翻译偏离通常源于语言的文化差异、译者的识解能力和方式的局限。兰盖克(Langacker)2019年最新提出的识解理论五维度,为认识The Sound and the Fury四个汉译本中的认知偏离现象提供了理论支撑。这些汉译本中的偏离现象虽遵循认知规律,...翻译偏离通常源于语言的文化差异、译者的识解能力和方式的局限。兰盖克(Langacker)2019年最新提出的识解理论五维度,为认识The Sound and the Fury四个汉译本中的认知偏离现象提供了理论支撑。这些汉译本中的偏离现象虽遵循认知规律,但深层原因主要涉及译者的视角差异、场景选择、信息突显、动态性表达及想象性再现等多个层面。在语言认知加工过程中,译者的认知框架和识解方式,以及他们与源语文本、作者和读者之间的认知互动对意义的动态构建会产生显著的影响和制约。展开更多
Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambria...Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambrian basement contains most of the region’s water resources. This is at the origin of the high failure rate during the various hydrogeological prospecting campaigns. Methodology: The database consists of resistivities from 42 holes and 51 trails drilled as part of the implementation of high-throughput drilling in the study area. The objective of this study is to deepen the knowledge of the fissured basement by interpreting profile curves and electrical soundings. It will be a question of classifying the different types of anomalies obtained on the profiles and their shapes. The orientation of the lineaments observed on the profiles was determined. Results: The interpretation of the geophysical data revealed various anomalies, the main ones being of the CC (Conductor Compartment) and CEDP (Contact between two bearings) types. These types of anomalies are mainly expressed in various forms: the “V”, “W” and “U” shapes. From these anomalies and the appearance of the electrical profiles, lineaments and their orientations were identified with N90-100, N130-140, N170-180 as major orientations. Conclusion: These results could contribute to a better understanding of the fractured environment of the Gagnoa region.展开更多
In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The fu...In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL.展开更多
Environmental sound classification (ESC) has gained increasing attention in recent years. This study focuses on the evaluation of the popular public dataset Urbansound8k (Us8k) at different sampling rates using hand c...Environmental sound classification (ESC) has gained increasing attention in recent years. This study focuses on the evaluation of the popular public dataset Urbansound8k (Us8k) at different sampling rates using hand crafted features. The Us8k dataset contains environment sounds recorded at various sampling rates, and previous ESC works have uniformly resampled the dataset. Some previous work converted this data to different sampling rates for various reasons. Some of them chose to convert the rest of the dataset to 44,100, as the majority of the Us8k files were already at that sampling rate. On the other hand, some researchers down sampled the dataset to 8000, as it reduced computational complexity, while others resampled it to 16,000, aiming to achieve a balance between higher classification accuracy and lower computational complexity. In this research, we assessed the performance of ESC tasks using sampling rates of 8000 Hz, 16,000 Hz, and 44,100 Hz by extracting the hand crafted features Mel frequency cepstral coefficient (MFCC), gamma tone cepstral coefficients (GTCC), and Mel Spectrogram (MelSpec). The results indicated that there was no significant difference in the classification accuracy among the three tested sampling rates.展开更多
There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycl...There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycle them to manufacture new tires. In the present work, hydraulic concrete plates added with waste tire rubber were manufactured to modify their sound absorption capacity. It was found that the rubber additions produce changes in the density of the material and in the sound absorption capacity. When the material is exposed to high-frequency sounds that correspond to high-pitched sounds, its absorption capacity increases. On the contrary, when the test frequency is low, that is, bass sounds, the sound absorption capacity decreases. The results obtained in this work suggest that the proposed mixtures are suitable for the possible manufacture of acoustic insulating shields.展开更多
