期刊文献+
共找到903,657篇文章
< 1 2 250 >
每页显示 20 50 100
Intelligent Energy Utilization Analysis Using IUA-SMD Model Based Optimization Technique for Smart Metering Data
1
作者 K.Rama Devi V.Srinivasan +1 位作者 G.Clara Barathi Priyadharshini J.Gokulapriya 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期90-98,共9页
Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on d... Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on data management,rather than emphasizing efficiency. Accurate prediction of electricity consumption is crucial for enabling intelligent grid operations,including resource planning and demandsupply balancing. Smart metering solutions offer users the benefits of effectively interpreting their energy utilization and optimizing costs. Motivated by this,this paper presents an Intelligent Energy Utilization Analysis using Smart Metering Data(IUA-SMD)model to determine energy consumption patterns. The proposed IUA-SMD model comprises three major processes:data Pre-processing,feature extraction,and classification,with parameter optimization. We employ the extreme learning machine(ELM)based classification approach within the IUA-SMD model to derive optimal energy utilization labels. Additionally,we apply the shell game optimization(SGO)algorithm to enhance the classification efficiency of the ELM by optimizing its parameters. The effectiveness of the IUA-SMD model is evaluated using an extensive dataset of smart metering data,and the results are analyzed in terms of accuracy and mean square error(MSE). The proposed model demonstrates superior performance,achieving a maximum accuracy of65.917% and a minimum MSE of0.096. These results highlight the potential of the IUA-SMD model for enabling efficient energy utilization through intelligent analysis of smart metering data. 展开更多
关键词 electricity consumption predictive model data analytics smart metering machine learning
下载PDF
Introduction to the Special Issue on ComputerModeling for Smart Cities Applications
2
作者 Wenbing Zhao Chenxi Huang Yizhang Jiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1015-1017,共3页
A significant fraction of the world’s population is living in cities. With the rapid development ofinformation and computing technologies (ICT), cities may be made smarter by embedding ICT intotheir infrastructure. B... A significant fraction of the world’s population is living in cities. With the rapid development ofinformation and computing technologies (ICT), cities may be made smarter by embedding ICT intotheir infrastructure. By smarter, we mean that the city operation will be more efficient, cost-effective,energy-saving, be more connected, more secure, and more environmentally friendly. As such, a smartcity is typically defined as a city that has a strong integration with ICT in all its components, includingits physical components, social components, and business components [1,2]. 展开更多
关键词 smart typically smart
下载PDF
Automated Vulnerability Detection of Blockchain Smart Contacts Based on BERT Artificial Intelligent Model
3
作者 Feng Yiting Ma Zhaofeng +1 位作者 Duan Pengfei Luo Shoushan 《China Communications》 SCIE CSCD 2024年第7期237-251,共15页
