Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new lig...To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new light attention module,and a residue module—that are specially designed to learn the general dynamic behavior,transient disturbances,and other input factors of chemical processes,respectively.Combined with a hyperparameter optimization framework,Optuna,the effectiveness of the proposed LACG is tested by distributed control system data-driven modeling experiments on the discharge flowrate of an actual deethanization process.The LACG model provides significant advantages in prediction accuracy and model generalization compared with other models,including the feedforward neural network,convolution neural network,long short-term memory(LSTM),and attention-LSTM.Moreover,compared with the simulation results of a deethanization model built using Aspen Plus Dynamics V12.1,the LACG parameters are demonstrated to be interpretable,and more details on the variable interactions can be observed from the model parameters in comparison with the traditional interpretable model attention-LSTM.This contribution enriches interpretable machine learning knowledge and provides a reliable method with high accuracy for actual chemical process modeling,paving a route to intelligent manufacturing.展开更多
This paper explores the ethical challenges encountered by business English interpreters using Chesterman’s Model of Translation Ethics,set against the context of economic globalization and the“Belt and Road”initiat...This paper explores the ethical challenges encountered by business English interpreters using Chesterman’s Model of Translation Ethics,set against the context of economic globalization and the“Belt and Road”initiative.With the increasing demand for interpreters,the paper delves into the ongoing discussion about the role of AI in translation and its limitations,especially concerning cultural subtleties and ethical issues.It highlights the importance of human interpreters’cross-cultural understanding and the ethical principles that inform their work,such as the Ethics of Representation,Service,Communication,Norm-based Ethics,and Commitment.Moreover,the paper examines how these ethical models are applied in practical business situations,including business banquets,business negotiations,business talks and business visits,etc.,and investigates the cultural misunderstandings that may occur during these interactions.The study concludes that although AI provides efficiency and cost savings,human interpreters are essential for their capacity to handle the intricacies of cross-cultural communication with cultural awareness and ethical discernment.展开更多
Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the...Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.展开更多
Traditional visual interpretation is often inefficient due to its excessively workload professional knowledge and strong subjectivity.Therefore,building an automatic interpretation model on high spatial resolution rem...Traditional visual interpretation is often inefficient due to its excessively workload professional knowledge and strong subjectivity.Therefore,building an automatic interpretation model on high spatial resolution remote sensing images is the key to the quick and efficient interpretation of earthquake-triggered landslides.Aiming at addressing this problem,a landslide interpretation model of high-resolution images based on bag of visual word(BoVW)feature was proposed.The high-resolution images were pre-processed,and then BoVW feature and support vector machine(SVM)was adopted to establish an automatic landslide interpretation model.This model was further compared with the currently widely used Histogram of Oriented Gradient(HoG)feature extraction model.In order to test the effectiveness of the method,typical landslide images were selected to construct a landslide sample library,which was subsequently utilized as the foundation for conducting an experimental study.The results show that the accuracy of landslide extraction using this method reaches as high as 89%,indicating that the method can be used for the automatic interpretation of landslides in disaster-prone areas,and has high practical value for regional disaster prevention and damage reduction.展开更多
Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-R...Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-Red River shear zone, and connected with NW subsea basin through the Xisha Trough. Along with the rapid progress of the deepwater exploration, large amounts of high resolution geophysical and geological data were accumulated. Scientific researches about deepwater basins kept revealing brand new tectonic and sedimentary discoveries. In order to summarize the structural features and main controlling factors of the deepwater Qiongdongnan Basin, a series of researches on basin architecture, fault activities, tectonic deformation and evolution were carried out. In reference to analogue modeling experiments, a tectonic situation and a basin formation mechanism were discussed. The researches indicate that:the northern boundary of the Qiongdongnan Basin is strongly controlled by No. 2 fault. The overlapping control of two stress fields from the east and the west made the central depression zone extremely thinned. Combined with the changed stress field, the segmentation of a preexisting weakness zone made the sags in the east experiencing different rifting histories from the west ones. The NE-trending west segment of the Qiongdongnan Basin experienced strong rifting during Eocene, while the roughly EW-trending sags in the east segment show strong rifting during late Eocene and early Oligocene. Local structures such as NW-trending basal fault and inherited uplifts controlled the lateral segmentation. So first order factors such as regional stress field and preexisting weakness zone controlled the basin zonation, while the second order factors determined the segmentation from east to west.展开更多
