Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an ...Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an aperture of at least four meters. With the support of their governments in the US, Europe, and Canada, 20,000 people brought this vision to life as the 6.5-meter James Webb Space Telescope (JWST). The telescope is working perfectly, delivering much better image quality than expected [1]. JWST is one hundred times more powerful than the Hubble Space Telescope and has already captured spectacular images of the distant universe. A view of a tiny part of the sky reveals many well-formed spiral galaxies, some over thirteen billion light-years away. These observations challenge the standard Big Bang Model (BBM), which posits that early galaxies should be small and lack well-formed spiral structures. JWST’s findings are prompting scientists to reconsider the BBM in its current form. Throughout the history of science, technological advancements have led to new results that challenge established theories, sometimes necessitating their modification or even abandonment. This happened with the geocentric model four centuries ago, and the BBM may face a similar reevaluation as JWST provides more images of the distant universe. In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of Variable Gravitational Constant, later incorporating the concept of Continuous Creation of Matter in the universe. The Hypersphere World-Universe Model (WUM) builds on these ideas, introducing a distinct mechanism for matter creation. WUM is proposed as an alternative to the prevailing BBM. Its main advantage is the elimination of the “Initial Singularity” and “Inflation”, offering explanations for many unresolved problems in Cosmology. WUM is presented as a natural extension of Classical Physics with the potential to bring about a significant transformation in both Cosmology and Classical Physics. Considering JWST’s discoveries, WUM’s achievements, and 87 years of Dirac’s proposals, it is time to initiate a fundamental transformation in Astronomy, Cosmology, and Classical Physics. The present paper is a continuation of the published article “JWST Discoveries—Confirmation of World-Universe Model Predictions” [2] and a summary of the paper “Hypersphere World-Universe Model: Digest of Presentations John Chappell Natural Philosophy Society” [3]. Many results obtained there are quoted in the current work without full justification;interested readers are encouraged to view the referenced papers for detailed explanations.展开更多
In this paper, we present a novel approach to model user request patterns in the World Wide Web. Instead of focusing on the user traffic for web pages, we capture the user interaction at the object level of the web pa...In this paper, we present a novel approach to model user request patterns in the World Wide Web. Instead of focusing on the user traffic for web pages, we capture the user interaction at the object level of the web pages. Our framework model consists of three sub-models: one for user file access, one for web pages, and one for storage servers. Web pages are assumed to consist of different types and sizes of objects, which are characterized using several categories: articles, media, and mosaics. The model is implemented with a discrete event simulation and then used to investigate the performance of our system over a variety of parameters in our model. Our performance measure of choice is mean response time and by varying the composition of web pages through our categories, we find that our framework model is able to capture a wide range of conditions that serve as a basis for generating a variety of user request patterns. In addition, we are able to establish a set of parameters that can be used as base cases. One of the goals of this research is for the framework model to be general enough that the parameters can be varied such that it can serve as input for investigating other distributed applications that require the generation of user request access patterns.展开更多
Today, in the field of computer networks, new services have been developed on the Internet or intranets, including the mail server, database management, sounds, videos and the web server itself Apache. The number of s...Today, in the field of computer networks, new services have been developed on the Internet or intranets, including the mail server, database management, sounds, videos and the web server itself Apache. The number of solutions for this server is therefore growing continuously, these services are becoming more and more complex and expensive, without being able to fulfill the needs of the users. The absence of benchmarks for websites with dynamic content is the major obstacle to research in this area. These users place high demands on the speed of access to information on the Internet. This is why the performance of the web server is critically important. Several factors influence performance, such as server execution speed, network saturation on the internet or intranet, increased response time, and throughputs. By measuring these factors, we propose a performance evaluation strategy for servers that allows us to determine the actual performance of different servers in terms of user satisfaction. Furthermore, we identified performance characteristics such as throughput, resource utilization, and response time of a system through measurement and modeling by simulation. Finally, we present a simple queue model of an Apache web server, which reasonably represents the behavior of a saturated web server using the Simulink model in Matlab (Matrix Laboratory) and also incorporates sporadic incoming traffic. We obtain server performance metrics such as average response time and throughput through simulations. Compared to other models, our model is conceptually straightforward. The model has been validated through measurements and simulations during the tests that we conducted.展开更多
