2022 drought event with the drought events in 2006 and 2011,the impact of drought on vegetation growth conditions was relatively small,but there was still significant vegetation degradation across the DLB.
基金funded by the National Natural Science Foundation of China(Grant No.32360142).
文摘Extreme droughts are increasing in frequency and severity globally as a result of climate change.Developing understanding of species’responses to drought is crucial for their conservation,especially in regions experi-encing increased aridity.Although numerous studies have investigated birds’responses to drought,the emphasis has primarily been on landbirds.Drought can significantly alter the wetland environments that waterbirds inhabit,but the response of waterbirds to drought remains understudied.In this study,we surveyed the distri-bution and behavior of Oriental Storks(Ciconia boyciana)in Poyang Lake,which is the largest freshwater lake in China.Results indicate that drought-induced catchment areas at the lowest water level limited the total popu-lation size of Oriental Storks in the sub-lakes.Sub-lakes with large catchment areas at the lowest water level demonstrated a capacity to support a larger population of wintering Oriental Storks.Over time,Oriental Storks exhibited a gradual concentration in Changhu Lake,characterized by larger catchments,after resource depletion in sub-lakes with smaller catchments.Additionally,the duration of Oriental Storks’vigilance and moving be-haviors decreased significantly compared with that observed before the drought.After the drought,Oriental Storks increased their foraging efforts,as evidenced by increased presence in deeper water and reaching their heads and necks into deeper water to forage,higher search rates,but lower foraging rates.In accordance with area-restricted search theory,reductions in habitat quality resulting from drought,including extensive fish die-offs,forced Oriental Storks to increase their foraging efforts.Sustaining a specific water area in sub-lakes during droughts can preserve resource availability,which is crucial for the conservation of Oriental Storks.Imple-menting measures such as water level control and micro-modification of lake bottoms in sub-lakes might mitigate the impact of drought on the piscivorous Oriental Storks.
基金funded by the Poyang Lake Water Conservancy Project Office of the Department of Water Resources,Jiangxi Province,China(KT201537)the National Natural Science Foundation of China(Grant No.32360285)the National Geographic Air and Water Con-servation Fund(GEFC07-15).
文摘For migratory waterbirds,the quality of wintering habitat is related to spring migration and successful breeding in the next year.The availability of food resources in the habitat is critical and varies within water levels.Although the water-level fluctuations in Poyang Lake have been extremely variable interannually in recent years,the wintering waterbird populations have remained relatively stable.Hence,the mechanism of maintaining the stability is worth exploring.This study aimed to compare the distribution of vegetation and herbivorous wa-terbirds in 2015-2016 and 2016-2017,focusing on three shallow sub-lakes and one main lake are.The results showed that the emergence of tubers and the growth of Carex spp.provided a continuous food supply and habitat for wintering waterbirds with a gradual decline in the water level.Shallow sub-lakes supported almost all of the tuber-eating waterbirds(1.42-1.62×10^(5))and most geese(1.34-1.53×10^(6)).However,the main lake area,covered with Persicaria hydropiper,did not provide adequate and accessible food.This resulted in almost no distribution of tuber-eating waterbirds,with only a few geese congregating in early winter.Our results demonstrated that the shallow sub-lakes under human control provided a different environment from the main lake and are key to sustaining the successful wintering of hundreds of thousands of migratory waterbirds in Poyang Lake.Therefore,we recommend refining the anthropogenic management of the shallow sub-lakes to regulate the water level to ensure the carrying capacity of Poyang Lake.