Characterized by self-monitoring and agile adaptation to fast changing dynamics in complex production environments,smart manufacturing as envisioned under Industry 4.0 aims to improve the throughput and reliability of...Characterized by self-monitoring and agile adaptation to fast changing dynamics in complex production environments,smart manufacturing as envisioned under Industry 4.0 aims to improve the throughput and reliability of production beyond the state-of-the-art.While the widespread application of deep learning(DL)has opened up new opportunities to accomplish the goal,data quality and model interpretability have continued to present a roadblock for the widespread acceptance of DL for real-world applications.This has motivated research on two fronts:data curation,which aims to provide quality data as input for meaningful DL-based analysis,and model interpretation,which intends to reveal the physical reasoning underlying DL model outputs and promote trust from the users.This paper summarizes several key techniques in data curation where breakthroughs in data denoising,outlier detection,imputation,balancing,and semantic annotation have demonstrated the effectiveness in information extraction from noisy,incomplete,insufficient,and/or unannotated data.Also highlighted are model interpretation methods that address the“black-box”nature of DL towards model transparency.展开更多
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of...Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.展开更多
Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this ana...Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.展开更多
The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity...The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.展开更多
Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and esta...Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and established. The difference method was used to solve the problem, and pressure and pressure derivative double logarithmic curves were drawn to analyze the seepage law. The research results indicate that the influence of starting pressure gradient and medium deformation on the pressure characteristic curve is mainly manifested in the middle and late stages. The larger the value, the more obvious the upward warping of the pressure and pressure derivative curve;the parameter characterizing the dual medium is the crossflow coefficient. The channeling coefficient determines the time and location of the appearance of the “concave”. The smaller the value, the later the appearance of the “concave”, and the more to the right of the “concave”.展开更多
Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection ...Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation.展开更多
In complex media, especially for seismic prospecting in deep layers in East China and in the mountainous area in West China, due to the complex geological condition, the common-mid-point (CMP) gather of deep reflect...In complex media, especially for seismic prospecting in deep layers in East China and in the mountainous area in West China, due to the complex geological condition, the common-mid-point (CMP) gather of deep reflection event is neither hyperbolic, nor any simple function. If traditional normal move-out (NMO) and stack imaging technology are still used, it is difficult to get a clear stack image. Based on previous techniques on non-hyperbolic stack, it is thought in this paper that no matter how complex the geological condition is, in order to get an optimized stack image, the stack should be non time move-out stack, and any stacking method limited to some kind of curve will be restricted to application conditions. In order to overcome the above-mentioned limit, a new method called optimized non-hyperbolic stack imaging based on interpretation model is presented in this paper. Based on CMP/CRP (Common-Reflection-Point) gather after NMO or pre-stack migration, this method uses the interpretation model of reflectors as constraint, and takes comparability as a distinguishing criterion, and finally forms a residual move-out correction for the gather of constrained model. Numerical simulation indicates that this method could overcome the non hyperbolic problem and get fine stack image.展开更多
This paper analyzes some specific features of the numerical interpretation of high-frequency electromagnetic logging data in vertical, deviated and horizontal boreholes entering oil- and water-saturated formations. Th...This paper analyzes some specific features of the numerical interpretation of high-frequency electromagnetic logging data in vertical, deviated and horizontal boreholes entering oil- and water-saturated formations. The interpretation is based on numerical modeling for signals.展开更多
Currently the development of automatic control system is mainly based on manual design. This has made the develop-ment process complicated and has made it difficult to guarantee system requirement. This paper presents...Currently the development of automatic control system is mainly based on manual design. This has made the develop-ment process complicated and has made it difficult to guarantee system requirement. This paper presents a Model in-terpretation development architecture built on meta-models and model interpretation. In this modeling and developing process, different meta-models or domain models may be constructed in terms of various system requirements. Inter-preters are used to transform the meta-model into relevant domain model and generate some other formats from do-main models, typically with different semantic domains. An interpretation extension interface is introduced, which can be accelerated to develop the model interpreter. This development architecture can improve system reusability and en-hance development efficiency. Finally, an example is introduced to explain the advantage of method.展开更多