This paper describes a numerical model of the world ocean based on the fully primitive equations. A 'Standard' ocean state is introduced into the equations of the model and the perturbed thermodynamic variable...This paper describes a numerical model of the world ocean based on the fully primitive equations. A 'Standard' ocean state is introduced into the equations of the model and the perturbed thermodynamic variables are used in the modlc's calculations. Both a free upper surface and a bottom topography are included in the model and a sigma coordinate is used to normalize the model's vertical component. The model has four unevenly-spaced layers and 4 × 5 horizontal resolution based on C-grid system. The finite-difference scheme of the model is designed to conserve the gross available energy in order to avoid fictitious energy generation or decay.The model has been tested in response to the annual mean surface wind stress, sea level air pressure and sea level air temperature as a preliminary step to its further improvement and its coupling with a global atmospheric general circulation model. Some of results, including currents, temperature and sea surface elevation simulated by the mode! arc presented.展开更多
Very recently, we have applied the random walk model to fit the global temperature anomaly, CRUTEM3. With encouraging results, we apply the random walk model to fit the temperature walk that is the conversion of recor...Very recently, we have applied the random walk model to fit the global temperature anomaly, CRUTEM3. With encouraging results, we apply the random walk model to fit the temperature walk that is the conversion of recorded tem-perature and real recorded temperature in 46 gamma world cities from 1901 to 1998 in this study. The results show that the random walk model can fit both temperature walk and real recorded temperature although the fitted results from other climate models are unavailable for comparison in these 46 cities. Therefore, the random walk model can fit not only the global temperature anomaly, but also the real recorded temperatures in various cities around the world.展开更多
This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these re...This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses;models the origin, evolution, and structure of the World and Macroobjects;provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values.展开更多
5D World-Universe Model (WUM) is based on the decisive role of the Medium of the World com-posed of massive particles: protons, electrons, photons, neutrinos, and Dark Matter Particles (DMP). The model forecasts the m...5D World-Universe Model (WUM) is based on the decisive role of the Medium of the World com-posed of massive particles: protons, electrons, photons, neutrinos, and Dark Matter Particles (DMP). The model forecasts the masses of DMP, discusses the possibility of all macroobject cores consisting of DMP (galaxy clusters, galaxies, star clusters, extrasolar systems, and planets), and explains the diffuse cosmic gamma-ray background radiation as the sum of contributions of multicomponent dark matter annihilation. The signatures of DMP annihilation with expected masses of 1.3 TeV, 9.6 GeV, 70 MeV, 340 keV, and 3.7 keV, are found in spectra of the diffuse gamma-ray background and the emission of various macroobjects in the World. The correlation between different emission lines in spectra of macroobjects is connected to their structure, which depends on the composition of the cores and surrounding shells made up of DMP. Consequently, the diversity of Very High Energy (VHE) gamma-ray sources in the World has a clear explanation.展开更多
5D Space-Time-Energy World-Universe Model is a unified model of the World built around the concept of Medium, composed of massive particles (protons, electrons, photons, neutrinos, and dark matter particles). The Mode...5D Space-Time-Energy World-Universe Model is a unified model of the World built around the concept of Medium, composed of massive particles (protons, electrons, photons, neutrinos, and dark matter particles). The Model provides a mathematical framework that enables precise calculation of medium-bound physical parameters: Hubble’s parameter, intergalactic plasma parameters, temperature of microwave background radiation and the rest mass of photons. This paper aligns the World-Universe Model (WUM) with the theoretical framework developed by Prof. P. S. Wesson, albeit assigning a new physical meaning to the fifth coordinate. In the World-Universe Model, the fifth dimension is associated with the total energy of the Medium of the World, and the gravitomagnetic parameter of the Medium serves as the dimension-transposing parameter.展开更多
The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and o...The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and observations. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the World and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;the concentration of intergalactic plasma and time delay of Fast Radio Bursts. Additionally, the model predicts masses of dark matter particles, photons, and neutrinos;proposes new types of particle interactions (Super Weak and Extremely Weak);shows inter-connectivity of primary cosmological parameters of the World. WUM proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. This paper is the summary of the mathematical results obtained in [1]-[4].展开更多
