A Panorama of Rivers and Mountains is a silk scroll painting which is hard to preserve. The color of azurite and mineral green on the painting is rich. After nearly a thousand years, it is so fragile that it may be sp...A Panorama of Rivers and Mountains is a silk scroll painting which is hard to preserve. The color of azurite and mineral green on the painting is rich. After nearly a thousand years, it is so fragile that it may be spalled by opening the painting. That is why the painting has seldom been shown to the public. Since the founding of the People’s Republic of China, the painting has been on display for just three times.展开更多
Small mountainous rivers are characterized by large instantaneous fluxes and susceptible to extreme weather events,which can rapidly transport materials into the sea and have a significant impact on the ecological env...Small mountainous rivers are characterized by large instantaneous fluxes and susceptible to extreme weather events,which can rapidly transport materials into the sea and have a significant impact on the ecological environment of estuaries and bays.In order to investigate the seasonal characteristics of nutrients in small mountainous rivers in the subtropical monsoon region and the output pattern to the sea during heavy precipitation,surveys on the mountainous rivers were carried out in Baixi watershed in August 2020(wet season),March 2021(dry season)and June 2021(Meiyu period).The results showed that the dissolved inorganic nitrogen(DIN)of the rivers has an average concentration of 752μg L^(−1)in the wet season and 1472μg L^(−1)in the dry season.The concentrations of dissolved inorganic phosphorus(DIP)in wet season and dry season were 63μg L^(−1)and 51μg L^(−1),respectively.Influenced by the changes of land use in sub-watersheds,DIN concentrations in the mainstream increased from 701μg L^(−1)in the upper reaches to 1284μg L^(−1)in the middle reaches.Two rainstorms during the Meiyu period in the watershed caused the pulse runoff in the river.The maximum daily runoff reached 70 times that before rains.The maximum daily fluxes of DIN and DIP were 109 and 247 times that before rains,respectively.In view that the watershed experienced several rainstorms in the wet season,the river,with pulse runoff,carries a large amount of nutrients into the sea in a short time,which will have a significant impact on the environment of Sanmen bay and its adjacent sea.展开更多
Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater...Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater,and reservoir water in the Burqin River Basin of the Altay Mountains,China in 2021,and characterized the oxygen and hydrogen isotope variations in different water bodies via instrumental analytics and modeling.Results showed significant seasonal variations in stable isotope ratios of oxygen and hydrogen(δ18O andδ2H,respectively)and significant differences inδ18O andδ2H among different water bodies.Higherδ18O andδ2H values were mainly found in river water,while groundwater and reservoir water had lower isotope ratios.River water and groundwater showed differentδ18O-δ2H relationships with the local meteoric water line,implying that river water and groundwater are controlled by evaporative enrichment and multi-source recharge processes.The evaporative enrichment experienced by reservoir water was less significant and largely influenced by topography,recharge sources,local moisture cycling,and anthropogenic factors.Higher deuterium excess(d-excess)value of 14.34‰for river water probably represented the isotopic signature of combined contributions from direct precipitation,snow and glacial meltwater,and groundwater recharge.The average annual d-excess values of groundwater(10.60‰)and reservoir water(11.49‰)were similar to the value of global precipitation(10.00‰).The findings contribute to understanding the hydroclimatic information reflected in the month-by-month variations in stable isotopes in different water bodies and provide a reference for the study of hydrological processes and climate change in the Altay Mountains,China.展开更多
With China's economic development and population growth,China's ecological environment continues to deteriorate.The comprehensive ecosystem restoration of the Shichuan River aims to build an ecosystem containi...With China's economic development and population growth,China's ecological environment continues to deteriorate.The comprehensive ecosystem restoration of the Shichuan River aims to build an ecosystem containing"mountains,rivers,forests,farmland,lakes and grass"by determining scientific and reasonable thickness of foreign soil,pollution restoration,ecological reconstruction,safeguard measures,etc.It brings new vitality to local ecological environment remodeling and economic development.展开更多
The report of the 19th National Congress of the Communist Party of China stated that it was necessary to establish and practice the concept that lucid waters and lush mountains are invaluable assets,treat the ecologic...The report of the 19th National Congress of the Communist Party of China stated that it was necessary to establish and practice the concept that lucid waters and lush mountains are invaluable assets,treat the ecological environment as life,and coordinate the management of mountains,rivers,forests,farmlands,lakes and grasslands.In recent years,China has organized a series of pilot projects for the ecological protection and restoration of mountains,rivers,forests,farmlands,lakes and grasslands,breaking the boundary between administrative divisions,departmental management and ecological elements,and implementing conservation and restoration oriented towards the improvement of ecosystem services,so as to solve the problem of the lack of overall planning for ecological protection and restoration projects and the separated management of ecological elements.This study systematically elaborated the theoretical basis and connotation characteristics of ecological protection and restoration of mountains,rivers,forests,farmlands,lakes and grasslands.It proposed the implementation path of ecological protection and restoration project of mountains,rivers,forests,farmlands,lakes and grasslands by taking the water source conservation area of Beijing-Tianjin-Hebei as a case,so as to provide reference for the implementation and decision-making management of ecological protection and restoration projects in various regions.展开更多