This paper introduces the method of note-taking based on the Gile's Effort Models,exploring how tokeep the balance of memory and note-aking in consecutive interpreting.The paper also analyses some examples tofind ...This paper introduces the method of note-taking based on the Gile's Effort Models,exploring how tokeep the balance of memory and note-aking in consecutive interpreting.The paper also analyses some examples tofind an effective way to balance the memory and note-taking in consecutive interpreting,so as to help interpreters tobetter convey the meaning of speakers accurately and quickly with the help of interpreting notes,thereby improvingthe quality of interpreting.展开更多
Developing a well-predictive machine learning model that also offers improved interpretability is a key challenge to widen the application of artificial intelligence in various application domains. In this work, we pr...Developing a well-predictive machine learning model that also offers improved interpretability is a key challenge to widen the application of artificial intelligence in various application domains. In this work, we present a Data Information integrated Neural Network (DINN) algorithm that incorporates the correlation information present in the dataset for the model development. The predictive performance of DINN is also compared with a standard artificial neural network (ANN) model. The DINN algorithm is applied on two case studies of energy systems namely energy efficiency cooling (ENC) & energy efficiency heating (ENH) of the buildings, and power generation from a 365 MW capacity industrial gas turbine. For ENC, DINN presents lower mean RMSE for testing datasets (RMSE_test = 1.23 %) in comparison with the ANN model (RMSE_test = 1.41 %). Similarly, DINN models have presented better predictive performance to model the output variables of the two case studies. The input perturbation analysis following the Gaussian distribution for noise generation reveals the order of significance of the variables, as made by DINN, can be better explained by the domain knowledge of the power generation operation of the gas turbine. This research work demonstrates the potential advantage to integrate the information present in the data for the well-predictive model development complemented with improved interpretation performance thereby opening avenues for industry-wide inclusion and other potential applications of machine learning.展开更多
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
基金support provided by the National Natural Science Foundation of China(22122802,22278044,and 21878028)the Chongqing Science Fund for Distinguished Young Scholars(CSTB2022NSCQ-JQX0021)the Fundamental Research Funds for the Central Universities(2022CDJXY-003).
文摘To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new light attention module,and a residue module—that are specially designed to learn the general dynamic behavior,transient disturbances,and other input factors of chemical processes,respectively.Combined with a hyperparameter optimization framework,Optuna,the effectiveness of the proposed LACG is tested by distributed control system data-driven modeling experiments on the discharge flowrate of an actual deethanization process.The LACG model provides significant advantages in prediction accuracy and model generalization compared with other models,including the feedforward neural network,convolution neural network,long short-term memory(LSTM),and attention-LSTM.Moreover,compared with the simulation results of a deethanization model built using Aspen Plus Dynamics V12.1,the LACG parameters are demonstrated to be interpretable,and more details on the variable interactions can be observed from the model parameters in comparison with the traditional interpretable model attention-LSTM.This contribution enriches interpretable machine learning knowledge and provides a reliable method with high accuracy for actual chemical process modeling,paving a route to intelligent manufacturing.
基金this paper is funded by Project:Teaching and Research Section of Business English Translation Course,Guangzhou Institute of Business and Technology,Quality Engineering Project (ZL 20211121).
文摘This paper explores the ethical challenges encountered by business English interpreters using Chesterman’s Model of Translation Ethics,set against the context of economic globalization and the“Belt and Road”initiative.With the increasing demand for interpreters,the paper delves into the ongoing discussion about the role of AI in translation and its limitations,especially concerning cultural subtleties and ethical issues.It highlights the importance of human interpreters’cross-cultural understanding and the ethical principles that inform their work,such as the Ethics of Representation,Service,Communication,Norm-based Ethics,and Commitment.Moreover,the paper examines how these ethical models are applied in practical business situations,including business banquets,business negotiations,business talks and business visits,etc.,and investigates the cultural misunderstandings that may occur during these interactions.The study concludes that although AI provides efficiency and cost savings,human interpreters are essential for their capacity to handle the intricacies of cross-cultural communication with cultural awareness and ethical discernment.
文摘Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.
基金the National Key R&D Program of China(2019YFC1510700)the Sichuan Science and Technology Program(2022YFS0539)the Geomatics Technology and Application Key Laboratory of Qinghai Province,China(QHDX-2018-07).
文摘Traditional visual interpretation is often inefficient due to its excessively workload professional knowledge and strong subjectivity.Therefore,building an automatic interpretation model on high spatial resolution remote sensing images is the key to the quick and efficient interpretation of earthquake-triggered landslides.Aiming at addressing this problem,a landslide interpretation model of high-resolution images based on bag of visual word(BoVW)feature was proposed.The high-resolution images were pre-processed,and then BoVW feature and support vector machine(SVM)was adopted to establish an automatic landslide interpretation model.This model was further compared with the currently widely used Histogram of Oriented Gradient(HoG)feature extraction model.In order to test the effectiveness of the method,typical landslide images were selected to construct a landslide sample library,which was subsequently utilized as the foundation for conducting an experimental study.The results show that the accuracy of landslide extraction using this method reaches as high as 89%,indicating that the method can be used for the automatic interpretation of landslides in disaster-prone areas,and has high practical value for regional disaster prevention and damage reduction.
基金The Major National Science and Technology Programs of China under contract No.2011ZX05025-003-005the Joint Program of the National Science Foundation and Guangdong Province under contract No.U1301233
文摘Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-Red River shear zone, and connected with NW subsea basin through the Xisha Trough. Along with the rapid progress of the deepwater exploration, large amounts of high resolution geophysical and geological data were accumulated. Scientific researches about deepwater basins kept revealing brand new tectonic and sedimentary discoveries. In order to summarize the structural features and main controlling factors of the deepwater Qiongdongnan Basin, a series of researches on basin architecture, fault activities, tectonic deformation and evolution were carried out. In reference to analogue modeling experiments, a tectonic situation and a basin formation mechanism were discussed. The researches indicate that:the northern boundary of the Qiongdongnan Basin is strongly controlled by No. 2 fault. The overlapping control of two stress fields from the east and the west made the central depression zone extremely thinned. Combined with the changed stress field, the segmentation of a preexisting weakness zone made the sags in the east experiencing different rifting histories from the west ones. The NE-trending west segment of the Qiongdongnan Basin experienced strong rifting during Eocene, while the roughly EW-trending sags in the east segment show strong rifting during late Eocene and early Oligocene. Local structures such as NW-trending basal fault and inherited uplifts controlled the lateral segmentation. So first order factors such as regional stress field and preexisting weakness zone controlled the basin zonation, while the second order factors determined the segmentation from east to west.
文摘Characterized by self-monitoring and agile adaptation to fast changing dynamics in complex production environments,smart manufacturing as envisioned under Industry 4.0 aims to improve the throughput and reliability of production beyond the state-of-the-art.While the widespread application of deep learning(DL)has opened up new opportunities to accomplish the goal,data quality and model interpretability have continued to present a roadblock for the widespread acceptance of DL for real-world applications.This has motivated research on two fronts:data curation,which aims to provide quality data as input for meaningful DL-based analysis,and model interpretation,which intends to reveal the physical reasoning underlying DL model outputs and promote trust from the users.This paper summarizes several key techniques in data curation where breakthroughs in data denoising,outlier detection,imputation,balancing,and semantic annotation have demonstrated the effectiveness in information extraction from noisy,incomplete,insufficient,and/or unannotated data.Also highlighted are model interpretation methods that address the“black-box”nature of DL towards model transparency.
基金supported in part by the National Natural Science Foundation of China(82072019)the Shenzhen Basic Research Program(JCYJ20210324130209023)+5 种基金the Shenzhen-Hong Kong-Macao S&T Program(Category C)(SGDX20201103095002019)the Mainland-Hong Kong Joint Funding Scheme(MHKJFS)(MHP/005/20),the Project of Strategic Importance Fund(P0035421)the Projects of RISA(P0043001)from the Hong Kong Polytechnic University,the Natural Science Foundation of Jiangsu Province(BK20201441)the Provincial and Ministry Co-constructed Project of Henan Province Medical Science and Technology Research(SBGJ202103038,SBGJ202102056)the Henan Province Key R&D and Promotion Project(Science and Technology Research)(222102310015)the Natural Science Foundation of Henan Province(222300420575),and the Henan Province Science and Technology Research(222102310322).
文摘Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.
基金Supported by the National Natural Science Foundation of China(No.51379006 and No.51009106)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-12-0404)the National Basic Research Program of China("973"Program,No.2013CB035903)
文摘Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.
