针对液晶显示器(LCD)面板的“Chip/FPC on Glass”(C/FOG)工艺生产制造过程中存在的计量延迟大、生产异常无法提前预测的问题,本文提出一种基于神经网络的C/FOG工艺生产制造虚拟计量方法。该方法利用生产机台上的传感器采集生产过程中...针对液晶显示器(LCD)面板的“Chip/FPC on Glass”(C/FOG)工艺生产制造过程中存在的计量延迟大、生产异常无法提前预测的问题,本文提出一种基于神经网络的C/FOG工艺生产制造虚拟计量方法。该方法利用生产机台上的传感器采集生产过程中的过程状态数据,构建基于多尺度一维卷积及通道注意力模型(MS1DC-CA)的虚拟计量模型。通过多个尺度的卷积核提取不同尺度范围内的状态数据特征。在对含有缺失值的原始数据预处理中,提出了基于粒子群算法改进的K近邻填补方法(PSO-KNN Imputation)进行缺失值填充,保留特征的同时,减少因填充值引入的干扰。最后在实际生产采集的数据上进行实验对比分析,实际不良率主要集中在0.1%~0.5%,该虚拟计量模型的拟合均方误差为0.397 7‱,低于其他现有拟合模型,在平均绝对误差、对称平均绝对百分比误差和拟合优度3种评价指标下也均优于其他现有的拟合模型,具有良好的预测性能。展开更多
With the prevalence of the Internet of Things(IoT)systems,smart cities comprise complex networks,including sensors,actuators,appliances,and cyber services.The complexity and heterogeneity of smart cities have become v...With the prevalence of the Internet of Things(IoT)systems,smart cities comprise complex networks,including sensors,actuators,appliances,and cyber services.The complexity and heterogeneity of smart cities have become vulnerable to sophisticated cyber-attacks,especially privacy-related attacks such as inference and data poisoning ones.Federated Learning(FL)has been regarded as a hopeful method to enable distributed learning with privacypreserved intelligence in IoT applications.Even though the significance of developing privacy-preserving FL has drawn as a great research interest,the current research only concentrates on FL with independent identically distributed(i.i.d)data and few studies have addressed the non-i.i.d setting.FL is known to be vulnerable to Generative Adversarial Network(GAN)attacks,where an adversary can presume to act as a contributor participating in the training process to acquire the private data of other contributors.This paper proposes an innovative Privacy Protection-based Federated Deep Learning(PP-FDL)framework,which accomplishes data protection against privacy-related GAN attacks,along with high classification rates from non-i.i.d data.PP-FDL is designed to enable fog nodes to cooperate to train the FDL model in a way that ensures contributors have no access to the data of each other,where class probabilities are protected utilizing a private identifier generated for each class.The PP-FDL framework is evaluated for image classification using simple convolutional networks which are trained using MNIST and CIFAR-10 datasets.The empirical results have revealed that PF-DFL can achieve data protection and the framework outperforms the other three state-of-the-art models with 3%–8%as accuracy improvements.展开更多
The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and th...The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and threats.Many interesting Intrusion Detection Systems(IDSs)are presented based on machine learning(ML)techniques to overcome this problem.Given the resource limitations of fog computing environments,a lightweight IDS is essential.This paper introduces a hybrid deep learning(DL)method that combines convolutional neural networks(CNN)and long short-term memory(LSTM)to build an energy-aware,anomaly-based IDS.We test this system on a recent dataset,focusing on reducing overhead while maintaining high accuracy and a low false alarm rate.We compare CICIoT2023,KDD-99 and NSL-KDD datasets to evaluate the performance of the proposed IDS model based on key metrics,including latency,energy consumption,false alarm rate and detection rate metrics.Our findings show an accuracy rate over 92%and a false alarm rate below 0.38%.These results demonstrate that our system provides strong security without excessive resource use.The practicality of deploying IDS with limited resources is demonstrated by the successful implementation of IDS functionality on a Raspberry Pi acting as a Fog node.The proposed lightweight model,with a maximum power consumption of 6.12 W,demonstrates its potential to operate effectively on energy-limited devices such as low-power fog nodes or edge devices.We prioritize energy efficiency whilemaintaining high accuracy,distinguishing our scheme fromexisting approaches.Extensive experiments demonstrate a significant reduction in false positives,ensuring accurate identification of genuine security threats while minimizing unnecessary alerts.展开更多
Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this pap...Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this paper,we introduce a blockchain-enabled three-layer device-fog-cloud heterogeneous network.A reputation model is proposed to update the credibility of the fog nodes(FN),which is used to select blockchain nodes(BN)from FNs to participate in the consensus process.According to the Rivest-Shamir-Adleman(RSA)encryption algorithm applied to the blockchain system,FNs could verify the identity of the node through its public key to avoid malicious attacks.Additionally,to reduce the computation complexity of the consensus algorithms and the network overhead,we propose a dynamic offloading and resource allocation(DORA)algorithm and a reputation-based democratic byzantine fault tolerant(R-DBFT)algorithm to optimize the offloading decisions and decrease the number of BNs in the consensus algorithm while ensuring the network security.Simulation results demonstrate that the proposed algorithm could efficiently reduce the network overhead,and obtain a considerable performance improvement compared to the related algorithms in the previous literature.展开更多
Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the ima...Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the image by the universal detection network.Thus,a dual subnet based on multi-task collaborative training(DSMCT)is proposed in this paper.Firstly,in the training phase,the Gated Context Aggregation Network(GCANet)is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes.In the test phase,only the YOLOX branch needs to be activated to ensure the detection speed of the model.Secondly,the deformable convolution module is used to improve GCANet to enhance the model’s ability to capture details of non-homogeneous fog.Finally,the Coordinate Attention mechanism is introduced into the Vision Transformer and the backbone network of YOLOX is redesigned.In this way,the feature extraction ability of the network for deep-level information can be enhanced.The experimental results on artificial fog data set FOG_VOC and real fog data set RTTS show that the map value of DSMCT reached 86.56%and 62.39%,respectively,which was 2.27%and 4.41%higher than the current most advanced detection model.The DSMCT network has high practicality and effectiveness for target detection in real foggy scenes.展开更多
The Advanced Metering Infrastructure(AMI),as a crucial subsystem in the smart grid,is responsible for measuring user electricity consumption and plays a vital role in communication between providers and consumers.Howe...The Advanced Metering Infrastructure(AMI),as a crucial subsystem in the smart grid,is responsible for measuring user electricity consumption and plays a vital role in communication between providers and consumers.However,with the advancement of information and communication technology,new security and privacy challenges have emerged for AMI.To address these challenges and enhance the security and privacy of user data in the smart grid,a Hierarchical Privacy Protection Model in Advanced Metering Infrastructure based on Cloud and Fog Assistance(HPPM-AMICFA)is proposed in this paper.The proposed model integrates cloud and fog computing with hierarchical threshold encryption,offering a flexible and efficient privacy protection solution that significantly enhances data security in the smart grid.The methodology involves setting user protection levels by processing missing data and utilizing fuzzy comprehensive analysis to evaluate user importance,thereby assigning appropriate protection levels.Furthermore,a hierarchical threshold encryption algorithm is developed to provide differentiated protection strategies for fog nodes based on user IDs,ensuring secure aggregation and encryption of user data.Experimental results demonstrate that HPPM-AMICFA effectively resists various attack strategies while minimizing time costs,thereby safeguarding user data in the smart grid.展开更多
More devices in the Intelligent Internet of Things(AIoT)result in an increased number of tasks that require low latency and real-time responsiveness,leading to an increased demand for computational resources.Cloud com...More devices in the Intelligent Internet of Things(AIoT)result in an increased number of tasks that require low latency and real-time responsiveness,leading to an increased demand for computational resources.Cloud computing’s low-latency performance issues in AIoT scenarios have led researchers to explore fog computing as a complementary extension.However,the effective allocation of resources for task execution within fog environments,characterized by limitations and heterogeneity in computational resources,remains a formidable challenge.To tackle this challenge,in this study,we integrate fog computing and cloud computing.We begin by establishing a fog-cloud environment framework,followed by the formulation of a mathematical model for task scheduling.Lastly,we introduce an enhanced hybrid Equilibrium Optimizer(EHEO)tailored for AIoT task scheduling.The overarching objective is to decrease both the makespan and energy consumption of the fog-cloud system while accounting for task deadlines.The proposed EHEO method undergoes a thorough evaluation against multiple benchmark algorithms,encompassing metrics likemakespan,total energy consumption,success rate,and average waiting time.Comprehensive experimental results unequivocally demonstrate the superior performance of EHEO across all assessed metrics.Notably,in the most favorable conditions,EHEO significantly diminishes both the makespan and energy consumption by approximately 50%and 35.5%,respectively,compared to the secondbest performing approach,which affirms its efficacy in advancing the efficiency of AIoT task scheduling within fog-cloud networks.展开更多
Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.How...Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.However,the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes,thus making the application placement problem more complex than that in cloud computing.An approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the placement of applications and services while minimizing costs.This approach is particularly relevant in scenarios where latency,resource constraints,and cost considerations are crucial factors for the deployment of applications.In this study,we propose a hybrid approach that combines a genetic algorithm(GA)with the Flamingo Search Algorithm(FSA)to place application modules while minimizing cost.We consider four cost-types for application deployment:Computation,communication,energy consumption,and violations.The proposed hybrid approach is called GA-FSA and is designed to place the application modules considering the deadline of the application and deploy them appropriately to fog or cloud nodes to curtail the overall cost of the system.An extensive simulation is conducted to assess the performance of the proposed approach compared to other state-of-the-art approaches.The results demonstrate that GA-FSA approach is superior to the other approaches with respect to task guarantee ratio(TGR)and total cost.展开更多
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications...In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.展开更多