The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.De... The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.Despite the benefits of virtual currency,vulnerabilities in smart contracts have resulted in substantial losses to users.While researchers have identified these vulnerabilities and developed tools for detecting them,the accuracy of these tools is still far from satisfactory,with high false positive and false negative rates.In this paper,we propose a new method for detecting vulnerabilities in smart contracts using the BERT pre-training model,which can quickly and effectively process and detect smart contracts.More specifically,we preprocess and make symbol substitution in the contract,which can make the pre-training model better obtain contract features.We evaluate our method on four datasets and compare its performance with other deep learning models and vulnerability detection tools,demonstrating its superior accuracy. 展开更多
关键词 BERT blockchain smart contract vulnerability detection
下载PDF
RoGRUT: A Hybrid Deep Learning Model for Detecting Power Trapping in Smart Grids
4
作者 Farah Mohammad Saad Al-Ahmadi Jalal Al-Muhtadi 《Computers, Materials & Continua》 SCIE EI 2024年第5期3175-3192,共18页
Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the hig... Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the high energy costs borne by consumers.The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data,including information on client consumption,which may be used to identify electricity theft using machine learning and deep learning techniques.Moreover,there also exist different solutions such as hardware-based solutions to detect electricity theft that may require human resources and expensive hardware.Computer-based solutions are presented in the literature to identify electricity theft but due to the dimensionality curse,class imbalance issue and improper hyper-parameter tuning of such models lead to poor performance.In this research,a hybrid deep learning model abbreviated as RoGRUT is proposed to detect electricity theft as amalicious and non-malicious activity.The key steps of the RoGRUT are data preprocessing that covers the problem of class imbalance,feature extraction and final theft detection.Different advanced-level models like RoBERTa is used to address the curse of dimensionality issue,the near miss for class imbalance,and transfer learning for classification.The effectiveness of the RoGRUTis evaluated using the dataset fromactual smartmeters.A significant number of simulations demonstrate that,when compared to its competitors,the RoGRUT achieves the best classification results.The performance evaluation of the proposed model revealed exemplary results across variousmetrics.The accuracy achieved was 88%,with precision at an impressive 86%and recall reaching 84%.The F1-Score,a measure of overall performance,stood at 85%.Furthermore,themodel exhibited a noteworthyMatthew correlation coefficient of 78%and excelled with an area under the curve of 91%. 展开更多
关键词 Electricity theft smart grid RoBERTa GRU transfer learning
下载PDF
A theoretical framework for improved fire suppression by linking management models with smart early fire detection and suppression technologies
5
作者 Li Meng Jim O’Hehir +2 位作者 Jing Gao Stefan Peters Anthony Hay 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期1-13,共13页
