Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improv...Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improve greatly. To increase the springback compensate speed of designing age forming mold, process of calculating springback for a certain mold with finite element method is analyzed. Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method. The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB. Three rectangular integrated panels of dimensions 710 mmx750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies. The algorithm is used to compute mold contours for the panels with cylinder, sphere and saddle contours respectively and it takes 57%, 22% and 33% iterations as compared to that of displacement adjustment (DA) method. At the end of iterations, maximum deviations on the three panels are 0.618 4 mm, 0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method (0.740 8 mm, 0.740 8 mm and 0.713 7 mm respectively). In following experimental verification, mold contour for another integrated panel with 400 ram^380 mm size is designed by the algorithm. Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise. Deviation between measuring results and the panel's design contour is less than 1 mm. Finally, the iterations with different mesh sizes (40 mm, 35 mm, 30 mm, 25 mm, 20 mm) in finite element models are compared and found no considerable difference. Another possible compensation method, Broyden-Fletcher-Shanmo method, is also presented based on the solving nonlinear fimctions idea. The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel. It only takes 50% iterations compared to that of DA. The proposed method can serve a faster mold contour compensation method for sheet metal forming.展开更多
Based on the mechanism for the generation of chaos in a buck converter, a pole placement method is proposed and applied to controlling the chaos in a circuit. The control circuit is designed and tested. Numerical calc...Based on the mechanism for the generation of chaos in a buck converter, a pole placement method is proposed and applied to controlling the chaos in a circuit. The control circuit is designed and tested. Numerical calculation and circuit implementation demonstrate the validity of this chaos control method.展开更多
Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide techni...Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide technical support for special transmission 3D model simulation. Currently, theoretical calculation and experimental method are difficult to exactly solve special transmission contact analysis problem. How to reduce calculation and computer memories consume and meet calculation precision is key to resolve special transmission contact analysis problem. According to 3D model simulation and surface reconstruction of quasi ellipsoid gear is difficulty, this paper employes meshless local Petrov-Galerkin (MLPG) method. In order to reduce calculation and computer memories consume, we disperse tooth mesh into finite points--sparseness points cloud or grid mesh, and then we do interpolation reconstruction in some necessary place of the 3D surface model during analysis. Moving least square method (MLSM) is employed for tooth mesh interpolation reconstruction, there are some advantages to do interpolation by means of MLSM, such as high precision, good flexibility and no require of tooth mesh discretization into units. We input the quasi ellipsoid gear reconstruction model into simulation software, we complete tooth meshing simulation. Simulation transmission ratio during meshing period was obtained, compared with theoretical transmission ratio, the result inosculate preferably. The method using curve reconstruction realizes surface reconstruction, reduce simulation calculation enormously, so special gears simulation can be realized by minitype computer. The method provides a novel solution for special transmission 3D model simulation analysis and contact analysis.展开更多
This paper studies the method for measuring the loop resistance of GIS conductor pole based on the super capacitor producing impulse current up to several thousand amperes. This method overcomes the limitations of con...This paper studies the method for measuring the loop resistance of GIS conductor pole based on the super capacitor producing impulse current up to several thousand amperes. This method overcomes the limitations of conventional diagnostic method. Typical GIS conductor poles are chosen. Based on FEA and lab tests, the effect of different forms of current and contact condition, relationship between the temperature of contact and the loop resistance is researched. In full- scale testing under realistic operating conditions on the new 220 kV GIS using prototype instrumentation a very good sensitivity in an early stage was obtained.展开更多
The vibration control in the frequency domain is significant.Therefore,an active vibration control in frequency domain is studied in this paper.It is generally known that piezo-intelligent structures possess satisfact...The vibration control in the frequency domain is significant.Therefore,an active vibration control in frequency domain is studied in this paper.It is generally known that piezo-intelligent structures possess satisfactory performances in the area of vibration control,and macro-fiber composites(MFCs)with high sensitivity and deformability are widely applied in engineering.So,this paper uses the MFC patches and designs a control method based on the pole placement method,and the natural frequency of the beam can be artificially designed.MFC patches are bonded on the top and bottom surfaces of the beam structure to act as the actuators and sensors.Then,the finite element method(FEM)is used to formulate the equation of motion,and the pole placement based on the out-put feedback method is used to design the active controller.Finally,the effectiveness of the active control method is verified.展开更多
In traditional analytical method(AM),the magnetic saturation is always ignored to simplify the calculation process.However,synchronous reluctance motors(SynRMs)often operate around saturation point to achieve higher t...In traditional analytical method(AM),the magnetic saturation is always ignored to simplify the calculation process.However,synchronous reluctance motors(SynRMs)often operate around saturation point to achieve higher torque density.Therefore,a new AM is proposed,in which the saturation of stator iron has been considered.The key of the proposed method includes a saturation factor,and an iterative method is adopted to compute the saturation factor in the SynRM by increasing the air-gap length.Especially,the proposed AM can be applied to a SynRM even with shifted-asymmetrical-salient-poles.In the process of AM,the expression of stator magnetomotive force(MMF)is built firstly.Additionally,the air-gap density including slotting effect and salient-poles is calculated.Then,the rotor MMF under saturation of the stator iron is obtained.Therefore,the precision of the instantaneous torque can be improved significantly.Eventually,by the verification of finite elements method(FEM)and experiments,the torque performance of SynRMs with shifted asymmetrical rotor can be predicted accurately by the proposed AM.展开更多
Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured...Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.展开更多
In one step inverse finite element approach, an initial blank shape is normally predicted from the final deformed shape. The final deformed shape needs to be trimmed into a final part after stamping, the trimmed area,...In one step inverse finite element approach, an initial blank shape is normally predicted from the final deformed shape. The final deformed shape needs to be trimmed into a final part after stamping, the trimmed area, therefore, needs to be compensated manually before using one step inverse approach, which causes low efficiency and in consistency with the real situation. To solve this problem, one step positive approach is proposed to simulate the sheet metal stamping process. Firstly the spatial initial solution of one step positive method is preliminarily obtained by using the mapping relationship and area coordinates, then based on the deformation theory the iterative solving is carried out in three-dimensional coordinate system by using quasi-conjugate-gradient method. During iterative process the contact judgment method is introduced to ensure that the nodes on the spatial initial solution are not separated from die surface. The predicted results of sheet metal forming process that include the shape and thickness of the stamped part can be obtained after the iterative solving process. The validity of the proposed approach is verified by comparing the predicted results obtained through the proposed approach with those obtained through the module of one step inverse approach in Autoform and the real stamped part. In one step positive method, the stamped shape of regular sheet can be calculated fast and effectively. During the iterative solution, the quasi-conjugate-gradient method is proposed to take the place of solving system of equations, and it can improve the stability and precision of the algorithm.展开更多
In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using ...In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using the derivative of the quasi-interpolation to approximate the spatial derivative and a difference scheme to approximate the temporal derivative. The advantage of the obtained scheme is that the algorithm is very simple so that it is very easy to implement. The results of numerical experiments are presented and compared with analytical solutions to confirm the good accuracy of the presented scheme.展开更多
Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are comp...Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are computationally intensive and require a long processing time. Recently, with the increasing density and arithmetic cores, field programmable gate array(FPGA) has become an attractive alternative to the acceleration of scientific computation. This paper aims to accelerate Davidon-Fletcher-Powell quasi-Newton(DFP-QN) method by proposing a customized and pipelined hardware implementation on FPGAs. Experimental results demonstrate that compared with a software implementation, a speed-up of up to 17 times can be achieved by the proposed hardware implementation.展开更多
In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the ...In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the constituted algorithm with either Wolfe-type or Armijotype line search converges globally and Q-superlinearly if the function to be minimized has Lipschitz continuous gradient.展开更多
Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. He...Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. Here in this paper, we will present effective and accurate algorithms for quasi-periodic solutions by improving Wilson-θ and Newmark-β methods, respectively. In both the two methods, routinely, the considered equations are rearranged in the form of incremental equilibrium equations with the coefficient matrixes being updated in each time step. In this study, the two methods are improved via a predictor-corrector algorithm without updating the coefficient matrixes, in which the predicted solution at one time point can be corrected to the true one at the next. Numerical examples show that, both the improved Wilson-θ and Newmark-β methods can provide much more accurate quasi-periodic solutions with a smaller amount of computational resources. With a simple way to adjust the convergence of the iterations, the improved methods can even solve some quasi-periodic systems effectively, for which the original methods cease to be valid.展开更多
This Paper has first studied the simplified model of tubular heat exchanger which is widely used in the industry and other field.On the basis of reference 2,a new pole assignment design method of pro-cess control syst...This Paper has first studied the simplified model of tubular heat exchanger which is widely used in the industry and other field.On the basis of reference 2,a new pole assignment design method of pro-cess control system with derivative control action is found.For the above system,the method and the for-mation which calculate the feedback matrix K and gain matrix L is given,and the simulation of the system is made.展开更多
In this paper, we provide a maximum norm analysis of an overlapping Schwarz method on nonmatching grids for a quasi-variational inequalities related to ergodic control problems studied by M. Boulbrachene [1], where t...In this paper, we provide a maximum norm analysis of an overlapping Schwarz method on nonmatching grids for a quasi-variational inequalities related to ergodic control problems studied by M. Boulbrachene [1], where the “discount factor” (i.e., the zero order term) is set to 0, we use an overlapping Schwarz method on nonmatching grid which consists in decomposing the domain in two sub domains, where the discrete alternating Schwarz sequences in sub domains converge to the solution of the ergodic control IQV for the zero order term. For and under a discrete maximum principle we show that the discretization on each sub domain converges quasi-optimally in the norm to 0.展开更多
Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs)....Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.展开更多
This paper considers the pole placement in multivariable systems involving known delays by using dynamic controllers subject to multirate sampling. The controller parameterizations are calculated from algebraic equati...This paper considers the pole placement in multivariable systems involving known delays by using dynamic controllers subject to multirate sampling. The controller parameterizations are calculated from algebraic equations which are solved by using the Kronecker product of matrices. It is pointed out that the sampling periods can be selected in a convenient way for the solvability of such equations under rather weak conditions provided that the continuous plant is spectrally controllable. Some overview about the use of nonuniform sampling is also given in order to improve the system's performance.展开更多
The present work deals with reducing greenhouse gas emissions through improving the life span of wooden power electric poles of Eucalyptus saligna. Indeed, in Sub-Saharan African countries, Cameroon in particular, mos...The present work deals with reducing greenhouse gas emissions through improving the life span of wooden power electric poles of Eucalyptus saligna. Indeed, in Sub-Saharan African countries, Cameroon in particular, most of the power line networks are made of wooden supports and according to the Cameroon energy distribution company, wooden poles represent 32% of the causes of death linked to the state of the network. The company’s 2019 annual report indicates that 40,000 wooden poles were in critical condition and should be replaced. A significant number of mechanical failures affecting these supports have been observed. For example, on the HVA/LV power line “D17 Nko- abang” in Yaoundé in Cameroon, less than three years old, 10 (ten) cases of poles falling and/or breaking, due to their mechanical loading, were observed over a period of fewer than nine months, causing an average service stoppage for more than 11 hours and affecting an average of 3280 customers. These incidents lead to questions about how the supports are dimensioned and what load capacities they are designed to support. The aim of this work is, therefore, to suggest a method of dimensioning wooden poles hence reducing green- house gas emissions due to the deforestation by reducing the number of woo- den poles at risk to be replaced on Cameroon’s electricity distribution network. And more specifically, to reduce the number of mechanical failures affecting the wooden supports observed by analyzing the current wooden supports with their loads and to make proposals for improving the actual dimensioning me- thods. From the study carried out, it appears that 449 out of 845 supports, i.e., 53% needed to be replaced or monitored because they support the nominal forces ranging from 85% to 150% of their admissible limit and proposals have been made to improve their dimensioning.展开更多
A new idea of Quasi-Critical Path has been defined in terms of the thoughtof Critical Path for the network method.The paper studies the time control problem of anetwork with forced start-time activity by both the opti...A new idea of Quasi-Critical Path has been defined in terms of the thoughtof Critical Path for the network method.The paper studies the time control problem of anetwork with forced start-time activity by both the optimal criterion of minimal reducedtime and the concept of Quasi-Critical Degree of activity,and proposes a feasible heuristicalgorithm.Another simpler algorithm is also presented,which can be realized inmicrocomputer.展开更多
文摘Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improve greatly. To increase the springback compensate speed of designing age forming mold, process of calculating springback for a certain mold with finite element method is analyzed. Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method. The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB. Three rectangular integrated panels of dimensions 710 mmx750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies. The algorithm is used to compute mold contours for the panels with cylinder, sphere and saddle contours respectively and it takes 57%, 22% and 33% iterations as compared to that of displacement adjustment (DA) method. At the end of iterations, maximum deviations on the three panels are 0.618 4 mm, 0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method (0.740 8 mm, 0.740 8 mm and 0.713 7 mm respectively). In following experimental verification, mold contour for another integrated panel with 400 ram^380 mm size is designed by the algorithm. Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise. Deviation between measuring results and the panel's design contour is less than 1 mm. Finally, the iterations with different mesh sizes (40 mm, 35 mm, 30 mm, 25 mm, 20 mm) in finite element models are compared and found no considerable difference. Another possible compensation method, Broyden-Fletcher-Shanmo method, is also presented based on the solving nonlinear fimctions idea. The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel. It only takes 50% iterations compared to that of DA. The proposed method can serve a faster mold contour compensation method for sheet metal forming.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10247005 and 70571017), the Guangxi New Century Foundation for Ten, Hundred and Thousand Talents (Grant No 2002226).
文摘Based on the mechanism for the generation of chaos in a buck converter, a pole placement method is proposed and applied to controlling the chaos in a circuit. The control circuit is designed and tested. Numerical calculation and circuit implementation demonstrate the validity of this chaos control method.
基金supported by National Natural Science Foundation of China (Grant No. 50905049)Heilongjiang Provincial International Cooperation Project of China (WB06A06)+1 种基金Heilongjiang Provincial Programs for Science and Technology Development of China (GC09A524)Heilongjiang Provincial Postdoctoral Science Foundation of China (LBH-Z09189)
文摘Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide technical support for special transmission 3D model simulation. Currently, theoretical calculation and experimental method are difficult to exactly solve special transmission contact analysis problem. How to reduce calculation and computer memories consume and meet calculation precision is key to resolve special transmission contact analysis problem. According to 3D model simulation and surface reconstruction of quasi ellipsoid gear is difficulty, this paper employes meshless local Petrov-Galerkin (MLPG) method. In order to reduce calculation and computer memories consume, we disperse tooth mesh into finite points--sparseness points cloud or grid mesh, and then we do interpolation reconstruction in some necessary place of the 3D surface model during analysis. Moving least square method (MLSM) is employed for tooth mesh interpolation reconstruction, there are some advantages to do interpolation by means of MLSM, such as high precision, good flexibility and no require of tooth mesh discretization into units. We input the quasi ellipsoid gear reconstruction model into simulation software, we complete tooth meshing simulation. Simulation transmission ratio during meshing period was obtained, compared with theoretical transmission ratio, the result inosculate preferably. The method using curve reconstruction realizes surface reconstruction, reduce simulation calculation enormously, so special gears simulation can be realized by minitype computer. The method provides a novel solution for special transmission 3D model simulation analysis and contact analysis.
文摘This paper studies the method for measuring the loop resistance of GIS conductor pole based on the super capacitor producing impulse current up to several thousand amperes. This method overcomes the limitations of conventional diagnostic method. Typical GIS conductor poles are chosen. Based on FEA and lab tests, the effect of different forms of current and contact condition, relationship between the temperature of contact and the loop resistance is researched. In full- scale testing under realistic operating conditions on the new 220 kV GIS using prototype instrumentation a very good sensitivity in an early stage was obtained.
基金supported by the National Natural Science Foundation of China(Nos.11802069,11761131006)the China Postdoctoral Science Foundation(No.3236310534)+1 种基金the Heilongjiang Provincial Postdoctoral Science Foundation(Nos.002020830603,LBHTZ2008)the China Fundamental Research Funds for the Central Universities(No.GK2020260225).