Purpose: A novel image-based method for speed of sound (SoS) estimation is proposed and experimentally validated on a tissue-mimicking ultrasound phantom and normal human liver in vivo using linear and curved array tr...Purpose: A novel image-based method for speed of sound (SoS) estimation is proposed and experimentally validated on a tissue-mimicking ultrasound phantom and normal human liver in vivo using linear and curved array transducers. Methods: When the beamforming SoS settings are adjusted to match the real tissue’s SoS, the ultrasound image at regions of interest will be in focus and the image quality will be optimal. Based on this principle, both a tissue-mimicking ultrasound phantom and normal human liver in vivo were used in this study. Ultrasound image was acquired using different SoS settings in beamforming channels ranging from 1420 m/sec to 1600 m/sec. Two regions of interest (ROIs) were selected. One was in a fully developed speckle region, while the other contained specular reflectors. We evaluated the image quality of these two ROIs in images acquired at different SoS settings in beamforming channels by using the normalized autocorrelation function (ACF) of the image data. The values of the normalized ACF at a specific lag as a function of the SoS setting were computed. Subsequently, the soft tissue’s SoS was determined from the SoS setting at the minimum value of the normalized ACF. Results: The value of the ACF as a function of the SoS setting can be computed for phantom and human liver images. SoS in soft tissue can be determined from the SoS setting at the minimum value of the normalized ACF. The estimation results show that the SoS of the tissue-mimicking phantom is 1460 m/sec, which is consistent with the phantom manufacturer’s specification, and the SoS of the normal human liver is 1540 m/sec, which is within the range of the SoS in a healthy human liver in vivo. Conclusion: Soft tissue’s SoS can be determined by analyzing the normalized ACF of ultrasound images. The method is based on searching for a minimum of the normalized ACF of ultrasound image data with a specific lag among different SoS settings in beamforming channels.展开更多
目的研究在声场测试中,头戴式耳机和插入式耳机对不同频率声音的衰减作用。方法选取40名健听人,在声场条件下测试双耳裸耳听阈及双耳分别佩戴头戴式和插入式耳机双耳听阈,耳机均不给声。比较在声场条件下不同类型耳机对不同频率声音的...目的研究在声场测试中,头戴式耳机和插入式耳机对不同频率声音的衰减作用。方法选取40名健听人,在声场条件下测试双耳裸耳听阈及双耳分别佩戴头戴式和插入式耳机双耳听阈,耳机均不给声。比较在声场条件下不同类型耳机对不同频率声音的衰减作用。结果头戴式耳机在0.25~8 kHz每倍频程的声音衰减值分别为6.13±2.40 dB HL、7.00±3.36 dB HL、12.50±3.92 dB HL、18.75±5.03 dB HL、28.25±6.56 dB HL、17.50±5.99 dB HL;插入式耳机在0.25~8 kHz每倍频程的声音衰减值分别为16.88±5.27 dB HL、18.13±5.27 dB HL、22.38±4.08 dB HL、31.25±4.49 dB HL、36.13±5.49 dB HL、35.50±6.68 dB HL。结论两种不同类型耳机对不同频率声音的衰减均有显著效果,对声音的衰减值随着频率的升高而增加,在1~8 kHz范围内效果更显著,插入式耳机的衰减效果明显优于头戴式耳机。展开更多
文摘翻译偏离通常源于语言的文化差异、译者的识解能力和方式的局限。兰盖克(Langacker)2019年最新提出的识解理论五维度,为认识The Sound and the Fury四个汉译本中的认知偏离现象提供了理论支撑。这些汉译本中的偏离现象虽遵循认知规律,但深层原因主要涉及译者的视角差异、场景选择、信息突显、动态性表达及想象性再现等多个层面。在语言认知加工过程中,译者的认知框架和识解方式,以及他们与源语文本、作者和读者之间的认知互动对意义的动态构建会产生显著的影响和制约。
文摘Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambrian basement contains most of the region’s water resources. This is at the origin of the high failure rate during the various hydrogeological prospecting campaigns. Methodology: The database consists of resistivities from 42 holes and 51 trails drilled as part of the implementation of high-throughput drilling in the study area. The objective of this study is to deepen the knowledge of the fissured basement by interpreting profile curves and electrical soundings. It will be a question of classifying the different types of anomalies obtained on the profiles and their shapes. The orientation of the lineaments observed on the profiles was determined. Results: The interpretation of the geophysical data revealed various anomalies, the main ones being of the CC (Conductor Compartment) and CEDP (Contact between two bearings) types. These types of anomalies are mainly expressed in various forms: the “V”, “W” and “U” shapes. From these anomalies and the appearance of the electrical profiles, lineaments and their orientations were identified with N90-100, N130-140, N170-180 as major orientations. Conclusion: These results could contribute to a better understanding of the fractured environment of the Gagnoa region.
文摘In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL.