Bushfires are devastating to forest managers,owners,residents,and the natural environment.Recent tech-nological advances indicate a potential for faster response times in terms of detecting and suppressing fires.Howev... Bushfires are devastating to forest managers,owners,residents,and the natural environment.Recent tech-nological advances indicate a potential for faster response times in terms of detecting and suppressing fires.However,to date,all these technologies have been applied in isola-tion.This paper introduces the latest fire detection and sup-pression technologies from ground to space.An operations research method was used to assemble these technologies into a theoretical framework for fire detection and suppres-sion.The framework harnesses the advantages of satellite-based,drone,sensor,and human reporting technologies as well as image processing and artificial intelligence machine learning.The study concludes that,if a system is designed to maximise the use of available technologies and carefully adopts them through complementary arrangements,a fire detection and resource suppression system can achieve the ultimate aim:to reduce the risk of fire hazards and the dam-age they may cause. 展开更多
关键词 Forest fire Resource suppression smart fire detection and suppression system Forest fire management Holistic system
下载PDF
Efficient and Secure IoT Based Smart Home Automation Using Multi-Model Learning and Blockchain Technology
6
作者 Nazik Alturki Raed Alharthi +5 位作者 Muhammad Umer Oumaima Saidani Amal Alshardan Reemah M.Alhebshi Shtwai Alsubai Ali Kashif Bashir 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3387-3415,共29页
The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the d... The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device itself.Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features.This paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in homes.We have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT devices.Our system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing devices.We have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache server.The feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time settings.It is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation systems.Additionally,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber threats.The trial results support the proposed system and demonstrate its potential for use in everyday life. 展开更多
关键词 Blockchain Internet of Things(IoT) smart home automation CYBERSECURITY
下载PDF
LSTM Based Neural Network Model for Anomaly Event Detection in Care-Independent Smart Homes
7
作者 Brij B.Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2689-2706,共18页
This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It ... This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It balances the dataset using the Synthetic Minority Over-sampling Technique(SMOTE),effectively neutralizing bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks.The proposed LSTM model is trained on the enriched dataset,capturing the temporal dependencies essential for anomaly recognition.The model demonstrated a significant improvement in anomaly detection,with an accuracy of 84%.The results,detailed in the comprehensive classification and confusion matrices,showed the model’s proficiency in distinguishing between normal activities and falls.This study contributes to the advancement of smart home safety,presenting a robust framework for real-time anomaly monitoring. 展开更多
