In this manuscript, a proof for the age-old Riemann hypothesis is delivered, interpreting the Riemann Zeta function as an analytical signal, and using a signal analyzing affine model used in radar technology to match ...In this manuscript, a proof for the age-old Riemann hypothesis is delivered, interpreting the Riemann Zeta function as an analytical signal, and using a signal analyzing affine model used in radar technology to match the warped Riemann Zeta function on the time domain with its conjugate pair on the warped frequency domain (a Dirichlet series), through a scale invariant composite Mellin transform. As an application of above, since the Navier Stokes system solution’s Dirichlet transforms are also Dirichlet series, a minimal general solution of the 3d Navier Stokes differential equation for viscid incompressible flows is constructed through a fractional derivative Fourier transform of the found begin-solutions preserving the geometric properties of the 2d version assuming that the solution is an analytic solution that suffices the Laplace equation in cylindrical coordinates, which is the momentum equation for both the 2d and the 3d Navier Stokes systems of differential equations.展开更多
The improvement of the soil physical and chemical properties is the most important foundation for mine ecological restoration.The experiment is aimed at undisturbed area,restored area,and damaged area of abandoned Yon...The improvement of the soil physical and chemical properties is the most important foundation for mine ecological restoration.The experiment is aimed at undisturbed area,restored area,and damaged area of abandoned Yongledian Quarry in Beijing.Through determination and analysis of soil physical and chemical properties,it shows that there are significant differences in the composite effects of soil physical and chemical properties between restored area,and undisturbed area,damaged area,and engineering restoration effectively improves the composite effects of soil physical and chemical properties in the restored area.The single factor hypothesis test shows that soil pH value,organic matter,alkali-hydrolyzable nitrogen,and total nitrogen traits are the key targets to be restored in this mining area.展开更多
In order to evaluate uncertainties in computational fluid dynamics (CFD) computations of the stagnation point heat flux, a physical criterion is developed. Based on a quasi-one-dimensional hypothesis along the stagn...In order to evaluate uncertainties in computational fluid dynamics (CFD) computations of the stagnation point heat flux, a physical criterion is developed. Based on a quasi-one-dimensional hypothesis along the stagnation line, a new stagnation flow model is applied to obtain the governing equations of the flow near the stagnation point at hypersonic speeds. From the above equations, the compatibility relations are given at the stagnation point and along the stagnation line, which consist of the physical criterion for checking the accuracy in the stagnation point heat flux computations. The verification of the criterion is made with various numerical results.展开更多
In this paper, a multilayer security solution is introduced, in order to accord the required end-to-end security blanket to the heterogeneous networks by considering the properties used by authentication at the physic...In this paper, a multilayer security solution is introduced, in order to accord the required end-to-end security blanket to the heterogeneous networks by considering the properties used by authentication at the physical-layer in transport-layer authentication. In particular, after achieving an authentication level based on the estimated channel impulse response (CIR) at the physicallayer, these CIRs are exploited at the transport layer, adding more randomness to the generated sequence numbers used in the 3-Way TCP/IP handshake authentication. Furthermore, in order to enhance the authentication at the physical layer, the estimated CIR is quantized into two domains: amplitude and phase. The quantizer’s output is used to differentiate between the legitimate transmitters and intruders using binary hypothesis testing. Eventually, generating a unique sequence numbers is granted due to the increased randomness offered by the quantizer outputs. In order to verify the effectiveness of the proposed scheme, simulation results are shown based on an orthogonal frequency division multiplexing (OFDM) system. Additionally, a logarithmic likelihood ratio test is used to evaluate the authentication performance.展开更多
We reference the tunneling Hamiltonian to have particle tunneling among different states represented as wave-functions. Our problem applies wave-functionals to a driven sine-Gordon system. We apply the tunneling Hamil...We reference the tunneling Hamiltonian to have particle tunneling among different states represented as wave-functions. Our problem applies wave-functionals to a driven sine-Gordon system. We apply the tunneling Hamiltonian to charge density wave (CDW) transport problems where we consider tunneling among states that are wave-functionals of a scalar quantum field, i.e. derived I-E curves that match Zenier curves used to fit data experimentally with wave-functionals congruent with the false vacuum hypothesis. The open question is whether the coefficients picked in both wave-functionals and the magnitude of the coefficients of the driven sine-Gordon physical system are picked by topological charge arguments that appear to assign values consistent with the false vacuum hypothesis. Crucial results by Fred Cooper et al. allow a mature quantum foam interpretation of false vacuum nucleation for further refinement of our wave-functional results. In doing so, we give credence to topological arguments as a first order phase transition in CDW I-E curves.展开更多
文摘In this manuscript, a proof for the age-old Riemann hypothesis is delivered, interpreting the Riemann Zeta function as an analytical signal, and using a signal analyzing affine model used in radar technology to match the warped Riemann Zeta function on the time domain with its conjugate pair on the warped frequency domain (a Dirichlet series), through a scale invariant composite Mellin transform. As an application of above, since the Navier Stokes system solution’s Dirichlet transforms are also Dirichlet series, a minimal general solution of the 3d Navier Stokes differential equation for viscid incompressible flows is constructed through a fractional derivative Fourier transform of the found begin-solutions preserving the geometric properties of the 2d version assuming that the solution is an analytic solution that suffices the Laplace equation in cylindrical coordinates, which is the momentum equation for both the 2d and the 3d Navier Stokes systems of differential equations.
文摘The improvement of the soil physical and chemical properties is the most important foundation for mine ecological restoration.The experiment is aimed at undisturbed area,restored area,and damaged area of abandoned Yongledian Quarry in Beijing.Through determination and analysis of soil physical and chemical properties,it shows that there are significant differences in the composite effects of soil physical and chemical properties between restored area,and undisturbed area,damaged area,and engineering restoration effectively improves the composite effects of soil physical and chemical properties in the restored area.The single factor hypothesis test shows that soil pH value,organic matter,alkali-hydrolyzable nitrogen,and total nitrogen traits are the key targets to be restored in this mining area.
基金supported by the National Natural Science Foundation of China (Nos.90716011,10902119)
文摘In order to evaluate uncertainties in computational fluid dynamics (CFD) computations of the stagnation point heat flux, a physical criterion is developed. Based on a quasi-one-dimensional hypothesis along the stagnation line, a new stagnation flow model is applied to obtain the governing equations of the flow near the stagnation point at hypersonic speeds. From the above equations, the compatibility relations are given at the stagnation point and along the stagnation line, which consist of the physical criterion for checking the accuracy in the stagnation point heat flux computations. The verification of the criterion is made with various numerical results.
文摘In this paper, a multilayer security solution is introduced, in order to accord the required end-to-end security blanket to the heterogeneous networks by considering the properties used by authentication at the physical-layer in transport-layer authentication. In particular, after achieving an authentication level based on the estimated channel impulse response (CIR) at the physicallayer, these CIRs are exploited at the transport layer, adding more randomness to the generated sequence numbers used in the 3-Way TCP/IP handshake authentication. Furthermore, in order to enhance the authentication at the physical layer, the estimated CIR is quantized into two domains: amplitude and phase. The quantizer’s output is used to differentiate between the legitimate transmitters and intruders using binary hypothesis testing. Eventually, generating a unique sequence numbers is granted due to the increased randomness offered by the quantizer outputs. In order to verify the effectiveness of the proposed scheme, simulation results are shown based on an orthogonal frequency division multiplexing (OFDM) system. Additionally, a logarithmic likelihood ratio test is used to evaluate the authentication performance.
文摘We reference the tunneling Hamiltonian to have particle tunneling among different states represented as wave-functions. Our problem applies wave-functionals to a driven sine-Gordon system. We apply the tunneling Hamiltonian to charge density wave (CDW) transport problems where we consider tunneling among states that are wave-functionals of a scalar quantum field, i.e. derived I-E curves that match Zenier curves used to fit data experimentally with wave-functionals congruent with the false vacuum hypothesis. The open question is whether the coefficients picked in both wave-functionals and the magnitude of the coefficients of the driven sine-Gordon physical system are picked by topological charge arguments that appear to assign values consistent with the false vacuum hypothesis. Crucial results by Fred Cooper et al. allow a mature quantum foam interpretation of false vacuum nucleation for further refinement of our wave-functional results. In doing so, we give credence to topological arguments as a first order phase transition in CDW I-E curves.