In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature...In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature is around 29 K. Large Grains are in fact Bose-Einstein condensates of proposed dineutrinos, and are responsible for the cosmic Far-Infrared Background (FIRB) radiation. The distribution of the energy density of all components of the World (protons, electrons, photons, neutrinos, and dark matter particles) is considered. We present an overview of the World- Universe Model (WUM) and pay particular attention to the self-consistent set of time-varying values of basic parameters of the World: the age and critical energy density;Newtonian parameter of gravitation and Hubble’s parameter;temperatures of the cosmic Microwave Background radiation and the peak of the cosmic FIRB radiation;Fermi coupling parameter and coupling parameters of the proposed Super-Weak and Extremely-Weak interactions. Additionally, WUM forecasts the masses of dark matter particles, axions, and neutrinos;proposes two fundamental parameters of the World: fine-structure constant α and the quantity Q which is the dimensionless value of the fifth coordinate, and three fundamental physical units: basic unit of momentum, energy density, and energy flux density. WUM suggests that all time-dependent parameters of the World are inter- connected and in fact dependent on Q. We recommend adding the quantity Q to the list of the CODATA-recommended values.展开更多
In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Pr...In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.展开更多
5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss differen...5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss different aspects of the gravitation: measured values of the Newtonian parameter of Gravitation and different Gravitational effects (gravitational lensing, cosmological redshift, gravitational deflection of light and gravitational refraction, proposed in the present paper). We show inter-connectivity of all cosmological parameters and provide a mathematical framework that allows direct calculation of them based on the value of the gravitational parameter. We analyze the difference between Electromagnetism and Gravitoelectromagnetism and make a conclusion about the mandatory existence of the Medium of the World. This paper aligns the World-Universe Model with the Le Sage’s theory of gravitation and makes a deduction on Gravity, Space and Time be emergent phenomena.展开更多
Hypersphere World-Universe Model (WUM) envisions Matter carried from the Universe into the World from the fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is a byproduct of Dark Matter (DM) se...Hypersphere World-Universe Model (WUM) envisions Matter carried from the Universe into the World from the fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is a byproduct of Dark Matter (DM) self-annihilation. WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) and Luminous Epoch (ever since for 13.77 billion years). Big Bang discussed in Standard Cosmology (SC) is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and self-annihilation of DMPs. WUM solves a number of physical problems in SC and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded objects in Solar system and their Internal Heating. Model makes predictions pertaining to Rest Energies of DMPs, proposes New Type of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, ev...This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.展开更多
This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the ...This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the Standard Cosmology are model-dependent and not strong enough to support the model. The angular momentum problem is one of the most critical problems in BBM. Standard Cosmology cannot explain how Galaxies and Extra Solar systems obtained their substantial orbital and rotational angular momenta, and why the orbital momentum of Jupiter is considerably larger than the rotational momentum of the Sun. WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM discusses in detail the Beginning of the World. The Model introduces Dark Epoch (spanning from the Beginning of the World for 0.4 billion years) when only Dark Matter Particles (DMPs) existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in Standard Cosmology is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning Dark Matter (DM) Supercluster’s Cores. WUM envisions Matter carried from the Universe into the World from the fourth spatial dimension by DMPs. Ordinary Matter is a byproduct of DM annihilation. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Diversity of Gravitationally-Rounded Objects in Solar system;some problems in Solar and Geophysics [1]. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
The biggest insufficiency of the present mathematics is that it consists, in fact, of the eclectic mixture of two different models. In the first model, the world is taken as infinity and what is chosen as an element h...The biggest insufficiency of the present mathematics is that it consists, in fact, of the eclectic mixture of two different models. In the first model, the world is taken as infinity and what is chosen as an element here is the unit. Everything is measured by the multiples of the unit. According to the second model, this world is in unity and its mathematical manifestation is the unit. The world is between zero and one. Everything here is measured by fraction The simplified variants of the mathematical model of the world paves the way for the comparative analysis of its alternative philosophical interpretations.展开更多