文摘The vibration control in the frequency domain is significant.Therefore,an active vibration control in frequency domain is studied in this paper.It is generally known that piezo-intelligent structures possess satisfactory performances in the area of vibration control,and macro-fiber composites(MFCs)with high sensitivity and deformability are widely applied in engineering.So,this paper uses the MFC patches and designs a control method based on the pole placement method,and the natural frequency of the beam can be artificially designed.MFC patches are bonded on the top and bottom surfaces of the beam structure to act as the actuators and sensors.Then,the finite element method(FEM)is used to formulate the equation of motion,and the pole placement based on the out-put feedback method is used to design the active controller.Finally,the effectiveness of the active control method is verified.
基金This work was supported in part by the National Natural Science Foundation of China(51707083)in part by the Natural Science Foundation of Jiangsu Province(BK20190848)+1 种基金in part by the China Postdoctoral Science Foundation(2019M661746)by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘In traditional analytical method(AM),the magnetic saturation is always ignored to simplify the calculation process.However,synchronous reluctance motors(SynRMs)often operate around saturation point to achieve higher torque density.Therefore,a new AM is proposed,in which the saturation of stator iron has been considered.The key of the proposed method includes a saturation factor,and an iterative method is adopted to compute the saturation factor in the SynRM by increasing the air-gap length.Especially,the proposed AM can be applied to a SynRM even with shifted-asymmetrical-salient-poles.In the process of AM,the expression of stator magnetomotive force(MMF)is built firstly.Additionally,the air-gap density including slotting effect and salient-poles is calculated.Then,the rotor MMF under saturation of the stator iron is obtained.Therefore,the precision of the instantaneous torque can be improved significantly.Eventually,by the verification of finite elements method(FEM)and experiments,the torque performance of SynRMs with shifted asymmetrical rotor can be predicted accurately by the proposed AM.
基金financially supported by the National Natural Science Foundation of China(No.41774125)Key Program of National Natural Science Foundation of China(No.41530320)+1 种基金the Key National Research Project of China(Nos.2016YFC0303100 and 2017YFC0601900)the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Special(No.XDA 14020102)
文摘Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.
基金supported by National Natural Science Foundation of China (Grant No. 51075187)
文摘In one step inverse finite element approach, an initial blank shape is normally predicted from the final deformed shape. The final deformed shape needs to be trimmed into a final part after stamping, the trimmed area, therefore, needs to be compensated manually before using one step inverse approach, which causes low efficiency and in consistency with the real situation. To solve this problem, one step positive approach is proposed to simulate the sheet metal stamping process. Firstly the spatial initial solution of one step positive method is preliminarily obtained by using the mapping relationship and area coordinates, then based on the deformation theory the iterative solving is carried out in three-dimensional coordinate system by using quasi-conjugate-gradient method. During iterative process the contact judgment method is introduced to ensure that the nodes on the spatial initial solution are not separated from die surface. The predicted results of sheet metal forming process that include the shape and thickness of the stamped part can be obtained after the iterative solving process. The validity of the proposed approach is verified by comparing the predicted results obtained through the proposed approach with those obtained through the module of one step inverse approach in Autoform and the real stamped part. In one step positive method, the stamped shape of regular sheet can be calculated fast and effectively. During the iterative solution, the quasi-conjugate-gradient method is proposed to take the place of solving system of equations, and it can improve the stability and precision of the algorithm.
基金supported by the State Key Development Program for Basic Research of China (Grant No 2006CB303102)Science and Technology Commission of Shanghai Municipality,China (Grant No 09DZ2272900)
文摘In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using the derivative of the quasi-interpolation to approximate the spatial derivative and a difference scheme to approximate the temporal derivative. The advantage of the obtained scheme is that the algorithm is very simple so that it is very easy to implement. The results of numerical experiments are presented and compared with analytical solutions to confirm the good accuracy of the presented scheme.
基金Supported by the National Natural Science Foundation of China(No.61574099)
文摘Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are computationally intensive and require a long processing time. Recently, with the increasing density and arithmetic cores, field programmable gate array(FPGA) has become an attractive alternative to the acceleration of scientific computation. This paper aims to accelerate Davidon-Fletcher-Powell quasi-Newton(DFP-QN) method by proposing a customized and pipelined hardware implementation on FPGAs. Experimental results demonstrate that compared with a software implementation, a speed-up of up to 17 times can be achieved by the proposed hardware implementation.
文摘In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the constituted algorithm with either Wolfe-type or Armijotype line search converges globally and Q-superlinearly if the function to be minimized has Lipschitz continuous gradient.
文摘Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. Here in this paper, we will present effective and accurate algorithms for quasi-periodic solutions by improving Wilson-θ and Newmark-β methods, respectively. In both the two methods, routinely, the considered equations are rearranged in the form of incremental equilibrium equations with the coefficient matrixes being updated in each time step. In this study, the two methods are improved via a predictor-corrector algorithm without updating the coefficient matrixes, in which the predicted solution at one time point can be corrected to the true one at the next. Numerical examples show that, both the improved Wilson-θ and Newmark-β methods can provide much more accurate quasi-periodic solutions with a smaller amount of computational resources. With a simple way to adjust the convergence of the iterations, the improved methods can even solve some quasi-periodic systems effectively, for which the original methods cease to be valid.
文摘This Paper has first studied the simplified model of tubular heat exchanger which is widely used in the industry and other field.On the basis of reference 2,a new pole assignment design method of pro-cess control system with derivative control action is found.For the above system,the method and the for-mation which calculate the feedback matrix K and gain matrix L is given,and the simulation of the system is made.
文摘In this paper, we provide a maximum norm analysis of an overlapping Schwarz method on nonmatching grids for a quasi-variational inequalities related to ergodic control problems studied by M. Boulbrachene [1], where the “discount factor” (i.e., the zero order term) is set to 0, we use an overlapping Schwarz method on nonmatching grid which consists in decomposing the domain in two sub domains, where the discrete alternating Schwarz sequences in sub domains converge to the solution of the ergodic control IQV for the zero order term. For and under a discrete maximum principle we show that the discretization on each sub domain converges quasi-optimally in the norm to 0.
文摘Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.
文摘This paper considers the pole placement in multivariable systems involving known delays by using dynamic controllers subject to multirate sampling. The controller parameterizations are calculated from algebraic equations which are solved by using the Kronecker product of matrices. It is pointed out that the sampling periods can be selected in a convenient way for the solvability of such equations under rather weak conditions provided that the continuous plant is spectrally controllable. Some overview about the use of nonuniform sampling is also given in order to improve the system's performance.
文摘The present work deals with reducing greenhouse gas emissions through improving the life span of wooden power electric poles of Eucalyptus saligna. Indeed, in Sub-Saharan African countries, Cameroon in particular, most of the power line networks are made of wooden supports and according to the Cameroon energy distribution company, wooden poles represent 32% of the causes of death linked to the state of the network. The company’s 2019 annual report indicates that 40,000 wooden poles were in critical condition and should be replaced. A significant number of mechanical failures affecting these supports have been observed. For example, on the HVA/LV power line “D17 Nko- abang” in Yaoundé in Cameroon, less than three years old, 10 (ten) cases of poles falling and/or breaking, due to their mechanical loading, were observed over a period of fewer than nine months, causing an average service stoppage for more than 11 hours and affecting an average of 3280 customers. These incidents lead to questions about how the supports are dimensioned and what load capacities they are designed to support. The aim of this work is, therefore, to suggest a method of dimensioning wooden poles hence reducing green- house gas emissions due to the deforestation by reducing the number of woo- den poles at risk to be replaced on Cameroon’s electricity distribution network. And more specifically, to reduce the number of mechanical failures affecting the wooden supports observed by analyzing the current wooden supports with their loads and to make proposals for improving the actual dimensioning me- thods. From the study carried out, it appears that 449 out of 845 supports, i.e., 53% needed to be replaced or monitored because they support the nominal forces ranging from 85% to 150% of their admissible limit and proposals have been made to improve their dimensioning.
文摘A new idea of Quasi-Critical Path has been defined in terms of the thoughtof Critical Path for the network method.The paper studies the time control problem of anetwork with forced start-time activity by both the optimal criterion of minimal reducedtime and the concept of Quasi-Critical Degree of activity,and proposes a feasible heuristicalgorithm.Another simpler algorithm is also presented,which can be realized inmicrocomputer.