There are 43 rivers of varying sizes in the northern slope of the Kunlun Mountains, all of which originate from the Kunlun Mountains. Supplied by precipitation and melting water of glacier, the total runoff amounts to...There are 43 rivers of varying sizes in the northern slope of the Kunlun Mountains, all of which originate from the Kunlun Mountains. Supplied by precipitation and melting water of glacier, the total runoff amounts to 87×108m3. The analysis shows that water quantity distribution of the rivers in the area is more in the west, and less in the east. While in the west, the water quantity of the Hotan River amounts to more than half of the total, in th eeast, most rivers are seasonal rivers except the Keriya River and the Qarqan River, which have relatively large amount of waters. From the analysis of inner structures of the runoff series of the major rivers, we can see that the annual runoff series of all rivers are mainly stable independent random series. Such characteristics of the time series are determined by the supply characteristics of the rivers. Some measures of rationally using water resources are proposed finally.展开更多
The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends o...The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoffwere analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis, Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Ummqi River and Kaidu River Basins Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Ummqi River Basin.展开更多
Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise...Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise from small glacial lakes at an elevation of more than 2,500 m. The total water-collection area of the studied basin, from 988 to 3,480 m, is about 1,655 km2. Almost 95 percent of the basin area is covered with snow in winter. The westerly air masses deplete nearly all the moisture that comes in the form of snow during the winter months in the upper and middle reaches of the basin. That annual flow from the basin is about 382 mm, about 45 percent of which is contributed by snowmelt. The mean annual precipitation in the basin is about 620 mm, which is primarily concentrated in the upper and middle basin. The Kelan River system could be vulnerable to climate change because of substantial contribution from snowmelt runoff. The hydrological system could be altered significantly because of a warming of the climate. The impact of climate change on the hydrological cycle and events would pose an additional threat to the Altay region. The Kelan River, a typical snow-dominated watershed, has more area at higher elevations and accumulates snow during the winter. The peak flow occurs as a result of snow-melting during the late spring or early summer. Stream flow varies strongly throughout the year because of seasonal cycles of precipitation, snowpack, temperature, and groundwater. Changes in the temperature and precipitation affect the timing and volume of stream-flow. The stream-flow consists of contributions from meltwater of snow and ice and from runoff of rainfall. Therefore, it has low flow in winter, high flow during the spring and early summer as the snowpack melts, and less flows during the late summer. Because of the warming of the current climate change, hydrology processes of the Kelan River have undergone marked changes, as evidenced by the shift of the maximum flood peak discharge from May to June; the largest monthly runoffs also have an increment of about 15 percent related to before 1980; April-June runoff increased from the 60 percent of the annual runoff before 1980 to nearly 70 percent after 1990. The long-term trend shows temperature and precipitation increased mainly in the winter, but the rainfall declined in summer; hydrological process is manifested by the rising runoff in May and decreasing in June. Warming and the increase of winter and spring snowcover would lead to increased snowmelt, increasing the spring-flood hazards and the maximum flood discharge with disastrous consequences. The changed hydrological patterns caused by climate change have already impacted the urban water supply and agricultural and livestock production along the river.展开更多
A population of Japalura from Yunnan Province, China, previously assigned to Japalura splendida, is described as a new species. The new species has been recorded between 1 138–2 500 m in the Nu River drainage between...A population of Japalura from Yunnan Province, China, previously assigned to Japalura splendida, is described as a new species. The new species has been recorded between 1 138–2 500 m in the Nu River drainage between the towns of Liuku and Binzhongluo, and on the lower western slopes of the Nushan and eastern slopes of the Goaligongshan. The new species can be distinguished from other species of Japalura, except J. dymondi, by the following combination of characters: exposed tympani, prominent dorso-lateral stripes, and small gular scales. It is very similar with but differs from J. dymondi by having smooth or feebly keeled dorsal head scales, three relatively enlarged spines on either side of the post-occiput area, strongly keeled and mucronate scales on occiput area and within the lateral stripes, back of arm and leg green, higher number of dorsal-ridge scales(DS) and fourth toe subdigital scales(T4S). A principal component analysis of body measurements of adult male specimens of the new species and J. dymondi showed principal component 1 loading highest for upper arm length, fourth toe length and snout to eye length and principal component 2 loading highest for head width, head length and fourth toe length.展开更多
Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on...Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on regional water resources.The primary role of understudying watershed scale glacier changes under changing climatic conditions is to ensure sustainable utilization of regional water resources,to prevent and mitigate glacier-related disasters.This study maps the current(2020)distribution of glacier boundaries across the Kaidu-Kongque river basin,south slope of Tianshan Mountains,and monitors the spatial evolution of glaciers over five time periods from 2000-2020 through thresholded band ratios approach,using 25 Landsat images at 30 m resolution.In addition,this study attempts to understand the role of climate characteristics for variable response of glacier area.The results show that the total area of glaciers was 398.21 km^(2)in 2020.The glaciers retreated by about 1.17 km^(2)/a(0.26%/a)from 2000 to 2020.The glaciers were reducing at a significantly rapid rate between 2000 and 2005,a slow rate from 2005 to 2015,and an accelerated rate during 2015-2020.The meteorological data shows slight increasing trends of mean annual temperature(0.02℃/a)and annual precipitation(2.07 mm/a).The correlation analysis demonstrates that the role of temperature presents more significant correlation with glacier recession than precipitation.There is a temporal hysteresis in the response of glacier change to climate change.Increasing trend of temperature in summer proves to be the driving force behind the Kaidu-Kongque basin glacier recession during the recent 20 years.展开更多
Layer LJ3 of Linjiang stratigraphic section in Dongjiang River valley in the south of the Nanling Mountains is a set of red sandy sediments.Measured by thermoluminescence(TL) dating,it was found to be formed in MIS2-9...Layer LJ3 of Linjiang stratigraphic section in Dongjiang River valley in the south of the Nanling Mountains is a set of red sandy sediments.Measured by thermoluminescence(TL) dating,it was found to be formed in MIS2-9,500 ± 800 yr to 19,600 ± 1,800 yr B.P.After analy-sis of the grain sizes of the 16 samples(LJ3-100 to LJ3-85) in this layer,it was discovered that(1) The contents of each grain group in dif-ferent samples are similar.(2) The values of Md,Mz,,Sk,and Kg vary from LJ3-100 to LJ3-85 in a narrow range.(3) The segments of each sample in the accumulative curves extend parallel with similar slopes.All the three aspects reveal the Aeolian characteristics of Layer LJ3.Therefore,it is thought that Layer LJ3 consists of red sandy sediments formed in MIS2 in the south of Nanling Mountain,which reflects the arid climate at that time.展开更多
Glaciers are known as natural ’’solid reservoirs’ ’, and they play a dual role between the composition of water resources and the river runoff regulation in arid and semi-arid areas of China. In this study, we use...Glaciers are known as natural ’’solid reservoirs’ ’, and they play a dual role between the composition of water resources and the river runoff regulation in arid and semi-arid areas of China. In this study, we used in situ observation data from Urumqi Glacier No. 1, Xinjiang Uygur Autonomous Region, in combination with meteorological data from stations and a digital elevation model, to develop a distributed degree-day model for glaciers in the Urumqi River Basin to simulate glacier mass balance processes and quantify their effect on streamflow during 1980–2020. The results indicate that the mass loss and the equilibrium line altitude(ELA) of glaciers in the last 41 years had an increasing trend, with the average mass balance and ELA being-0.85(±0.32) m w.e./a(meter water-equivalent per year) and 4188 m a.s.l., respectively. The glacier mass loss has increased significantly during 1999–2020, mostly due to the increase in temperature and the extension of ablation season. During 1980–2011, the average annual glacier meltwater runoff in the Urumqi River Basin was 0.48×108 m3, accounting for 18.56% of the total streamflow. We found that the annual streamflow in different catchments in the Urumqi River Basin had a strong response to the changes in glacier mass balance, especially from July to August, and the glacier meltwater runoff increased significantly. In summary, it is quite possible that the results of this research can provide a reference for the study of glacier water resources in glacier-recharged basins in arid and semi-arid areas.展开更多
With changing climatic conditions and snow cover regime, regional hydrological cycle for a snowy basin will change and further available surface water resources will be redistributed. Assessing snow meltwater effect o...With changing climatic conditions and snow cover regime, regional hydrological cycle for a snowy basin will change and further available surface water resources will be redistributed. Assessing snow meltwater effect on runoff is the key to water safety, under climate warming and fast social-economic developing status. In this study, stable isotopic technology was utilized to analyze the snow meltwater effect on regional hydrological processes, and to declare the response of snow hydrology to climate change and snow cover regime, together with longterm meteorological and hydrological observations, in the headwater of Irtysh River, Chinese Altai Mountains during 1961-2015. The average δ^(18) O values of rainfall, snowfall, meltwater, groundwater and river water for 2014–2015 hydrological year were-10.9‰,-22.3‰,-21.7‰,-15.7‰ and-16.0‰, respectively.The results from stable isotopes, snow melting observation and remote sensing indicated that the meltwater effect on hydrological processes in Kayiertesi River Basin mainly occurred during snowmelt supplying period from April to June. The contribution of meltwater to runoff reached 58.1% during this period, but rainfall, meltwater and groundwater supplied 49.1%, 36.9% and 14.0% of water resource to annual runoff, respectively. With rising air temperature and increasing snowfall in cold season, the snow water equivalent(SWE) had an increasing trend but the snow cover duration declined by about one month including 13-day delay of the first day and 17-day advancement of the end day during 1961–2016. Increase in SWE provided more available water resource. However, variations in snow cover timing had resulted in redistribution of surface water resource, represented by an increase of discharge percentage in April and May, and a decline in Juneand July. This trend of snow hydrology will render a deficit of water resource in June and July when the water resource demand is high for agricultural irrigation and industrial manufacture.展开更多