The purpose of this study is to compare the results of chemical analysis of two types of activated from the pyrolysis of bull horn and that of cow. Six samples were used to measure pH, carbon, calcium and to determine...The purpose of this study is to compare the results of chemical analysis of two types of activated from the pyrolysis of bull horn and that of cow. Six samples were used to measure pH, carbon, calcium and to determine adsorbent power. The pH was measured at a temperature of 20˚C using an “ANION 7010 ionomer” pH meter, the carbon (C) content was analyzed using a “EURO EA 3000” analyzer. and the electronic balance: “Sartorius CP-2P”, calcium (Ca) was analyzed using a DFS-8 spectrograph. For the adsorbency test, the 0.15% methylene blue R solution was used. At the end of this study, we found that the activated carbon from the bull horn demonstrated a carbon content that is higher than that of the cow horn (20.79% against 15.63%), activated carbon of cow horn is richer in calcium than that of bull horn (16.27% against 3.69%) and then the pH. The cow horn is higher than that of the bull horn (7.43 versus 6.5). For the adsorbent power, the sample (75% bull horn and 25% cow horn) was recorded with the greatest adsorbent power. Thus, from this study, it can be recommended as an activated carbon antidote to be used for poisonings treatment.展开更多
In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a f...In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a focus on the area over the Yellow Sea and the Bohai Sea(32°-42°N,117°-127°E).The objective was to develop an algorithm for fusing and segmenting multi-channel images from geostationary meteorological satellites,specifically for monitoring sea fog in this region.Firstly,the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the Himawari-8 satellite for sea fog detection,and we found that the top three channels in order of importance were channels 3,4,and 14,which were fused into false color daytime images,while channels 7,13,and 15 were fused into false color nighttime images.Secondly,the simple linear iterative super-pixel clustering algorithm was used for the pixel-level segmentation of false color images,and based on super-pixel blocks,manual sea-fog annotation was performed to obtain fine-grained annotation labels.The deep convolutional neural network D-LinkNet was built on the ResNet backbone and the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine structure with five branches having different depths and receptive fields.Results show that the accuracy rate of fog area(proportion of detected real fog to detected fog)was 66.5%,the recognition rate of fog zone(proportion of detected real fog to real fog or cloud cover)was 51.9%,and the detection accuracy rate(proportion of samples detected correctly to total samples)was 93.2%.展开更多
Salvaged cow horns from slaughterhouses have been transformed into fine particles for a physical characterization that has led us to determine the humidity rate (2.34% ± 0.054%), the actual density situated betwe...Salvaged cow horns from slaughterhouses have been transformed into fine particles for a physical characterization that has led us to determine the humidity rate (2.34% ± 0.054%), the actual density situated between 0.586 g/cm<sup>3</sup> and 0.732 g/cm<sup>3</sup>, the swelling rate (12%), and one chemical characterization that permitted us to determine the rate of dry matters (97.05%), of mineral matters (2.5%), of protein matters (94.52%). From these weak values, it can easily be seen that cow horn case doesn’t absorb much water and improve the mechanical characteristics of the composite;the high rate of protein shows that keratin which is the structural molecule favors its gripping as reinforcing element in the manufacturing of composite materials.展开更多
Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/f...Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/fog computing traffic surveillance and monitoring systems.Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time.To evaluate vision-based vehicle detection performance in foggy weather conditions,state-of-the-art Vehicle Detection in Adverse Weather Nature(DAWN)and Foggy Driving(FD)datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle detection classes:cars,buses,motorcycles,and trucks.The state-of-the-art single-stage deep learning algorithms YOLO-V5,and YOLO-V8 are considered for the task of vehicle detection.Furthermore,YOLO-V5s is enhanced by introducing attention modules Convolutional Block Attention Module(CBAM),Normalized-based Attention Module(NAM),and Simple Attention Module(SimAM)after the SPPF module as well as YOLO-V5l with BiFPN.Their vehicle detection accuracy parameters and running speed is validated on cloud(Google Colab)and edge(local)systems.The mAP50 score of YOLO-V5n is 72.60%,YOLOV5s is 75.20%,YOLO-V5m is 73.40%,and YOLO-V5l is 77.30%;and YOLO-V8n is 60.20%,YOLO-V8s is 73.50%,YOLO-V8m is 73.80%,and YOLO-V8l is 72.60%on DAWN dataset.The mAP50 score of YOLO-V5n is 43.90%,YOLO-V5s is 40.10%,YOLO-V5m is 49.70%,and YOLO-V5l is 57.30%;and YOLO-V8n is 41.60%,YOLO-V8s is 46.90%,YOLO-V8m is 42.90%,and YOLO-V8l is 44.80%on FD dataset.The vehicle detection speed of YOLOV5n is 59 Frame Per Seconds(FPS),YOLO-V5s is 47 FPS,YOLO-V5m is 38 FPS,and YOLO-V5l is 30 FPS;and YOLO-V8n is 185 FPS,YOLO-V8s is 109 FPS,YOLO-V8m is 72 FPS,and YOLO-V8l is 63 FPS on DAWN dataset.The vehicle detection speed of YOLO-V5n is 26 FPS,YOLO-V5s is 24 FPS,YOLO-V5m is 22 FPS,and YOLO-V5l is 17 FPS;and YOLO-V8n is 313 FPS,YOLO-V8s is 182 FPS,YOLO-V8m is 99 FPS,and YOLO-V8l is 60 FPS on FD dataset.YOLO-V5s,YOLO-V5s variants and YOLO-V5l_BiFPN,and YOLO-V8 algorithms are efficient and cost-effective solution for real-time vision-based vehicle detection in foggy weather.展开更多