关键词 LSTM neural networks anomaly detection smart home health-care elderly fall prevention
下载PDF
Smaller & Smarter: Score-Driven Network Chaining of Smaller Language Models
8
作者 Gunika Dhingra Siddansh Chawla +1 位作者 Vijay K. Madisetti Arshdeep Bahga 《Journal of Software Engineering and Applications》 2024年第1期23-42,共20页
With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily meas... With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily measured by the number of parameters, but also the subsequent escalation in computational demands, hardware and software prerequisites for training, all culminating in a substantial financial investment as well. In this paper, we present novel techniques like supervision, parallelization, and scoring functions to get better results out of chains of smaller language models, rather than relying solely on scaling up model size. Firstly, we propose an approach to quantify the performance of a Smaller Language Models (SLM) by introducing a corresponding supervisor model that incrementally corrects the encountered errors. Secondly, we propose an approach to utilize two smaller language models (in a network) performing the same task and retrieving the best relevant output from the two, ensuring peak performance for a specific task. Experimental evaluations establish the quantitative accuracy improvements on financial reasoning and arithmetic calculation tasks from utilizing techniques like supervisor models (in a network of model scenario), threshold scoring and parallel processing over a baseline study. 展开更多
关键词 Large Language models (LLMs) Smaller Language models (SLMs) FINANCE NETWORKING Supervisor model Scoring Function
下载PDF
An Integrated Model of Smart Home Applications User Experience Based on Cognitive Dissonance
9
作者 Lili Wang Nadia Binti Mohd Nasir Shuang Yang 《Journal of Electronic Research and Application》 2024年第5期89-94,共6页
This study constructs an integrated model of user experience in smart home applications(apps)to deeply explore the impact of cognitive dissonance on users’emotional responses,subsequent behaviors,and experiential out... This study constructs an integrated model of user experience in smart home applications(apps)to deeply explore the impact of cognitive dissonance on users’emotional responses,subsequent behaviors,and experiential outcomes.The research emphasizes the importance of addressing emotional management in the design and development of smart home apps.The findings indicate that emotional response plays a critical mediating role in the user experience of these apps,offering new insights for further optimization.By understanding users’emotional reactions and behavioral patterns under cognitive dissonance,developers can more effectively improve interface design and enhance the overall user experience. 展开更多
关键词 User experience smart home apps Cognitive dissonance
下载PDF
中国加入CPTPP的农产品贸易效应研究--基于WITS-SMART模型
10
作者 葛明 马源 赵素萍 《西南大学学报(社会科学版)》 北大核心 2024年第3期135-148,共14页
粮食安全是国家安全的基石,面对国际市场不稳定性,加入CPTPP有望为中国夯实农产品贸易韧性提供新契机。在考察中国与CPTPP国家农产品贸易竞合关系的基础上,运用WITS-SMART模型建立局部均衡分析框架,研究中国加入CPTPP的农产品贸易效应,... 粮食安全是国家安全的基石,面对国际市场不稳定性,加入CPTPP有望为中国夯实农产品贸易韧性提供新契机。在考察中国与CPTPP国家农产品贸易竞合关系的基础上,运用WITS-SMART模型建立局部均衡分析框架,研究中国加入CPTPP的农产品贸易效应,结果发现:第一,中国农产品竞争力整体不强,但与CPTPP国家依存关系较高,双边贸易潜力在关税完全削减时充分释放。第二,零关税情境下,贸易创造效应普遍大于转移效应,中国对CPTPP多数国家农产品贸易规模大幅扩张,进口增长主要源自种植业、畜牧业部门以及加拿大、澳大利亚、英国、日本等国家,出口增长主要集中于种植业部门以及日本、英国、马来西亚、墨西哥等国家。第三,加入CPTPP显著改善了双边经济福利,不过关税损失较为严重。因此,中国应破除部门利益障碍,加强与墨西哥、日本、英国等国经贸联系以充分挖掘CPTPP国家市场潜力,释放贸易自由化福利,持续提高农产品出口质量和国际竞争力以应对加入CPTPP带来的挑战。 展开更多
关键词 CPTPP 农产品 竞合关系 贸易效应 smart模型
下载PDF
复杂系统视角下数字领域“smart”概念的国际标准化共识构建及应用
11
作者 安小米 张红卫 +2 位作者 魏玮 黄婕 张晖 《信息资源管理学报》 2024年第3期31-41,共11页
进入数字时代,伴随大数据和人工智能技术快速发展和普遍应用,带有“smart”的指称不断涌现,然而关于“smart”概念的认知尚缺少跨领域和跨国际标准组织的标准化共识构建研究。采用ISO 704:2022的概念构建原则和方法,基于复杂系统论视角... 进入数字时代,伴随大数据和人工智能技术快速发展和普遍应用,带有“smart”的指称不断涌现,然而关于“smart”概念的认知尚缺少跨领域和跨国际标准组织的标准化共识构建研究。采用ISO 704:2022的概念构建原则和方法,基于复杂系统论视角,对数字领域国际标准定义中涉及“smart”的概念特征进行了识别。基于跨领域国际标准组织专家的研讨、问卷调查和国际共识构建,提出了适应于复杂系统数字领域“smart”的通用概念,并将其用于指导《智慧城市城市智能服务体系构建指南》国家标准的制定过程。该研究对推进国家标准和国际标准兼容具有重要战略意义。 展开更多
关键词 “smart”概念 “smart”定义 “smart”特征 标准化共识构建 国际标准
下载PDF
深度学习重建联合Smart去金属伪影算法在口腔金属植入物患者头颈CT血管成像中的应用
12
作者 唐丽 刘星 +1 位作者 吕培杰 高剑波 《郑州大学学报(医学版)》 CAS 北大核心 2024年第4期484-487,共4页
目的:探讨深度学习重建(DLR)联合Smart去金属伪影(MAR)算法在口腔金属植入物患者头颈CT血管成像(CTA)中的应用价值。方法:选择郑州大学第一附属医院2023年2月至6月口腔有不可拆卸金属植入物行头颈CTA的患者70例,采用以下3种方法重建图像... 目的:探讨深度学习重建(DLR)联合Smart去金属伪影(MAR)算法在口腔金属植入物患者头颈CT血管成像(CTA)中的应用价值。方法:选择郑州大学第一附属医院2023年2月至6月口腔有不可拆卸金属植入物行头颈CTA的患者70例,采用以下3种方法重建图像:基于混合模型的自适应迭代重建(ASIR-V)50%算法(IR),ASIR-V50%联合Smart MAR算法(IR-S),高水平DLR联合Smart MAR算法(DLR-S)。测量不受伪影影响的颈内动脉C1段和头夹肌感兴趣区CT值的标准差(SD)2和SD4,作为图像噪声指标;计算颈内动脉C1段和舌部的金属伪影指数(AI)1和AI2;对颈内动脉C1段和口腔整体图像质量进行主观评分。结果:与IR组和IR-S组比较,DLR-S组SD2和SD4降低(P<0.05)。与IR组比较,IR-S组和DLR-S组AI1、AI2降低;与IR-S组比较,DLR-S组AI1、AT2降低(P<0.05)。与IR组比较,IR-S组和DLR-S组口腔整体和颈内动脉C1段图像质量主观评分均增高;与IR-S组比较,DLR-S组图像质量主观评分增高(P<0.05),9例患者舌部可见新的伪影。结论:Smart MAR联合DLR可减少口腔植入物造成的金属伪影,提高头颈CTA图像质量。但Smart MAR可能引入新的伪影,需联合未加入Smart MAR的图像进行分析。 展开更多
关键词 深度学习重建 口腔金属植入物 金属伪影 CT血管成像 smart去金属伪影算法
下载PDF
基于SMART原则的三阶段教学法的中医院神经外科规培护士培训评价
13
作者 庄平 陈凤梅 易玲 《中国中医药现代远程教育》 2024年第10期47-49,共3页
目的探讨基于SMART原则的三阶段教学法对神经外科规范化培训(以下简称“规培”)护士的教学效果。方法选择2020年1月—2022年7月在广东省中医院神经外科规培的护士80人作为研究对象,采用随机数字表法分为对照组(40人)和观察组(40人)。观... 目的探讨基于SMART原则的三阶段教学法对神经外科规范化培训(以下简称“规培”)护士的教学效果。方法选择2020年1月—2022年7月在广东省中医院神经外科规培的护士80人作为研究对象,采用随机数字表法分为对照组(40人)和观察组(40人)。观察组采用基于SMART原则的三阶段教学法,对照组使用常规规培方法;培训结束后比较两组理论考试、临床实践考试成绩及护士核心能力测评结果。结果观察组规培护士理论知识考核及临床实践得分均高于对照组(P<0.05);观察组与对照组在评判性思维/科研、临床护理能力、人际关系、专业发展能力、教育咨询能力及总分方面差异有统计学意义(P<0.05),而在法律/伦理实践、领导能力方面差异无统计学意义(P>0.05)。结论与传统教学方法相比,基于SMART原则的三阶段教学法更有助于提高神经外科规培护士的综合护理能力,尤其是在神经外科急危重症护理方面;另外,规培护士的领导能力培养易被忽略,今后应加强相关研究。 展开更多
关键词 smart原则 三阶段教学 神经外科 规培护士
下载PDF
采用STAMP-24Model的多组织事故分析
14
作者 曾明荣 秦永莹 +2 位作者 刘小航 栗婧 尚长岭 《安全与环境学报》 CAS CSCD 北大核心 2024年第7期2741-2750,共10页
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事... 安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。 展开更多
关键词 安全工程 系统理论事故建模与过程模型(STAMP) 24model 多组织事故 原因分析
下载PDF
3D smart mA调控技术对不同BMI患者图像采集时间质量及辐射剂量的影响 被引量:2
15
作者 杨慧玲 张硕 +2 位作者 赵文哲 杨柳青 杨健 《河北医学》 2024年第1期115-120,共6页