文摘Environmental sound classification (ESC) has gained increasing attention in recent years. This study focuses on the evaluation of the popular public dataset Urbansound8k (Us8k) at different sampling rates using hand crafted features. The Us8k dataset contains environment sounds recorded at various sampling rates, and previous ESC works have uniformly resampled the dataset. Some previous work converted this data to different sampling rates for various reasons. Some of them chose to convert the rest of the dataset to 44,100, as the majority of the Us8k files were already at that sampling rate. On the other hand, some researchers down sampled the dataset to 8000, as it reduced computational complexity, while others resampled it to 16,000, aiming to achieve a balance between higher classification accuracy and lower computational complexity. In this research, we assessed the performance of ESC tasks using sampling rates of 8000 Hz, 16,000 Hz, and 44,100 Hz by extracting the hand crafted features Mel frequency cepstral coefficient (MFCC), gamma tone cepstral coefficients (GTCC), and Mel Spectrogram (MelSpec). The results indicated that there was no significant difference in the classification accuracy among the three tested sampling rates.
文摘There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycle them to manufacture new tires. In the present work, hydraulic concrete plates added with waste tire rubber were manufactured to modify their sound absorption capacity. It was found that the rubber additions produce changes in the density of the material and in the sound absorption capacity. When the material is exposed to high-frequency sounds that correspond to high-pitched sounds, its absorption capacity increases. On the contrary, when the test frequency is low, that is, bass sounds, the sound absorption capacity decreases. The results obtained in this work suggest that the proposed mixtures are suitable for the possible manufacture of acoustic insulating shields.
文摘Purpose: A novel image-based method for speed of sound (SoS) estimation is proposed and experimentally validated on a tissue-mimicking ultrasound phantom and normal human liver in vivo using linear and curved array transducers. Methods: When the beamforming SoS settings are adjusted to match the real tissue’s SoS, the ultrasound image at regions of interest will be in focus and the image quality will be optimal. Based on this principle, both a tissue-mimicking ultrasound phantom and normal human liver in vivo were used in this study. Ultrasound image was acquired using different SoS settings in beamforming channels ranging from 1420 m/sec to 1600 m/sec. Two regions of interest (ROIs) were selected. One was in a fully developed speckle region, while the other contained specular reflectors. We evaluated the image quality of these two ROIs in images acquired at different SoS settings in beamforming channels by using the normalized autocorrelation function (ACF) of the image data. The values of the normalized ACF at a specific lag as a function of the SoS setting were computed. Subsequently, the soft tissue’s SoS was determined from the SoS setting at the minimum value of the normalized ACF. Results: The value of the ACF as a function of the SoS setting can be computed for phantom and human liver images. SoS in soft tissue can be determined from the SoS setting at the minimum value of the normalized ACF. The estimation results show that the SoS of the tissue-mimicking phantom is 1460 m/sec, which is consistent with the phantom manufacturer’s specification, and the SoS of the normal human liver is 1540 m/sec, which is within the range of the SoS in a healthy human liver in vivo. Conclusion: Soft tissue’s SoS can be determined by analyzing the normalized ACF of ultrasound images. The method is based on searching for a minimum of the normalized ACF of ultrasound image data with a specific lag among different SoS settings in beamforming channels.
文摘目的研究在声场测试中,头戴式耳机和插入式耳机对不同频率声音的衰减作用。方法选取40名健听人,在声场条件下测试双耳裸耳听阈及双耳分别佩戴头戴式和插入式耳机双耳听阈,耳机均不给声。比较在声场条件下不同类型耳机对不同频率声音的衰减作用。结果头戴式耳机在0.25~8 kHz每倍频程的声音衰减值分别为6.13±2.40 dB HL、7.00±3.36 dB HL、12.50±3.92 dB HL、18.75±5.03 dB HL、28.25±6.56 dB HL、17.50±5.99 dB HL;插入式耳机在0.25~8 kHz每倍频程的声音衰减值分别为16.88±5.27 dB HL、18.13±5.27 dB HL、22.38±4.08 dB HL、31.25±4.49 dB HL、36.13±5.49 dB HL、35.50±6.68 dB HL。结论两种不同类型耳机对不同频率声音的衰减均有显著效果,对声音的衰减值随着频率的升高而增加,在1~8 kHz范围内效果更显著,插入式耳机的衰减效果明显优于头戴式耳机。