It is important to have a reasonable estimation of sediment transport rate with respect to its significant role in the planning and management of water resources projects. The complicate nature of sediment transport i...It is important to have a reasonable estimation of sediment transport rate with respect to its significant role in the planning and management of water resources projects. The complicate nature of sediment transport in gravel-bed rivers causes inaccuracies of empirical formulas in the prediction of this phenomenon. Artificial intelligences as alternative approaches can provide solutions to such complex problems. The present study aimed at investigating the capability of kernel-based approaches in predicting total sediment loads and identification of influential parameters of total sediment transport. For this purpose, Gaussian process regression(GPR), Support vector machine(SVM) and kernel extreme learning machine(KELM) are applied to enhance the prediction level of total sediment loads in 19 mountain gravel-bed streams and rivers located in the United States. Several parameters based on two scenarios are investigated and consecutive predicted results are compared with some well-known formulas. Scenario 1 considers only hydraulic characteristics and on the other side, the second scenario was formed using hydraulic and sediment properties. The obtained results reveal that using the parameters of hydraulic conditions asinputs gives a good estimation of total sediment loads. Furthermore, it was revealed that KELM method with input parameters of Froude number(Fr), ratio of average velocity(V) to shear velocity(U*) and shields number(θ) yields a correlation coefficient(R) of 0.951, a Nash-Sutcliffe efficiency(NSE) of 0.903 and root mean squared error(RMSE) of 0.021 and indicates superior results compared with other methods. Performing sensitivity analysis showed that the ratio of average velocity to shear flow velocity and the Froude number are the most effective parameters in predicting total sediment loads of gravel-bed rivers.展开更多
China is rich in hydropower resources,and mountain rivers have abundant water resources and huge development potential,which have a profound impact on the pattern of water resources allocation in China.As the main way...China is rich in hydropower resources,and mountain rivers have abundant water resources and huge development potential,which have a profound impact on the pattern of water resources allocation in China.As the main way of water resources and hydropower development,the construction of cascade hydropower stations,while meeting the requirements of water resources utilization for social development,has also brought adverse effects on river ecosystems.Therefore,the impact of the construction of cascade hydropower stations on mountainous river ecosystems,where the minimum ecological flow of rivers must be ensured and reviewed.In addition,this paper proposed the deficiencies and outlooks for cascade hydropower stations based on previous research results.展开更多
In this paper,the definition,connotation,and internal relationship of mountains,rivers,forests,farmlands,lakes,and grasslands in China are elaborated,and the current situation of ecological restoration projects for mo...In this paper,the definition,connotation,and internal relationship of mountains,rivers,forests,farmlands,lakes,and grasslands in China are elaborated,and the current situation of ecological restoration projects for mountains,rivers,forests,farmlands,lakes,and grasslands was introduced.Moreover,the problems that have arisen in the specific implementation process of pilot projects were analyzed,such as unclear target positioning,inaccurate analysis of ecological problems,insufficient engineering design systematicness,weak operability of evaluation standards,and weak coordination in engineering management.The development direction and major needs for the protection and restoration of mountains,rivers,forests,farmlands,lakes,and grasslands in the future have been proposed from four aspects:theoretical research,engineering design,effect evaluation,and monitoring and supervision.展开更多
In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Nort...In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover, etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km 2 . The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years' data are used to simulate, while the last 5 years' data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681, 5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapotranspiration decrease of the watershed, adjust the runoff process, and increase the soil water content.展开更多
The hydrological processes of mountainous watersheds in inland river basins are complicated.It is absolutely significant to quantify mountainous runoff for social,economic and ecological purposes.This paper takes the ...The hydrological processes of mountainous watersheds in inland river basins are complicated.It is absolutely significant to quantify mountainous runoff for social,economic and ecological purposes.This paper takes the mountainous watershed of the Heihe Mainstream River as a study area to simulate the hydrological processes of mountainous watersheds in inland river basins by using the soil and water assessment tool(SWAT)model.SWAT simulation results show that both the Nash–Sutcliffe efficiency and the determination coefficient values of the calibration period(January 1995 to December 2002)and validation period(January 2002 to December 2009)are higher than 0.90,and the percent bias is controlled within±5%,indicating that the simulation results are satisfactory.According to the SWAT performance,we discussed the yearly and monthly variation trends of the mountainous runoff and the runoff components.The results show that from 1996 to 2009,an indistinctive rising trend was observed for the yearly mountainous runoff,which is mainly recharged by lateral flow,and followed by shallow groundwater runoff and surface runoff.The monthly variation demonstrates that the mountainous runoff decreases slightly from May to July,contrary to other months.The mountainous runoff is mainly recharged by shallow groundwater runoff in January,February,and from October to December,by surface runoff in March and April,and by lateral flow from May to September.展开更多
文摘A Panorama of Rivers and Mountains is a silk scroll painting which is hard to preserve. The color of azurite and mineral green on the painting is rich. After nearly a thousand years, it is so fragile that it may be spalled by opening the painting. That is why the painting has seldom been shown to the public. Since the founding of the People’s Republic of China, the painting has been on display for just three times.