In fog, visibility is reduced. This reduction in visibility is measured by the meteorological optical range (MOR), which is important for studying human perception and various sensors in foggy conditions. The Cerema P...In fog, visibility is reduced. This reduction in visibility is measured by the meteorological optical range (MOR), which is important for studying human perception and various sensors in foggy conditions. The Cerema PAVIN Fog & Rain platform is capable of producing calibrated fog in order to better analyses it and understand its consequences. The problem is that the droplets produced by the platform are not large enough to resemble real fog. This can have a major impact on measurements since the interaction between electromagnetic waves and fog depends on the wavelength and diameter of the droplets. To remedy this, Cerema is building a new platform with new equipment capable of generating fog. This study analyses different nozzles and associated usage parameters such as the type of water used and the pressure used. The aim is to select the best nozzle with the associated parameters for producing large-diameter droplets and therefore more realistic fog.展开更多
With the rapid development of industrialisation and urbanisation, China is facing the challenge of severe HF (Haze-Fog) pollution. This essay compares the advantages and disadvantages of China’s HF management and sum...With the rapid development of industrialisation and urbanisation, China is facing the challenge of severe HF (Haze-Fog) pollution. This essay compares the advantages and disadvantages of China’s HF management and summarizes the important lessons China can teach the rest of the world about applying this tactic. China’s capabilities in the digital economy, National Innovation Demonstration Zones, and urban innovation systems are examined in this article, along with its shortcomings in information mechanisms and pollution sources. This essay also summarizes China’s achievements, particularly regarding local autonomy. The essay goes on to say, however, that China is probably going to be under more pressure to manage HF in the future, both in terms of long-term solutions and the economy.展开更多
With the rapid evolution of Internet technology,fog computing has taken a major role in managing large amounts of data.The major concerns in this domain are security and privacy.Therefore,attaining a reliable level of...With the rapid evolution of Internet technology,fog computing has taken a major role in managing large amounts of data.The major concerns in this domain are security and privacy.Therefore,attaining a reliable level of confidentiality in the fog computing environment is a pivotal task.Among different types of data stored in the fog,the 3D point and mesh fog data are increasingly popular in recent days,due to the growth of 3D modelling and 3D printing technologies.Hence,in this research,we propose a novel scheme for preserving the privacy of 3D point and mesh fog data.Chaotic Cat mapbased data encryption is a recently trending research area due to its unique properties like pseudo-randomness,deterministic nature,sensitivity to initial conditions,ergodicity,etc.To boost encryption efficiency significantly,in this work,we propose a novel Chaotic Cat map.The sequence generated by this map is used to transform the coordinates of the fog data.The improved range of the proposed map is depicted using bifurcation analysis.The quality of the proposed Chaotic Cat map is also analyzed using metrics like Lyapunov exponent and approximate entropy.We also demonstrate the performance of the proposed encryption framework using attacks like brute-force attack and statistical attack.The experimental results clearly depict that the proposed framework produces the best results compared to the previous works in the literature.展开更多
As an essential component of intelligent transportation systems(ITS),electric vehicles(EVs)can store massive amounts of electric power in their batteries and send power back to a charging station(CS)at peak hours to b...As an essential component of intelligent transportation systems(ITS),electric vehicles(EVs)can store massive amounts of electric power in their batteries and send power back to a charging station(CS)at peak hours to balance the power supply and generate profits.However,when the system collects the corresponding power data,several severe security and privacy issues are encountered.The identity and private injection data may be maliciously intercepted by network attackers and be tampered with to damage the services of ITS and smart grids.Existing approaches requiring high computational overhead render them unsuitable for the resource-constrained Internet of Things(IoT)environment.To address above problems,this paper proposes a blockchain-enabled secure and privacy-preserving data aggregation scheme for fog-based ITS.First,a fog computing and blockchain co-aware aggregation framework of power injection data is designed,which provides strong support for ITS to achieve secure and efficient power injection.Second,Paillier homomorphic encryption,the batch aggregation signature mechanism and a Bloom filter are effectively integrated with efficient aggregation of power injection data with security and privacy guarantees.In addition,the fine-grained homomorphic aggregation is designed for power injection data generated by all EVs,which provides solid data support for accurate power dispatching and supply management in ITS.Experiments show that the total computational cost is significantly reduced in the proposed scheme while providing security and privacy guarantees.The proposed scheme is more suitable for ITS with latency-sensitive applications and is also adapted to deploying devices with limited resources.展开更多
Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be...Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be re-expanded when reinnervation is allowed.RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration.However,the role of RhoA in dendrite degeneration and regeneration is unknown.In this study,we explored the potential role of RhoA in dendrites.A line of motor neuronal conditional knockout mice was developed by crossbreeding HB9~(Cre+)mice with RhoA~(flox/flox)mice.We established two models for assaying dendrite degeneration and regeneration,in which the brachial plexus was transection or crush injured,respectively.We found that at 28 days after brachial plexus transection,the density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice.Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28–56 days.The density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice.These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury.展开更多
文摘针对液晶显示器(LCD)面板的“Chip/FPC on Glass”(C/FOG)工艺生产制造过程中存在的计量延迟大、生产异常无法提前预测的问题,本文提出一种基于神经网络的C/FOG工艺生产制造虚拟计量方法。该方法利用生产机台上的传感器采集生产过程中的过程状态数据,构建基于多尺度一维卷积及通道注意力模型(MS1DC-CA)的虚拟计量模型。通过多个尺度的卷积核提取不同尺度范围内的状态数据特征。在对含有缺失值的原始数据预处理中,提出了基于粒子群算法改进的K近邻填补方法(PSO-KNN Imputation)进行缺失值填充,保留特征的同时,减少因填充值引入的干扰。最后在实际生产采集的数据上进行实验对比分析,实际不良率主要集中在0.1%~0.5%,该虚拟计量模型的拟合均方误差为0.397 7‱,低于其他现有拟合模型,在平均绝对误差、对称平均绝对百分比误差和拟合优度3种评价指标下也均优于其他现有的拟合模型,具有良好的预测性能。
文摘With the prevalence of the Internet of Things(IoT)systems,smart cities comprise complex networks,including sensors,actuators,appliances,and cyber services.The complexity and heterogeneity of smart cities have become vulnerable to sophisticated cyber-attacks,especially privacy-related attacks such as inference and data poisoning ones.Federated Learning(FL)has been regarded as a hopeful method to enable distributed learning with privacypreserved intelligence in IoT applications.Even though the significance of developing privacy-preserving FL has drawn as a great research interest,the current research only concentrates on FL with independent identically distributed(i.i.d)data and few studies have addressed the non-i.i.d setting.FL is known to be vulnerable to Generative Adversarial Network(GAN)attacks,where an adversary can presume to act as a contributor participating in the training process to acquire the private data of other contributors.This paper proposes an innovative Privacy Protection-based Federated Deep Learning(PP-FDL)framework,which accomplishes data protection against privacy-related GAN attacks,along with high classification rates from non-i.i.d data.PP-FDL is designed to enable fog nodes to cooperate to train the FDL model in a way that ensures contributors have no access to the data of each other,where class probabilities are protected utilizing a private identifier generated for each class.The PP-FDL framework is evaluated for image classification using simple convolutional networks which are trained using MNIST and CIFAR-10 datasets.The empirical results have revealed that PF-DFL can achieve data protection and the framework outperforms the other three state-of-the-art models with 3%–8%as accuracy improvements.
基金supported by the interdisciplinary center of smart mobility and logistics at King Fahd University of Petroleum and Minerals(Grant number INML2400).
文摘The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and threats.Many interesting Intrusion Detection Systems(IDSs)are presented based on machine learning(ML)techniques to overcome this problem.Given the resource limitations of fog computing environments,a lightweight IDS is essential.This paper introduces a hybrid deep learning(DL)method that combines convolutional neural networks(CNN)and long short-term memory(LSTM)to build an energy-aware,anomaly-based IDS.We test this system on a recent dataset,focusing on reducing overhead while maintaining high accuracy and a low false alarm rate.We compare CICIoT2023,KDD-99 and NSL-KDD datasets to evaluate the performance of the proposed IDS model based on key metrics,including latency,energy consumption,false alarm rate and detection rate metrics.Our findings show an accuracy rate over 92%and a false alarm rate below 0.38%.These results demonstrate that our system provides strong security without excessive resource use.The practicality of deploying IDS with limited resources is demonstrated by the successful implementation of IDS functionality on a Raspberry Pi acting as a Fog node.The proposed lightweight model,with a maximum power consumption of 6.12 W,demonstrates its potential to operate effectively on energy-limited devices such as low-power fog nodes or edge devices.We prioritize energy efficiency whilemaintaining high accuracy,distinguishing our scheme fromexisting approaches.Extensive experiments demonstrate a significant reduction in false positives,ensuring accurate identification of genuine security threats while minimizing unnecessary alerts.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62371082 and 62001076in part by the National Key R&D Program of China under Grant 2021YFB1714100in part by the Natural Science Foundation of Chongqing under Grant CSTB2023NSCQ-MSX0726 and cstc2020jcyjmsxmX0878.
文摘Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this paper,we introduce a blockchain-enabled three-layer device-fog-cloud heterogeneous network.A reputation model is proposed to update the credibility of the fog nodes(FN),which is used to select blockchain nodes(BN)from FNs to participate in the consensus process.According to the Rivest-Shamir-Adleman(RSA)encryption algorithm applied to the blockchain system,FNs could verify the identity of the node through its public key to avoid malicious attacks.Additionally,to reduce the computation complexity of the consensus algorithms and the network overhead,we propose a dynamic offloading and resource allocation(DORA)algorithm and a reputation-based democratic byzantine fault tolerant(R-DBFT)algorithm to optimize the offloading decisions and decrease the number of BNs in the consensus algorithm while ensuring the network security.Simulation results demonstrate that the proposed algorithm could efficiently reduce the network overhead,and obtain a considerable performance improvement compared to the related algorithms in the previous literature.