Dirac’s themes were the unity and beauty of Nature. He identified three revolutions in modern physics: Relativity, Quantum Mechanics and Cosmology. In his opinion: “<i>The new cosmology will probably turn out ...Dirac’s themes were the unity and beauty of Nature. He identified three revolutions in modern physics: Relativity, Quantum Mechanics and Cosmology. In his opinion: “<i>The new cosmology will probably turn out to be philosophically even more revolutionary than relativity or the quantum theory, perhaps looking forward to the current bonanza in cosmology, where precise observations on some of the most distant objects in the universe are shedding light on the nature of reality, on the nature of matter and on the most advanced quantum theories</i>” [Farmelo, G. (2009) The Strangest Man. The Hidden Life of Paul Dirac, Mystic of the Atom. Basic Books, Britain, 661 p]. In 1937, Paul Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”;and later added the notion of continuous creation of Matter in the World. The developed Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of matter creation. In this paper, we show that WUM is a natural continuation of Classical Physics and it can already serve as a basis for a New Cosmology proposed by Paul Dirac.展开更多
Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the h...Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is 7 = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypemetwork model shares the scale-flee and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems.展开更多
The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM)...The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM). WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) when only Dark Matter (DM) Macroobjects (MOs) existed, and Luminous Epoch (ever since for 13.77 billion years) when Luminous MOs emerged due to Rotational Fission of Overspinning DM Superclusters’ Cores and self-annihilation of Dark Matter Particles (DMPs). WUM envisions that DM is created by the Universe in the 4D Nucleus of the World. Dark Matter Particles (DMPs) carry new DM into the 3D Hypersphere World. Luminous Matter is a byproduct of DMPs self-annihilation. By analogy with 3D ball, which has two-dimensional sphere surface (that has surface energy), we can imagine that the 3D Hypersphere World has a “Surface Energy” of the 4D Nucleus. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: <b>Angular Momentum problem</b> in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;<b>Fermi Bubbles</b>—two large structures in gamma-rays and X-rays above and below Galactic center;<b>Missing Baryon problem</b> related to the fact that the observed amount of baryonic matter did not match theoretical predictions. WUM reveals <b>Inter-Connectivity of Primary Cosmological Parameters</b> and calculates their values, which are in good agreement with the latest results of their measurements. In 2013, WUM predicted the values of the following Cosmological parameters: gravitational, concentration of intergalactic plasma, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. “<i>The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy</i>” (Nobel Prize in Physics 2020) made by Prof. R. Genzel and A. Ghez is a confirmation of one of the most important predictions of WUM in 2013: “<i>Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores</i>”.展开更多
文摘Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an aperture of at least four meters. With the support of their governments in the US, Europe, and Canada, 20,000 people brought this vision to life as the 6.5-meter James Webb Space Telescope (JWST). The telescope is working perfectly, delivering much better image quality than expected [1]. JWST is one hundred times more powerful than the Hubble Space Telescope and has already captured spectacular images of the distant universe. A view of a tiny part of the sky reveals many well-formed spiral galaxies, some over thirteen billion light-years away. These observations challenge the standard Big Bang Model (BBM), which posits that early galaxies should be small and lack well-formed spiral structures. JWST’s findings are prompting scientists to reconsider the BBM in its current form. Throughout the history of science, technological advancements have led to new results that challenge established theories, sometimes necessitating their modification or even abandonment. This happened with the geocentric model four centuries ago, and the BBM may face a similar reevaluation as JWST provides more images of the distant universe. In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of Variable Gravitational Constant, later incorporating the concept of Continuous Creation of Matter in the universe. The Hypersphere World-Universe Model (WUM) builds on these ideas, introducing a distinct mechanism for matter creation. WUM is proposed as an alternative to the prevailing BBM. Its main advantage is the elimination of the “Initial Singularity” and “Inflation”, offering explanations for many unresolved problems in Cosmology. WUM is presented as a natural extension of Classical Physics with the potential to bring about a significant transformation in both Cosmology and Classical Physics. Considering JWST’s discoveries, WUM’s achievements, and 87 years of Dirac’s proposals, it is time to initiate a fundamental transformation in Astronomy, Cosmology, and Classical Physics. The present paper is a continuation of the published article “JWST Discoveries—Confirmation of World-Universe Model Predictions” [2] and a summary of the paper “Hypersphere World-Universe Model: Digest of Presentations John Chappell Natural Philosophy Society” [3]. Many results obtained there are quoted in the current work without full justification;interested readers are encouraged to view the referenced papers for detailed explanations.
文摘In this paper, we present a novel approach to model user request patterns in the World Wide Web. Instead of focusing on the user traffic for web pages, we capture the user interaction at the object level of the web pages. Our framework model consists of three sub-models: one for user file access, one for web pages, and one for storage servers. Web pages are assumed to consist of different types and sizes of objects, which are characterized using several categories: articles, media, and mosaics. The model is implemented with a discrete event simulation and then used to investigate the performance of our system over a variety of parameters in our model. Our performance measure of choice is mean response time and by varying the composition of web pages through our categories, we find that our framework model is able to capture a wide range of conditions that serve as a basis for generating a variety of user request patterns. In addition, we are able to establish a set of parameters that can be used as base cases. One of the goals of this research is for the framework model to be general enough that the parameters can be varied such that it can serve as input for investigating other distributed applications that require the generation of user request access patterns.
文摘Today, in the field of computer networks, new services have been developed on the Internet or intranets, including the mail server, database management, sounds, videos and the web server itself Apache. The number of solutions for this server is therefore growing continuously, these services are becoming more and more complex and expensive, without being able to fulfill the needs of the users. The absence of benchmarks for websites with dynamic content is the major obstacle to research in this area. These users place high demands on the speed of access to information on the Internet. This is why the performance of the web server is critically important. Several factors influence performance, such as server execution speed, network saturation on the internet or intranet, increased response time, and throughputs. By measuring these factors, we propose a performance evaluation strategy for servers that allows us to determine the actual performance of different servers in terms of user satisfaction. Furthermore, we identified performance characteristics such as throughput, resource utilization, and response time of a system through measurement and modeling by simulation. Finally, we present a simple queue model of an Apache web server, which reasonably represents the behavior of a saturated web server using the Simulink model in Matlab (Matrix Laboratory) and also incorporates sporadic incoming traffic. We obtain server performance metrics such as average response time and throughput through simulations. Compared to other models, our model is conceptually straightforward. The model has been validated through measurements and simulations during the tests that we conducted.
文摘This paper describes a numerical model of the world ocean based on the fully primitive equations. A 'Standard' ocean state is introduced into the equations of the model and the perturbed thermodynamic variables are used in the modlc's calculations. Both a free upper surface and a bottom topography are included in the model and a sigma coordinate is used to normalize the model's vertical component. The model has four unevenly-spaced layers and 4 × 5 horizontal resolution based on C-grid system. The finite-difference scheme of the model is designed to conserve the gross available energy in order to avoid fictitious energy generation or decay.The model has been tested in response to the annual mean surface wind stress, sea level air pressure and sea level air temperature as a preliminary step to its further improvement and its coupling with a global atmospheric general circulation model. Some of results, including currents, temperature and sea surface elevation simulated by the mode! arc presented.
文摘Very recently, we have applied the random walk model to fit the global temperature anomaly, CRUTEM3. With encouraging results, we apply the random walk model to fit the temperature walk that is the conversion of recorded tem-perature and real recorded temperature in 46 gamma world cities from 1901 to 1998 in this study. The results show that the random walk model can fit both temperature walk and real recorded temperature although the fitted results from other climate models are unavailable for comparison in these 46 cities. Therefore, the random walk model can fit not only the global temperature anomaly, but also the real recorded temperatures in various cities around the world.
文摘This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses;models the origin, evolution, and structure of the World and Macroobjects;provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values.