基金financially supported by the Postdoctoral Foundation of Qingdao(Pb Isotopes of Oujiang River to Quantitatively Identify Sediment Provenance in Oujiang Estuary and Adjacent Area)the China Geological Survey Project(No.DD20190276)the Fund of Ministry of Science and Technology(Nos.2013FY112200 and 2019YFE0127200).
文摘Small mountainous rivers are characterized by large instantaneous fluxes and susceptible to extreme weather events,which can rapidly transport materials into the sea and have a significant impact on the ecological environment of estuaries and bays.In order to investigate the seasonal characteristics of nutrients in small mountainous rivers in the subtropical monsoon region and the output pattern to the sea during heavy precipitation,surveys on the mountainous rivers were carried out in Baixi watershed in August 2020(wet season),March 2021(dry season)and June 2021(Meiyu period).The results showed that the dissolved inorganic nitrogen(DIN)of the rivers has an average concentration of 752μg L^(−1)in the wet season and 1472μg L^(−1)in the dry season.The concentrations of dissolved inorganic phosphorus(DIP)in wet season and dry season were 63μg L^(−1)and 51μg L^(−1),respectively.Influenced by the changes of land use in sub-watersheds,DIN concentrations in the mainstream increased from 701μg L^(−1)in the upper reaches to 1284μg L^(−1)in the middle reaches.Two rainstorms during the Meiyu period in the watershed caused the pulse runoff in the river.The maximum daily runoff reached 70 times that before rains.The maximum daily fluxes of DIN and DIP were 109 and 247 times that before rains,respectively.In view that the watershed experienced several rainstorms in the wet season,the river,with pulse runoff,carries a large amount of nutrients into the sea in a short time,which will have a significant impact on the environment of Sanmen bay and its adjacent sea.
基金This work was funded by the Science and Technology Program of Gansu Province(23ZDFA017,22ZD6FA005)the Third Xinjiang Scientific Expedition Program(2022xjkk0802).
文摘Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater,and reservoir water in the Burqin River Basin of the Altay Mountains,China in 2021,and characterized the oxygen and hydrogen isotope variations in different water bodies via instrumental analytics and modeling.Results showed significant seasonal variations in stable isotope ratios of oxygen and hydrogen(δ18O andδ2H,respectively)and significant differences inδ18O andδ2H among different water bodies.Higherδ18O andδ2H values were mainly found in river water,while groundwater and reservoir water had lower isotope ratios.River water and groundwater showed differentδ18O-δ2H relationships with the local meteoric water line,implying that river water and groundwater are controlled by evaporative enrichment and multi-source recharge processes.The evaporative enrichment experienced by reservoir water was less significant and largely influenced by topography,recharge sources,local moisture cycling,and anthropogenic factors.Higher deuterium excess(d-excess)value of 14.34‰for river water probably represented the isotopic signature of combined contributions from direct precipitation,snow and glacial meltwater,and groundwater recharge.The average annual d-excess values of groundwater(10.60‰)and reservoir water(11.49‰)were similar to the value of global precipitation(10.00‰).The findings contribute to understanding the hydroclimatic information reflected in the month-by-month variations in stable isotopes in different water bodies and provide a reference for the study of hydrological processes and climate change in the Altay Mountains,China.
文摘With China's economic development and population growth,China's ecological environment continues to deteriorate.The comprehensive ecosystem restoration of the Shichuan River aims to build an ecosystem containing"mountains,rivers,forests,farmland,lakes and grass"by determining scientific and reasonable thickness of foreign soil,pollution restoration,ecological reconstruction,safeguard measures,etc.It brings new vitality to local ecological environment remodeling and economic development.
文摘The report of the 19th National Congress of the Communist Party of China stated that it was necessary to establish and practice the concept that lucid waters and lush mountains are invaluable assets,treat the ecological environment as life,and coordinate the management of mountains,rivers,forests,farmlands,lakes and grasslands.In recent years,China has organized a series of pilot projects for the ecological protection and restoration of mountains,rivers,forests,farmlands,lakes and grasslands,breaking the boundary between administrative divisions,departmental management and ecological elements,and implementing conservation and restoration oriented towards the improvement of ecosystem services,so as to solve the problem of the lack of overall planning for ecological protection and restoration projects and the separated management of ecological elements.This study systematically elaborated the theoretical basis and connotation characteristics of ecological protection and restoration of mountains,rivers,forests,farmlands,lakes and grasslands.It proposed the implementation path of ecological protection and restoration project of mountains,rivers,forests,farmlands,lakes and grasslands by taking the water source conservation area of Beijing-Tianjin-Hebei as a case,so as to provide reference for the implementation and decision-making management of ecological protection and restoration projects in various regions.
文摘There are 43 rivers of varying sizes in the northern slope of the Kunlun Mountains, all of which originate from the Kunlun Mountains. Supplied by precipitation and melting water of glacier, the total runoff amounts to 87×108m3. The analysis shows that water quantity distribution of the rivers in the area is more in the west, and less in the east. While in the west, the water quantity of the Hotan River amounts to more than half of the total, in th eeast, most rivers are seasonal rivers except the Keriya River and the Qarqan River, which have relatively large amount of waters. From the analysis of inner structures of the runoff series of the major rivers, we can see that the annual runoff series of all rivers are mainly stable independent random series. Such characteristics of the time series are determined by the supply characteristics of the rivers. Some measures of rationally using water resources are proposed finally.
基金supported by the funding of the Key Laboratory of Eco-hydrology Open FundChinese Academy of Sciences and Knowledge Innovation Program of the Chinese Academy of Sciences, No.KZCX2-YW-328
文摘The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoffwere analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis, Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Ummqi River and Kaidu River Basins Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Ummqi River Basin.
基金supported by the State Key Science Research Programme for Global Change Research of China (Grant Nos. 2010CB951402 and 2010CB951404)the State Key Basic Research Development Program of China (973 Pro-gram) (Grant No. 2007 CB411507)the National Natu-ral Science Foundation of China (Grant No. 40771047)
文摘Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise from small glacial lakes at an elevation of more than 2,500 m. The total water-collection area of the studied basin, from 988 to 3,480 m, is about 1,655 km2. Almost 95 percent of the basin area is covered with snow in winter. The westerly air masses deplete nearly all the moisture that comes in the form of snow during the winter months in the upper and middle reaches of the basin. That annual flow from the basin is about 382 mm, about 45 percent of which is contributed by snowmelt. The mean annual precipitation in the basin is about 620 mm, which is primarily concentrated in the upper and middle basin. The Kelan River system could be vulnerable to climate change because of substantial contribution from snowmelt runoff. The hydrological system could be altered significantly because of a warming of the climate. The impact of climate change on the hydrological cycle and events would pose an additional threat to the Altay region. The Kelan River, a typical snow-dominated watershed, has more area at higher elevations and accumulates snow during the winter. The peak flow occurs as a result of snow-melting during the late spring or early summer. Stream flow varies strongly throughout the year because of seasonal cycles of precipitation, snowpack, temperature, and groundwater. Changes in the temperature and precipitation affect the timing and volume of stream-flow. The stream-flow consists of contributions from meltwater of snow and ice and from runoff of rainfall. Therefore, it has low flow in winter, high flow during the spring and early summer as the snowpack melts, and less flows during the late summer. Because of the warming of the current climate change, hydrology processes of the Kelan River have undergone marked changes, as evidenced by the shift of the maximum flood peak discharge from May to June; the largest monthly runoffs also have an increment of about 15 percent related to before 1980; April-June runoff increased from the 60 percent of the annual runoff before 1980 to nearly 70 percent after 1990. The long-term trend shows temperature and precipitation increased mainly in the winter, but the rainfall declined in summer; hydrological process is manifested by the rising runoff in May and decreasing in June. Warming and the increase of winter and spring snowcover would lead to increased snowmelt, increasing the spring-flood hazards and the maximum flood discharge with disastrous consequences. The changed hydrological patterns caused by climate change have already impacted the urban water supply and agricultural and livestock production along the river.
基金provided by funds from the National Science Foundation of China (NSFC) to D. Q. RAO (NSFC-39570090)the National Science Foundation grant DEB-0103795 to the late Joseph B. SLOWINSKI and Peter FRITSCH+1 种基金the National Geographic Society Grant for Research and Exploration (7340-02)from the contributors to the California Academy of Sciences’ China Natural History Project
文摘A population of Japalura from Yunnan Province, China, previously assigned to Japalura splendida, is described as a new species. The new species has been recorded between 1 138–2 500 m in the Nu River drainage between the towns of Liuku and Binzhongluo, and on the lower western slopes of the Nushan and eastern slopes of the Goaligongshan. The new species can be distinguished from other species of Japalura, except J. dymondi, by the following combination of characters: exposed tympani, prominent dorso-lateral stripes, and small gular scales. It is very similar with but differs from J. dymondi by having smooth or feebly keeled dorsal head scales, three relatively enlarged spines on either side of the post-occiput area, strongly keeled and mucronate scales on occiput area and within the lateral stripes, back of arm and leg green, higher number of dorsal-ridge scales(DS) and fourth toe subdigital scales(T4S). A principal component analysis of body measurements of adult male specimens of the new species and J. dymondi showed principal component 1 loading highest for upper arm length, fourth toe length and snout to eye length and principal component 2 loading highest for head width, head length and fourth toe length.
基金This work was supported by the project of China Geology Survey(DD20190315)Innovation Capability Support Program of Shaanxi(2019TD-040)+1 种基金“Integration of Groundwater Resources Assessment Results in Key Areas of Northwest China”programKey Laboratory of Groundwater and Ecology in Arid and Semi-arid Areas of China Geological Survey.