基金This work was jointly supported by the Special Fund for Transformation and Upgrade of Jiangsu Industry and Information Industry-Key Core Technologies(Equipment)Key Industrialization Projects in 2022(No.CMHI-2022-RDG-004):“Key Technology Research for Development of Intelligent Wind Power Operation and Maintenance Mothership in Deep Sea”.
文摘Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the image by the universal detection network.Thus,a dual subnet based on multi-task collaborative training(DSMCT)is proposed in this paper.Firstly,in the training phase,the Gated Context Aggregation Network(GCANet)is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes.In the test phase,only the YOLOX branch needs to be activated to ensure the detection speed of the model.Secondly,the deformable convolution module is used to improve GCANet to enhance the model’s ability to capture details of non-homogeneous fog.Finally,the Coordinate Attention mechanism is introduced into the Vision Transformer and the backbone network of YOLOX is redesigned.In this way,the feature extraction ability of the network for deep-level information can be enhanced.The experimental results on artificial fog data set FOG_VOC and real fog data set RTTS show that the map value of DSMCT reached 86.56%and 62.39%,respectively,which was 2.27%and 4.41%higher than the current most advanced detection model.The DSMCT network has high practicality and effectiveness for target detection in real foggy scenes.
基金This research was funded by the National Natural Science Foundation of China(Grant Number 61902069)Natural Science Foundation of Fujian Province of China(Grant Number 2021J011068)+1 种基金Research Initiation Fund Program of Fujian University of Technology(GY-S24002,GY-Z21048)Fujian Provincial Department of Science and Technology Industrial Guidance Project(Grant Number 2022H0025).
文摘The Advanced Metering Infrastructure(AMI),as a crucial subsystem in the smart grid,is responsible for measuring user electricity consumption and plays a vital role in communication between providers and consumers.However,with the advancement of information and communication technology,new security and privacy challenges have emerged for AMI.To address these challenges and enhance the security and privacy of user data in the smart grid,a Hierarchical Privacy Protection Model in Advanced Metering Infrastructure based on Cloud and Fog Assistance(HPPM-AMICFA)is proposed in this paper.The proposed model integrates cloud and fog computing with hierarchical threshold encryption,offering a flexible and efficient privacy protection solution that significantly enhances data security in the smart grid.The methodology involves setting user protection levels by processing missing data and utilizing fuzzy comprehensive analysis to evaluate user importance,thereby assigning appropriate protection levels.Furthermore,a hierarchical threshold encryption algorithm is developed to provide differentiated protection strategies for fog nodes based on user IDs,ensuring secure aggregation and encryption of user data.Experimental results demonstrate that HPPM-AMICFA effectively resists various attack strategies while minimizing time costs,thereby safeguarding user data in the smart grid.
基金in part by the Hubei Natural Science and Research Project under Grant 2020418in part by the 2021 Light of Taihu Science and Technology Projectin part by the 2022 Wuxi Science and Technology Innovation and Entrepreneurship Program.
文摘More devices in the Intelligent Internet of Things(AIoT)result in an increased number of tasks that require low latency and real-time responsiveness,leading to an increased demand for computational resources.Cloud computing’s low-latency performance issues in AIoT scenarios have led researchers to explore fog computing as a complementary extension.However,the effective allocation of resources for task execution within fog environments,characterized by limitations and heterogeneity in computational resources,remains a formidable challenge.To tackle this challenge,in this study,we integrate fog computing and cloud computing.We begin by establishing a fog-cloud environment framework,followed by the formulation of a mathematical model for task scheduling.Lastly,we introduce an enhanced hybrid Equilibrium Optimizer(EHEO)tailored for AIoT task scheduling.The overarching objective is to decrease both the makespan and energy consumption of the fog-cloud system while accounting for task deadlines.The proposed EHEO method undergoes a thorough evaluation against multiple benchmark algorithms,encompassing metrics likemakespan,total energy consumption,success rate,and average waiting time.Comprehensive experimental results unequivocally demonstrate the superior performance of EHEO across all assessed metrics.Notably,in the most favorable conditions,EHEO significantly diminishes both the makespan and energy consumption by approximately 50%and 35.5%,respectively,compared to the secondbest performing approach,which affirms its efficacy in advancing the efficiency of AIoT task scheduling within fog-cloud networks.
基金supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.However,the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes,thus making the application placement problem more complex than that in cloud computing.An approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the placement of applications and services while minimizing costs.This approach is particularly relevant in scenarios where latency,resource constraints,and cost considerations are crucial factors for the deployment of applications.In this study,we propose a hybrid approach that combines a genetic algorithm(GA)with the Flamingo Search Algorithm(FSA)to place application modules while minimizing cost.We consider four cost-types for application deployment:Computation,communication,energy consumption,and violations.The proposed hybrid approach is called GA-FSA and is designed to place the application modules considering the deadline of the application and deploy them appropriately to fog or cloud nodes to curtail the overall cost of the system.An extensive simulation is conducted to assess the performance of the proposed approach compared to other state-of-the-art approaches.The results demonstrate that GA-FSA approach is superior to the other approaches with respect to task guarantee ratio(TGR)and total cost.
基金This work was supported in part by the National Science and Technology Council of Taiwan,under Contract NSTC 112-2410-H-324-001-MY2.