文摘5D World-Universe Model (WUM) is based on the decisive role of the Medium of the World com-posed of massive particles: protons, electrons, photons, neutrinos, and Dark Matter Particles (DMP). The model forecasts the masses of DMP, discusses the possibility of all macroobject cores consisting of DMP (galaxy clusters, galaxies, star clusters, extrasolar systems, and planets), and explains the diffuse cosmic gamma-ray background radiation as the sum of contributions of multicomponent dark matter annihilation. The signatures of DMP annihilation with expected masses of 1.3 TeV, 9.6 GeV, 70 MeV, 340 keV, and 3.7 keV, are found in spectra of the diffuse gamma-ray background and the emission of various macroobjects in the World. The correlation between different emission lines in spectra of macroobjects is connected to their structure, which depends on the composition of the cores and surrounding shells made up of DMP. Consequently, the diversity of Very High Energy (VHE) gamma-ray sources in the World has a clear explanation.
文摘5D Space-Time-Energy World-Universe Model is a unified model of the World built around the concept of Medium, composed of massive particles (protons, electrons, photons, neutrinos, and dark matter particles). The Model provides a mathematical framework that enables precise calculation of medium-bound physical parameters: Hubble’s parameter, intergalactic plasma parameters, temperature of microwave background radiation and the rest mass of photons. This paper aligns the World-Universe Model (WUM) with the theoretical framework developed by Prof. P. S. Wesson, albeit assigning a new physical meaning to the fifth coordinate. In the World-Universe Model, the fifth dimension is associated with the total energy of the Medium of the World, and the gravitomagnetic parameter of the Medium serves as the dimension-transposing parameter.
文摘The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and observations. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the World and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;the concentration of intergalactic plasma and time delay of Fast Radio Bursts. Additionally, the model predicts masses of dark matter particles, photons, and neutrinos;proposes new types of particle interactions (Super Weak and Extremely Weak);shows inter-connectivity of primary cosmological parameters of the World. WUM proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. This paper is the summary of the mathematical results obtained in [1]-[4].
文摘In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature is around 29 K. Large Grains are in fact Bose-Einstein condensates of proposed dineutrinos, and are responsible for the cosmic Far-Infrared Background (FIRB) radiation. The distribution of the energy density of all components of the World (protons, electrons, photons, neutrinos, and dark matter particles) is considered. We present an overview of the World- Universe Model (WUM) and pay particular attention to the self-consistent set of time-varying values of basic parameters of the World: the age and critical energy density;Newtonian parameter of gravitation and Hubble’s parameter;temperatures of the cosmic Microwave Background radiation and the peak of the cosmic FIRB radiation;Fermi coupling parameter and coupling parameters of the proposed Super-Weak and Extremely-Weak interactions. Additionally, WUM forecasts the masses of dark matter particles, axions, and neutrinos;proposes two fundamental parameters of the World: fine-structure constant α and the quantity Q which is the dimensionless value of the fifth coordinate, and three fundamental physical units: basic unit of momentum, energy density, and energy flux density. WUM suggests that all time-dependent parameters of the World are inter- connected and in fact dependent on Q. We recommend adding the quantity Q to the list of the CODATA-recommended values.
文摘In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.
文摘5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss different aspects of the gravitation: measured values of the Newtonian parameter of Gravitation and different Gravitational effects (gravitational lensing, cosmological redshift, gravitational deflection of light and gravitational refraction, proposed in the present paper). We show inter-connectivity of all cosmological parameters and provide a mathematical framework that allows direct calculation of them based on the value of the gravitational parameter. We analyze the difference between Electromagnetism and Gravitoelectromagnetism and make a conclusion about the mandatory existence of the Medium of the World. This paper aligns the World-Universe Model with the Le Sage’s theory of gravitation and makes a deduction on Gravity, Space and Time be emergent phenomena.
文摘Hypersphere World-Universe Model (WUM) envisions Matter carried from the Universe into the World from the fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is a byproduct of Dark Matter (DM) self-annihilation. WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) and Luminous Epoch (ever since for 13.77 billion years). Big Bang discussed in Standard Cosmology (SC) is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and self-annihilation of DMPs. WUM solves a number of physical problems in SC and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded objects in Solar system and their Internal Heating. Model makes predictions pertaining to Rest Energies of DMPs, proposes New Type of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.
文摘This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.
文摘This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the Standard Cosmology are model-dependent and not strong enough to support the model. The angular momentum problem is one of the most critical problems in BBM. Standard Cosmology cannot explain how Galaxies and Extra Solar systems obtained their substantial orbital and rotational angular momenta, and why the orbital momentum of Jupiter is considerably larger than the rotational momentum of the Sun. WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM discusses in detail the Beginning of the World. The Model introduces Dark Epoch (spanning from the Beginning of the World for 0.4 billion years) when only Dark Matter Particles (DMPs) existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in Standard Cosmology is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning Dark Matter (DM) Supercluster’s Cores. WUM envisions Matter carried from the Universe into the World from the fourth spatial dimension by DMPs. Ordinary Matter is a byproduct of DM annihilation. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Diversity of Gravitationally-Rounded Objects in Solar system;some problems in Solar and Geophysics [1]. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.
文摘The biggest insufficiency of the present mathematics is that it consists, in fact, of the eclectic mixture of two different models. In the first model, the world is taken as infinity and what is chosen as an element here is the unit. Everything is measured by the multiples of the unit. According to the second model, this world is in unity and its mathematical manifestation is the unit. The world is between zero and one. Everything here is measured by fraction The simplified variants of the mathematical model of the world paves the way for the comparative analysis of its alternative philosophical interpretations.
文摘Dirac’s themes were the unity and beauty of Nature. He identified three revolutions in modern physics: Relativity, Quantum Mechanics and Cosmology. In his opinion: “<i>The new cosmology will probably turn out to be philosophically even more revolutionary than relativity or the quantum theory, perhaps looking forward to the current bonanza in cosmology, where precise observations on some of the most distant objects in the universe are shedding light on the nature of reality, on the nature of matter and on the most advanced quantum theories</i>” [Farmelo, G. (2009) The Strangest Man. The Hidden Life of Paul Dirac, Mystic of the Atom. Basic Books, Britain, 661 p]. In 1937, Paul Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”;and later added the notion of continuous creation of Matter in the World. The developed Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of matter creation. In this paper, we show that WUM is a natural continuation of Classical Physics and it can already serve as a basis for a New Cosmology proposed by Paul Dirac.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71071098,91024026,and 71171136)supported by the Shanghai Rising-Star Program,China(Grant No.11QA1404500)the Leading Academic Discipline Project of Shanghai City,China(Grant No.XTKX2012)
文摘Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is 7 = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypemetwork model shares the scale-flee and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems.
文摘The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM). WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) when only Dark Matter (DM) Macroobjects (MOs) existed, and Luminous Epoch (ever since for 13.77 billion years) when Luminous MOs emerged due to Rotational Fission of Overspinning DM Superclusters’ Cores and self-annihilation of Dark Matter Particles (DMPs). WUM envisions that DM is created by the Universe in the 4D Nucleus of the World. Dark Matter Particles (DMPs) carry new DM into the 3D Hypersphere World. Luminous Matter is a byproduct of DMPs self-annihilation. By analogy with 3D ball, which has two-dimensional sphere surface (that has surface energy), we can imagine that the 3D Hypersphere World has a “Surface Energy” of the 4D Nucleus. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: <b>Angular Momentum problem</b> in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;<b>Fermi Bubbles</b>—two large structures in gamma-rays and X-rays above and below Galactic center;<b>Missing Baryon problem</b> related to the fact that the observed amount of baryonic matter did not match theoretical predictions. WUM reveals <b>Inter-Connectivity of Primary Cosmological Parameters</b> and calculates their values, which are in good agreement with the latest results of their measurements. In 2013, WUM predicted the values of the following Cosmological parameters: gravitational, concentration of intergalactic plasma, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. “<i>The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy</i>” (Nobel Prize in Physics 2020) made by Prof. R. Genzel and A. Ghez is a confirmation of one of the most important predictions of WUM in 2013: “<i>Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores</i>”.