文摘Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on regional water resources.The primary role of understudying watershed scale glacier changes under changing climatic conditions is to ensure sustainable utilization of regional water resources,to prevent and mitigate glacier-related disasters.This study maps the current(2020)distribution of glacier boundaries across the Kaidu-Kongque river basin,south slope of Tianshan Mountains,and monitors the spatial evolution of glaciers over five time periods from 2000-2020 through thresholded band ratios approach,using 25 Landsat images at 30 m resolution.In addition,this study attempts to understand the role of climate characteristics for variable response of glacier area.The results show that the total area of glaciers was 398.21 km^(2)in 2020.The glaciers retreated by about 1.17 km^(2)/a(0.26%/a)from 2000 to 2020.The glaciers were reducing at a significantly rapid rate between 2000 and 2005,a slow rate from 2005 to 2015,and an accelerated rate during 2015-2020.The meteorological data shows slight increasing trends of mean annual temperature(0.02℃/a)and annual precipitation(2.07 mm/a).The correlation analysis demonstrates that the role of temperature presents more significant correlation with glacier recession than precipitation.There is a temporal hysteresis in the response of glacier change to climate change.Increasing trend of temperature in summer proves to be the driving force behind the Kaidu-Kongque basin glacier recession during the recent 20 years.
基金funded by the National Natural Science Foundation of China (No 40471139)National Basic Research Program of China (No 2004CB 720206)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment, Chinese Academy of Sci-ences Foundation (No SKLLQG0309)
文摘Layer LJ3 of Linjiang stratigraphic section in Dongjiang River valley in the south of the Nanling Mountains is a set of red sandy sediments.Measured by thermoluminescence(TL) dating,it was found to be formed in MIS2-9,500 ± 800 yr to 19,600 ± 1,800 yr B.P.After analy-sis of the grain sizes of the 16 samples(LJ3-100 to LJ3-85) in this layer,it was discovered that(1) The contents of each grain group in dif-ferent samples are similar.(2) The values of Md,Mz,,Sk,and Kg vary from LJ3-100 to LJ3-85 in a narrow range.(3) The segments of each sample in the accumulative curves extend parallel with similar slopes.All the three aspects reveal the Aeolian characteristics of Layer LJ3.Therefore,it is thought that Layer LJ3 consists of red sandy sediments formed in MIS2 in the south of Nanling Mountain,which reflects the arid climate at that time.
基金funded by the Third Xinjiang Scientific Expedition Program(2021xjkk0801)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0201)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20060201,XDA20020102)the National Natural Science Foundation of China(41761134093,31760151)。
文摘Glaciers are known as natural ’’solid reservoirs’ ’, and they play a dual role between the composition of water resources and the river runoff regulation in arid and semi-arid areas of China. In this study, we used in situ observation data from Urumqi Glacier No. 1, Xinjiang Uygur Autonomous Region, in combination with meteorological data from stations and a digital elevation model, to develop a distributed degree-day model for glaciers in the Urumqi River Basin to simulate glacier mass balance processes and quantify their effect on streamflow during 1980–2020. The results indicate that the mass loss and the equilibrium line altitude(ELA) of glaciers in the last 41 years had an increasing trend, with the average mass balance and ELA being-0.85(±0.32) m w.e./a(meter water-equivalent per year) and 4188 m a.s.l., respectively. The glacier mass loss has increased significantly during 1999–2020, mostly due to the increase in temperature and the extension of ablation season. During 1980–2011, the average annual glacier meltwater runoff in the Urumqi River Basin was 0.48×108 m3, accounting for 18.56% of the total streamflow. We found that the annual streamflow in different catchments in the Urumqi River Basin had a strong response to the changes in glacier mass balance, especially from July to August, and the glacier meltwater runoff increased significantly. In summary, it is quite possible that the results of this research can provide a reference for the study of glacier water resources in glacier-recharged basins in arid and semi-arid areas.
基金funded by the Chinese Academy of Sciences (KJZD-EW-G03-04, QYZDJSSW-DQC039)the National Science Foundation of China (NSFC 41630754, 41690144, 41421061)the Foundation of the State Key Laboratory of Cryospheric Sciences (SKLCS) at Northwest Institute of Eco-Environment and Resources (NIEER), CAS (SKLCS-OP-2017-10, SKLCS-ZZ2016)
文摘With changing climatic conditions and snow cover regime, regional hydrological cycle for a snowy basin will change and further available surface water resources will be redistributed. Assessing snow meltwater effect on runoff is the key to water safety, under climate warming and fast social-economic developing status. In this study, stable isotopic technology was utilized to analyze the snow meltwater effect on regional hydrological processes, and to declare the response of snow hydrology to climate change and snow cover regime, together with longterm meteorological and hydrological observations, in the headwater of Irtysh River, Chinese Altai Mountains during 1961-2015. The average δ^(18) O values of rainfall, snowfall, meltwater, groundwater and river water for 2014–2015 hydrological year were-10.9‰,-22.3‰,-21.7‰,-15.7‰ and-16.0‰, respectively.The results from stable isotopes, snow melting observation and remote sensing indicated that the meltwater effect on hydrological processes in Kayiertesi River Basin mainly occurred during snowmelt supplying period from April to June. The contribution of meltwater to runoff reached 58.1% during this period, but rainfall, meltwater and groundwater supplied 49.1%, 36.9% and 14.0% of water resource to annual runoff, respectively. With rising air temperature and increasing snowfall in cold season, the snow water equivalent(SWE) had an increasing trend but the snow cover duration declined by about one month including 13-day delay of the first day and 17-day advancement of the end day during 1961–2016. Increase in SWE provided more available water resource. However, variations in snow cover timing had resulted in redistribution of surface water resource, represented by an increase of discharge percentage in April and May, and a decline in Juneand July. This trend of snow hydrology will render a deficit of water resource in June and July when the water resource demand is high for agricultural irrigation and industrial manufacture.
文摘It is important to have a reasonable estimation of sediment transport rate with respect to its significant role in the planning and management of water resources projects. The complicate nature of sediment transport in gravel-bed rivers causes inaccuracies of empirical formulas in the prediction of this phenomenon. Artificial intelligences as alternative approaches can provide solutions to such complex problems. The present study aimed at investigating the capability of kernel-based approaches in predicting total sediment loads and identification of influential parameters of total sediment transport. For this purpose, Gaussian process regression(GPR), Support vector machine(SVM) and kernel extreme learning machine(KELM) are applied to enhance the prediction level of total sediment loads in 19 mountain gravel-bed streams and rivers located in the United States. Several parameters based on two scenarios are investigated and consecutive predicted results are compared with some well-known formulas. Scenario 1 considers only hydraulic characteristics and on the other side, the second scenario was formed using hydraulic and sediment properties. The obtained results reveal that using the parameters of hydraulic conditions asinputs gives a good estimation of total sediment loads. Furthermore, it was revealed that KELM method with input parameters of Froude number(Fr), ratio of average velocity(V) to shear velocity(U*) and shields number(θ) yields a correlation coefficient(R) of 0.951, a Nash-Sutcliffe efficiency(NSE) of 0.903 and root mean squared error(RMSE) of 0.021 and indicates superior results compared with other methods. Performing sensitivity analysis showed that the ratio of average velocity to shear flow velocity and the Froude number are the most effective parameters in predicting total sediment loads of gravel-bed rivers.
基金This research was funded by Guangxi key R&D program(Guike AB19259015)and Guangxi key R&D program(Guike AB20297017)Guangxi Key Laboratory of Water Engineering Materials and Structures fund program(GXHRI-WZMS-2020-07).
文摘China is rich in hydropower resources,and mountain rivers have abundant water resources and huge development potential,which have a profound impact on the pattern of water resources allocation in China.As the main way of water resources and hydropower development,the construction of cascade hydropower stations,while meeting the requirements of water resources utilization for social development,has also brought adverse effects on river ecosystems.Therefore,the impact of the construction of cascade hydropower stations on mountainous river ecosystems,where the minimum ecological flow of rivers must be ensured and reviewed.In addition,this paper proposed the deficiencies and outlooks for cascade hydropower stations based on previous research results.
基金Basic Research Business Funding Project for Public Welfare Research Institutes in the Autonomous Region in 2022(kyys202201).
文摘In this paper,the definition,connotation,and internal relationship of mountains,rivers,forests,farmlands,lakes,and grasslands in China are elaborated,and the current situation of ecological restoration projects for mountains,rivers,forests,farmlands,lakes,and grasslands was introduced.Moreover,the problems that have arisen in the specific implementation process of pilot projects were analyzed,such as unclear target positioning,inaccurate analysis of ecological problems,insufficient engineering design systematicness,weak operability of evaluation standards,and weak coordination in engineering management.The development direction and major needs for the protection and restoration of mountains,rivers,forests,farmlands,lakes,and grasslands in the future have been proposed from four aspects:theoretical research,engineering design,effect evaluation,and monitoring and supervision.
基金Chinese Academy of Sciences No.KZCX3-SW-329 No.KZCX1-10-03-01+1 种基金 No.CACX210036 No.CACX210016
文摘In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover, etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km 2 . The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years' data are used to simulate, while the last 5 years' data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681, 5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapotranspiration decrease of the watershed, adjust the runoff process, and increase the soil water content.
基金supported by the National Natural Science Foundation of China(41240002,91125025,91225302,Y211121001)the National Science and Technology Support Projects(2011BAC07B05)
文摘The hydrological processes of mountainous watersheds in inland river basins are complicated.It is absolutely significant to quantify mountainous runoff for social,economic and ecological purposes.This paper takes the mountainous watershed of the Heihe Mainstream River as a study area to simulate the hydrological processes of mountainous watersheds in inland river basins by using the soil and water assessment tool(SWAT)model.SWAT simulation results show that both the Nash–Sutcliffe efficiency and the determination coefficient values of the calibration period(January 1995 to December 2002)and validation period(January 2002 to December 2009)are higher than 0.90,and the percent bias is controlled within±5%,indicating that the simulation results are satisfactory.According to the SWAT performance,we discussed the yearly and monthly variation trends of the mountainous runoff and the runoff components.The results show that from 1996 to 2009,an indistinctive rising trend was observed for the yearly mountainous runoff,which is mainly recharged by lateral flow,and followed by shallow groundwater runoff and surface runoff.The monthly variation demonstrates that the mountainous runoff decreases slightly from May to July,contrary to other months.The mountainous runoff is mainly recharged by shallow groundwater runoff in January,February,and from October to December,by surface runoff in March and April,and by lateral flow from May to September.