文摘In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.
文摘The purpose of this study is to compare the results of chemical analysis of two types of activated from the pyrolysis of bull horn and that of cow. Six samples were used to measure pH, carbon, calcium and to determine adsorbent power. The pH was measured at a temperature of 20˚C using an “ANION 7010 ionomer” pH meter, the carbon (C) content was analyzed using a “EURO EA 3000” analyzer. and the electronic balance: “Sartorius CP-2P”, calcium (Ca) was analyzed using a DFS-8 spectrograph. For the adsorbency test, the 0.15% methylene blue R solution was used. At the end of this study, we found that the activated carbon from the bull horn demonstrated a carbon content that is higher than that of the cow horn (20.79% against 15.63%), activated carbon of cow horn is richer in calcium than that of bull horn (16.27% against 3.69%) and then the pH. The cow horn is higher than that of the bull horn (7.43 versus 6.5). For the adsorbent power, the sample (75% bull horn and 25% cow horn) was recorded with the greatest adsorbent power. Thus, from this study, it can be recommended as an activated carbon antidote to be used for poisonings treatment.
基金National Key R&D Program of China(2021YFC3000905)Open Research Program of the State Key Laboratory of Severe Weather(2022LASW-B09)National Natural Science Foundation of China(42375010)。
文摘In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a focus on the area over the Yellow Sea and the Bohai Sea(32°-42°N,117°-127°E).The objective was to develop an algorithm for fusing and segmenting multi-channel images from geostationary meteorological satellites,specifically for monitoring sea fog in this region.Firstly,the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the Himawari-8 satellite for sea fog detection,and we found that the top three channels in order of importance were channels 3,4,and 14,which were fused into false color daytime images,while channels 7,13,and 15 were fused into false color nighttime images.Secondly,the simple linear iterative super-pixel clustering algorithm was used for the pixel-level segmentation of false color images,and based on super-pixel blocks,manual sea-fog annotation was performed to obtain fine-grained annotation labels.The deep convolutional neural network D-LinkNet was built on the ResNet backbone and the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine structure with five branches having different depths and receptive fields.Results show that the accuracy rate of fog area(proportion of detected real fog to detected fog)was 66.5%,the recognition rate of fog zone(proportion of detected real fog to real fog or cloud cover)was 51.9%,and the detection accuracy rate(proportion of samples detected correctly to total samples)was 93.2%.
文摘Salvaged cow horns from slaughterhouses have been transformed into fine particles for a physical characterization that has led us to determine the humidity rate (2.34% ± 0.054%), the actual density situated between 0.586 g/cm<sup>3</sup> and 0.732 g/cm<sup>3</sup>, the swelling rate (12%), and one chemical characterization that permitted us to determine the rate of dry matters (97.05%), of mineral matters (2.5%), of protein matters (94.52%). From these weak values, it can easily be seen that cow horn case doesn’t absorb much water and improve the mechanical characteristics of the composite;the high rate of protein shows that keratin which is the structural molecule favors its gripping as reinforcing element in the manufacturing of composite materials.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-RG23129).
文摘Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/fog computing traffic surveillance and monitoring systems.Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time.To evaluate vision-based vehicle detection performance in foggy weather conditions,state-of-the-art Vehicle Detection in Adverse Weather Nature(DAWN)and Foggy Driving(FD)datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle detection classes:cars,buses,motorcycles,and trucks.The state-of-the-art single-stage deep learning algorithms YOLO-V5,and YOLO-V8 are considered for the task of vehicle detection.Furthermore,YOLO-V5s is enhanced by introducing attention modules Convolutional Block Attention Module(CBAM),Normalized-based Attention Module(NAM),and Simple Attention Module(SimAM)after the SPPF module as well as YOLO-V5l with BiFPN.Their vehicle detection accuracy parameters and running speed is validated on cloud(Google Colab)and edge(local)systems.The mAP50 score of YOLO-V5n is 72.60%,YOLOV5s is 75.20%,YOLO-V5m is 73.40%,and YOLO-V5l is 77.30%;and YOLO-V8n is 60.20%,YOLO-V8s is 73.50%,YOLO-V8m is 73.80%,and YOLO-V8l is 72.60%on DAWN dataset.The mAP50 score of YOLO-V5n is 43.90%,YOLO-V5s is 40.10%,YOLO-V5m is 49.70%,and YOLO-V5l is 57.30%;and YOLO-V8n is 41.60%,YOLO-V8s is 46.90%,YOLO-V8m is 42.90%,and YOLO-V8l is 44.80%on FD dataset.The vehicle detection speed of YOLOV5n is 59 Frame Per Seconds(FPS),YOLO-V5s is 47 FPS,YOLO-V5m is 38 FPS,and YOLO-V5l is 30 FPS;and YOLO-V8n is 185 FPS,YOLO-V8s is 109 FPS,YOLO-V8m is 72 FPS,and YOLO-V8l is 63 FPS on DAWN dataset.The vehicle detection speed of YOLO-V5n is 26 FPS,YOLO-V5s is 24 FPS,YOLO-V5m is 22 FPS,and YOLO-V5l is 17 FPS;and YOLO-V8n is 313 FPS,YOLO-V8s is 182 FPS,YOLO-V8m is 99 FPS,and YOLO-V8l is 60 FPS on FD dataset.YOLO-V5s,YOLO-V5s variants and YOLO-V5l_BiFPN,and YOLO-V8 algorithms are efficient and cost-effective solution for real-time vision-based vehicle detection in foggy weather.