目的:分析3D智能管电流(3D smart mA)调控技术对不同体质量指数(BMI)患者图像采集时间、质量及辐射剂量的影响。方法:择取的180例行胸部CT扫描患者选自西安交通大学第一附属医院2021年6月至2022年12月期间所收治,按照BMI将患者分为三组,... 目的:分析3D智能管电流(3D smart mA)调控技术对不同体质量指数(BMI)患者图像采集时间、质量及辐射剂量的影响。方法:择取的180例行胸部CT扫描患者选自西安交通大学第一附属医院2021年6月至2022年12月期间所收治,按照BMI将患者分为三组,A组(18.5 kg/m^(2)≤BMI≤23.9kg/m^(2),n=75)、B组(23.9kg/m^(2)0.05);两位医师对肺部不同层面图像质量(IQS)评分进行评价,Kappa一致性非常好(Kappa值=0.768、0.812、0.861);三组肺部不同层面IQS评分对比,差异无统计学意义(P>0.05);三组肺部不同层面CT对比,差异有统计学意义,且随着BMI增加而下降(P<0.05),三组肺部不同层面图像标准差(SD)值对比,差异无统计学意义(P>0.05);三组容积CT剂量指数(CTDIvol)对比,差异无统计学意义(P>0.05);A组DLP、ED均低于B、C组,B组DLP、ED低于C组(P<0.05)。结论:不同BMI患者应用3D smart mA调控技术,在保证图像质量的前提下,可有效降低辐射剂量。 展开更多
关键词 3D智能管电流调控技术 体质量指数 图像采集时间、图像采集质量 辐射剂量
下载PDF
二维同步插补算法及其在S7-200 Smart PLC上的应用
16
作者 张益波 姚晓晓 《软件工程》 2024年第4期65-69,共5页
针对插补运动系统中存在机械振动较大的问题,提出一类基于恒定加加速度的二维直线插补算法。在确定加加速度的前提下,将直线插补的运动过程分为7个不同的阶段。利用运动学定律分析每个阶段的加速度、速度和位移的表达式,获取各运动阶段... 针对插补运动系统中存在机械振动较大的问题,提出一类基于恒定加加速度的二维直线插补算法。在确定加加速度的前提下,将直线插补的运动过程分为7个不同的阶段。利用运动学定律分析每个阶段的加速度、速度和位移的表达式,获取各运动阶段的初始条件。在基于二维系统的位移要求确定二维同步关系的基础上,实现了各阶段算法的离散化,最终完成了基于PLC(可编程逻辑控制器)的算法设计。实测效果表明,该算法同步精度小于0.5%,运行时间误差小于1 s,运行效果良好,满足应用场景的需求。 展开更多
关键词 二维同步 插补 S7-200 smart
下载PDF
基于Smart 3D软件的船舶二维与三维集成设计变更
17
作者 王炬成 张世超 徐浩 《造船技术》 2024年第4期7-12,76,共7页
船舶二维与三维集成设计流程复杂、变更需求大。梳理船舶设计变更研究现状。基于Smart 3D软件,从数据处理、二维与三维映射转换和设计变更管理等方面进行船舶二维与三维集成设计变更关键技术分析,并对船舶二维与三维集成设计变更的可行... 船舶二维与三维集成设计流程复杂、变更需求大。梳理船舶设计变更研究现状。基于Smart 3D软件,从数据处理、二维与三维映射转换和设计变更管理等方面进行船舶二维与三维集成设计变更关键技术分析,并对船舶二维与三维集成设计变更的可行性进行实例验证。结果表明,基于Smart 3D软件进行船舶二维与三维集成设计变更可有效提升集成设计变更的精度与管理效率。 展开更多
关键词 船舶 设计变更 二维与三维集成设计 smart 3D软件
下载PDF
基于改进24Model-ISM-SNA建筑工人不安全行为关联路径研究
18
作者 赵平 刘钰 +1 位作者 靳丽艳 王佳慧 《工业安全与环保》 2024年第7期37-40,共4页
建筑施工现场环境复杂,为有效控制不安全行为发生,基于行为安全“2-4”模型对360份具有代表性的建筑安全事故调查报告进行分析,提取出22个不安全行为的主要影响因素。利用灰色关联分析方法(GRA)改进的集成ISM-SNA模型,将不安全行为风险... 建筑施工现场环境复杂,为有效控制不安全行为发生,基于行为安全“2-4”模型对360份具有代表性的建筑安全事故调查报告进行分析,提取出22个不安全行为的主要影响因素。利用灰色关联分析方法(GRA)改进的集成ISM-SNA模型,将不安全行为风险因素划分为表层、过渡层与深层,然后对风险因素进行可视化分析、中心度分析及凝聚子群分析,揭示了各致因因素间的关联关系和传导路径。结果表明,建筑工人不安全行为影响因素可划分成7级3阶的多级递阶结构,安全意识、现场监管、外部环境是建筑工人不安全行为的关键影响因素,同时现场监管和隐患排查到位能有效降低不安全行为的发生。 展开更多
关键词 建筑工人 不安全行为 24model 解释结构模型(ISM) 社会网络分析(SNA)
下载PDF
SMART精准护理联合康复护理对冠心病PCI术后二级预防及并发症的影响
19
作者 林静 张静 《心血管病防治知识(学术版)》 2024年第11期84-86,共3页
目的探究在对冠心病PCI术后护理过程中开展SMART精准护理联合康复护理的作用。方法在2022年2月至2024年2月本院冠心病PCI手术患者中选择88例为对象,按照数字表随机排序划分对照组(44例,术后开展常规护理)和观察组(44例,开展SMART精准护... 目的探究在对冠心病PCI术后护理过程中开展SMART精准护理联合康复护理的作用。方法在2022年2月至2024年2月本院冠心病PCI手术患者中选择88例为对象,按照数字表随机排序划分对照组(44例,术后开展常规护理)和观察组(44例,开展SMART精准护理联合康复护理),针对两组术后心功能水平、并发症发生率、病症感知水平等对比。结果心功能水平检测,护理前无差异,护理后观察组左心室射血分数、心输出量、心脏指数较对照组高,差异有统计学意义(P<0.05)。对比两组病症感知水平,认知描绘维度、情绪描绘维度以及综合理解维度,干预前无差异,干预后观察组高于对照组,差异有统计学意义(P<0.05)。对比两组并发症发生率,观察组低于对照组,差异有统计学意义(P<0.05)。结论在对冠心病PCI手术患者术后护理时开展SMART精准护理联合康复护理,有助于增加患者对自身病症认知水平,提升心功能,降低并发症发生率。 展开更多
关键词 smart精准护理 康复护理 冠心病PCI术后 二级预防 并发症
下载PDF
基于24Model-D-ISM的地铁站火灾疏散影响因素研究
20
作者 孙世梅 张家严 《中国安全科学学报》 CAS CSCD 北大核心 2024年第4期153-159,共7页
为预防地铁站火灾事故,深入了解地铁站火灾人员疏散影响因素间的内在联系与层次结构,基于第6版“2-4”模型(24Model)分析63起地铁站火灾疏散事故,充分考虑各个因素之间的交互作用,提取19个影响地铁站人员疏散的关键因素,建立地铁站火灾... 为预防地铁站火灾事故,深入了解地铁站火灾人员疏散影响因素间的内在联系与层次结构,基于第6版“2-4”模型(24Model)分析63起地铁站火灾疏散事故,充分考虑各个因素之间的交互作用,提取19个影响地铁站人员疏散的关键因素,建立地铁站火灾人员疏散影响因素指标体系;采用算子客观赋权法(C-OWA)改进决策试验与评价实验法(DEMATEL),确定地铁站火灾人员疏散的重要影响因素;在此基础上,采用解释结构模型(ISM)分析各个因素间的层次结构及相互作用路径,构建地铁站火灾人员疏散影响因素的多级递阶结构模型。研究结果表明:疏散引导、恐慌从众行为、人员拥挤为地铁站火灾人员疏散的关键影响因素;地铁站火灾人员疏散受表层因素、中间层因素、深层因素共同作用的影响,其中,疏散教育与培训、设施维护与检查、疏散预案等因素是根源影响因素,重视根源影响因素的改善有利于从本质上预防和控制事故的发生。 展开更多
关键词 “2-4”模型(24model) 决策试验与评价实验法(DEMATEL) 解释结构模型(ISM) 地铁站 火灾疏散 影响因素
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部