基金supported by National Natural Science Foundation of China(41474115,42174155)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)。
文摘The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.
文摘Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and established. The difference method was used to solve the problem, and pressure and pressure derivative double logarithmic curves were drawn to analyze the seepage law. The research results indicate that the influence of starting pressure gradient and medium deformation on the pressure characteristic curve is mainly manifested in the middle and late stages. The larger the value, the more obvious the upward warping of the pressure and pressure derivative curve;the parameter characterizing the dual medium is the crossflow coefficient. The channeling coefficient determines the time and location of the appearance of the “concave”. The smaller the value, the later the appearance of the “concave”, and the more to the right of the “concave”.
基金This research work is supported by Sichuan Science and Technology Program(Grant No.2022YFS0586)the National Key R&D Program of China(Grant No.2019YFC1509301)the National Natural Science Foundation of China(Grant No.61976046).
文摘Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation.
文摘In complex media, especially for seismic prospecting in deep layers in East China and in the mountainous area in West China, due to the complex geological condition, the common-mid-point (CMP) gather of deep reflection event is neither hyperbolic, nor any simple function. If traditional normal move-out (NMO) and stack imaging technology are still used, it is difficult to get a clear stack image. Based on previous techniques on non-hyperbolic stack, it is thought in this paper that no matter how complex the geological condition is, in order to get an optimized stack image, the stack should be non time move-out stack, and any stacking method limited to some kind of curve will be restricted to application conditions. In order to overcome the above-mentioned limit, a new method called optimized non-hyperbolic stack imaging based on interpretation model is presented in this paper. Based on CMP/CRP (Common-Reflection-Point) gather after NMO or pre-stack migration, this method uses the interpretation model of reflectors as constraint, and takes comparability as a distinguishing criterion, and finally forms a residual move-out correction for the gather of constrained model. Numerical simulation indicates that this method could overcome the non hyperbolic problem and get fine stack image.
文摘This paper analyzes some specific features of the numerical interpretation of high-frequency electromagnetic logging data in vertical, deviated and horizontal boreholes entering oil- and water-saturated formations. The interpretation is based on numerical modeling for signals.
文摘Currently the development of automatic control system is mainly based on manual design. This has made the develop-ment process complicated and has made it difficult to guarantee system requirement. This paper presents a Model in-terpretation development architecture built on meta-models and model interpretation. In this modeling and developing process, different meta-models or domain models may be constructed in terms of various system requirements. Inter-preters are used to transform the meta-model into relevant domain model and generate some other formats from do-main models, typically with different semantic domains. An interpretation extension interface is introduced, which can be accelerated to develop the model interpreter. This development architecture can improve system reusability and en-hance development efficiency. Finally, an example is introduced to explain the advantage of method.
文摘This paper introduces the method of note-taking based on the Gile's Effort Models,exploring how tokeep the balance of memory and note-aking in consecutive interpreting.The paper also analyses some examples tofind an effective way to balance the memory and note-taking in consecutive interpreting,so as to help interpreters tobetter convey the meaning of speakers accurately and quickly with the help of interpreting notes,thereby improvingthe quality of interpreting.
文摘Developing a well-predictive machine learning model that also offers improved interpretability is a key challenge to widen the application of artificial intelligence in various application domains. In this work, we present a Data Information integrated Neural Network (DINN) algorithm that incorporates the correlation information present in the dataset for the model development. The predictive performance of DINN is also compared with a standard artificial neural network (ANN) model. The DINN algorithm is applied on two case studies of energy systems namely energy efficiency cooling (ENC) & energy efficiency heating (ENH) of the buildings, and power generation from a 365 MW capacity industrial gas turbine. For ENC, DINN presents lower mean RMSE for testing datasets (RMSE_test = 1.23 %) in comparison with the ANN model (RMSE_test = 1.41 %). Similarly, DINN models have presented better predictive performance to model the output variables of the two case studies. The input perturbation analysis following the Gaussian distribution for noise generation reveals the order of significance of the variables, as made by DINN, can be better explained by the domain knowledge of the power generation operation of the gas turbine. This research work demonstrates the potential advantage to integrate the information present in the data for the well-predictive model development complemented with improved interpretation performance thereby opening avenues for industry-wide inclusion and other potential applications of machine learning.