文摘In fog, visibility is reduced. This reduction in visibility is measured by the meteorological optical range (MOR), which is important for studying human perception and various sensors in foggy conditions. The Cerema PAVIN Fog & Rain platform is capable of producing calibrated fog in order to better analyses it and understand its consequences. The problem is that the droplets produced by the platform are not large enough to resemble real fog. This can have a major impact on measurements since the interaction between electromagnetic waves and fog depends on the wavelength and diameter of the droplets. To remedy this, Cerema is building a new platform with new equipment capable of generating fog. This study analyses different nozzles and associated usage parameters such as the type of water used and the pressure used. The aim is to select the best nozzle with the associated parameters for producing large-diameter droplets and therefore more realistic fog.
文摘With the rapid development of industrialisation and urbanisation, China is facing the challenge of severe HF (Haze-Fog) pollution. This essay compares the advantages and disadvantages of China’s HF management and summarizes the important lessons China can teach the rest of the world about applying this tactic. China’s capabilities in the digital economy, National Innovation Demonstration Zones, and urban innovation systems are examined in this article, along with its shortcomings in information mechanisms and pollution sources. This essay also summarizes China’s achievements, particularly regarding local autonomy. The essay goes on to say, however, that China is probably going to be under more pressure to manage HF in the future, both in terms of long-term solutions and the economy.
基金This work was supprted by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R151),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘With the rapid evolution of Internet technology,fog computing has taken a major role in managing large amounts of data.The major concerns in this domain are security and privacy.Therefore,attaining a reliable level of confidentiality in the fog computing environment is a pivotal task.Among different types of data stored in the fog,the 3D point and mesh fog data are increasingly popular in recent days,due to the growth of 3D modelling and 3D printing technologies.Hence,in this research,we propose a novel scheme for preserving the privacy of 3D point and mesh fog data.Chaotic Cat mapbased data encryption is a recently trending research area due to its unique properties like pseudo-randomness,deterministic nature,sensitivity to initial conditions,ergodicity,etc.To boost encryption efficiency significantly,in this work,we propose a novel Chaotic Cat map.The sequence generated by this map is used to transform the coordinates of the fog data.The improved range of the proposed map is depicted using bifurcation analysis.The quality of the proposed Chaotic Cat map is also analyzed using metrics like Lyapunov exponent and approximate entropy.We also demonstrate the performance of the proposed encryption framework using attacks like brute-force attack and statistical attack.The experimental results clearly depict that the proposed framework produces the best results compared to the previous works in the literature.
基金The authors received Funding for this study from the National Natural Science Foundation of China(No.61971235)the China Postdoctoral Science Foundation(No.2018M630590)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(No.2021K501C)the 333 High-level Talents Training Project of Jiangsu Province,and the 1311 Talents Plan of NJUPT.
文摘As an essential component of intelligent transportation systems(ITS),electric vehicles(EVs)can store massive amounts of electric power in their batteries and send power back to a charging station(CS)at peak hours to balance the power supply and generate profits.However,when the system collects the corresponding power data,several severe security and privacy issues are encountered.The identity and private injection data may be maliciously intercepted by network attackers and be tampered with to damage the services of ITS and smart grids.Existing approaches requiring high computational overhead render them unsuitable for the resource-constrained Internet of Things(IoT)environment.To address above problems,this paper proposes a blockchain-enabled secure and privacy-preserving data aggregation scheme for fog-based ITS.First,a fog computing and blockchain co-aware aggregation framework of power injection data is designed,which provides strong support for ITS to achieve secure and efficient power injection.Second,Paillier homomorphic encryption,the batch aggregation signature mechanism and a Bloom filter are effectively integrated with efficient aggregation of power injection data with security and privacy guarantees.In addition,the fine-grained homomorphic aggregation is designed for power injection data generated by all EVs,which provides solid data support for accurate power dispatching and supply management in ITS.Experiments show that the total computational cost is significantly reduced in the proposed scheme while providing security and privacy guarantees.The proposed scheme is more suitable for ITS with latency-sensitive applications and is also adapted to deploying devices with limited resources.
基金the Ministry of Science and Technology China Brain Initiative Grant,No.2022ZD0204701the National Natural Science Foundation of China,Nos.82071386&81870982(all to JG)。
文摘Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be re-expanded when reinnervation is allowed.RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration.However,the role of RhoA in dendrite degeneration and regeneration is unknown.In this study,we explored the potential role of RhoA in dendrites.A line of motor neuronal conditional knockout mice was developed by crossbreeding HB9~(Cre+)mice with RhoA~(flox/flox)mice.We established two models for assaying dendrite degeneration and regeneration,in which the brachial plexus was transection or crush injured,respectively.We found that at 28 days after brachial plexus transection,the density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice.Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28–56 days.The density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice.These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury.