Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-...Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.展开更多
Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching...Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching mechanism of 4H-SiC is limited misunderstood.In this letter,we reveal the anisotropic etching mechanism of the Si face and C face of 4H-SiC by combining molten-KOH etching,X-ray photoelectron spectroscopy(XPS)and first-principles investigations.The activation energies for the molten-KOH etching of the C face and Si face of 4H-SiC are calculated to be 25.09 and 35.75 kcal/mol,respectively.The molten-KOH etching rate of the C face is higher than the Si face.Combining XPS analysis and first-principles calculations,we find that the molten-KOH etching of 4H-SiC is proceeded by the cycling of the oxidation of 4H-SiC by the dissolved oxygen and the removal of oxides by molten KOH.The faster etching rate of the C face is caused by the fact that the oxides on the C face are unstable,and easier to be removed with molten alkali,rather than the C face being easier to be oxidized.展开更多
The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more ...The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more scientific principles to understand the complex socio-ecological systems(SES)and their interactions influencing the 17 SDGs.Here,we propose a scientific framework to clarify the common scientific principles and the rational treatment of diversity under these principles.The framework’s core is revealing the complex mechanisms underlying the achievement of each Sustainable Development Goal(SDG)and SDG interactions.Building upon the identified mechanisms,complex SES models can be established,and the implementation of SDGs can be formulated as a multi-objective optimization problem,seeking a compromise in competition between essential costs and desired benefits.Our framework can assist countries,and even the world in accelerating progress towards the SDGs.展开更多
The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity funct...The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.展开更多
The objective principles of shiology are mainly reflected in three fields as food acquisition, eaters' health and shiance order. Most of the objective principles in the field of food acquisition have been revealed...The objective principles of shiology are mainly reflected in three fields as food acquisition, eaters' health and shiance order. Most of the objective principles in the field of food acquisition have been revealed by agronomy and foodstuff science. This research mainly focuses on 10 principles in the field of eaters' health and shiance order and in addition, there are also five lemmas that extend from the above principles. The 10 principles are the core theory of the shiology knowledge system, which play an important role in the objective principles revealed by human beings and constitute one of the basic principles of human civilization. Compared with the scientific principles of mathematics, physics, chemistry and economics, the principles of shiology have three characteristics as popularity, practicability and survivability. The principles of shiology in the field of eaters' health are all around us, and everyone can understand and master them. Using the principles of shiology can improve the healthy life span of 8 billion people. The principles of shiology in the field of shiance order is an important tool of social governance, which can reduce human social conflicts, reduce social involution, improve overall efficiency of social operation, and maintain the sustainable development of human beings.展开更多
The disposal of contaminated water from Japan’s Fukushima nuclear power plant is a significant international nuclear safety issue with considerable cross-border implications.This matter requires compliance not only w...The disposal of contaminated water from Japan’s Fukushima nuclear power plant is a significant international nuclear safety issue with considerable cross-border implications.This matter requires compliance not only with the law of the sea but also with the principles of nuclear safety under international law.These principles serve as the overarching tenet of international and China’s domestic nuclear laws,applicable to nuclear facilities and activities.The principle of safety in nuclear activities is fully recognized in international and domestic laws,carrying broad legal binding force.Japan’s discharge of nuclear-contaminated water into the sea violates its obligations under the principle of safety in nuclear activities,including commitments to optimum protection,as low as reasonably practicable,and prevention.The Japanese government and the International Atomic Energy Agency(IAEA)have breached the obligation of optimum protection by restricting the scope of assessments,substituting core concepts,and shielding dissenting views.In the absence of clear radiation standards,they have acted unilaterally without fulfilling the obligation as low as reasonably practicable principle.The discharge of Fukushima nuclear-contaminated water poses an imminent and unpredictable risk to all countries worldwide,including Japanese residents.Japan and the IAEA should fulfill their obligations under international law regarding disposal,adhering to the principles of nuclear safety,including optimum protection,the obligation as low as reasonably practicable,and prevention through multilateral cooperation.Specifically,the obligation to provide optimum protection should be implemented by re-evaluating the most reliable disposal technologies and methods currently available and comprehensively assessing various options.The standard of the obligation as low as reasonably practicable requires that the minimization of negative impacts on human health,livelihoods,and the environment should not be subordinated to considerations of cutting costs and expenses.Multilateral cooperation should be promoted through the establishment of sound multilateral long-term monitoring mechanisms for the discharge of nuclear-contaminated water,notification and consultation obligations,and periodic assessments.These obligations under international law were fulfilled after the accidents at the Three Mile Island and Chernobyl nuclear power plants.The implications of the principles of nuclear safety align with the concept of building a community of shared future for nuclear safety advocated by China.In cases of violations of international law regarding the disposal of nuclear-contaminated water that jeopardize the concept of a community of a shared future for nuclear safety,China can also rely on its own strength to promote the implementation of due obligations through self-help.展开更多
The attribution of climate change is complex,and the current mainstream view is more inclined towards human activities and carbon dioxide emissions from fossil fuels.Any complex problem is composed of basic principles...The attribution of climate change is complex,and the current mainstream view is more inclined towards human activities and carbon dioxide emissions from fossil fuels.Any complex problem is composed of basic principles.This article elaborates on the basic logic behind climate change(a global hot topic)through basic principles such as reaction types,carbon thermal properties of biomass energy,greenhouse gas attribution,ecological basic theory,and energy cycle.展开更多
Integrating Chinese culture into college English can not only enhance students’humanities literacy and cultivate their cultural confidence,but also facilitate the inheritance and international dissemination of Chines...Integrating Chinese culture into college English can not only enhance students’humanities literacy and cultivate their cultural confidence,but also facilitate the inheritance and international dissemination of Chinese culture.Taking Tyler’s curriculum framework as the starting point,this paper analyzes some factors that affect the integration of Chinese culture into the college English teaching and proposes some strategies for the integration of Chinese culture into college English teaching by innovating teaching objectives,enriching teaching contents,transforming modes of course delivery,and reconstructing the assessment system.展开更多
With the rapid development of China’s civil aviation industry,the teaching method of operating knowledge of flight principles has changed greatly,which creates a good implementation environment to improve the safety ...With the rapid development of China’s civil aviation industry,the teaching method of operating knowledge of flight principles has changed greatly,which creates a good implementation environment to improve the safety of civil aviation in our country.At present,the main training content of air route transport pilots in China is basic aviation theory,initial flight training,airline modification,etc.The principles of flight control are an important part of basic aviation theoretical knowledge training,which will involve a large number of flight technology training content,instructors will also be based on the pilot type.Teaching flight control theory and practical knowledge requires relatively high theoretical learning ability of students,and the learning effect of this part of theoretical knowledge will directly affect the quality of subsequent learning,but also directly affect the effectiveness of flight training.This paper focuses on the analysis of the basic concepts of flight control,studies the existing problems in the teaching of flight control principles,summarizes the teaching measures of flight control principles,aiming to provide a reference to teaching personnel.展开更多
Nowadays,education and teaching have become a hot topic,and teaching in colleges and universities is facing a brand-new development direction.Principles of Concrete Structure Design,as one of the main courses,transmit...Nowadays,education and teaching have become a hot topic,and teaching in colleges and universities is facing a brand-new development direction.Principles of Concrete Structure Design,as one of the main courses,transmits professional knowledge for students,enhances the students’professional ability,and further carries out in-depth research on the course to bring a better teaching effect for students.The article mainly focuses on the research of the principles of concrete structure design course,conducts an analysis of the teaching characteristics of the principles of concrete structure design course,and reasonably sets the teaching content from the optimization of the course teaching objectives;innovative course teaching methods can deepen the effect of knowledge understanding;reform of experimental practice teaching can lay down the effect of the internalization of knowledge,etc.The in-depth description and discussion of the relevant aspects of the research aim to provide guidelines for related research.展开更多
This study delves into the charge transfer mechanism of boron (B)-doped 3C-SiC through first-principles investigations. We explore the effects of B doping on the electronic properties of 3C-SiC, focusing on a 12.5% im...This study delves into the charge transfer mechanism of boron (B)-doped 3C-SiC through first-principles investigations. We explore the effects of B doping on the electronic properties of 3C-SiC, focusing on a 12.5% impurity concentration. Our comprehensive analysis encompasses structural properties, electronic band structures, and charge density distributions. The optimized lattice constant and band gap energy of 3C-SiC were found to be 4.373 Å and 1.36 eV respectively, which is in agreement with previous research (Bui, 2012;Muchiri et al., 2018). Our results show that B doping narrows the band gap, enhances electrical conductivity, and influences charge transfer interactions. The charge density analysis reveals substantial interactions between B dopants and surrounding carbon atoms. This work not only enhances our understanding of the material’s electronic properties, but also highlights the importance of charge density analysis for characterizing charge transfer mechanisms and their implications in the 3C-SiC semiconductors.展开更多
Li-metal batteries(LMBs)regain research prominence owing to the ever-increasing high-energy requirements.Commercially available carbonate electrolytes exhibit unfavourable parasitic reactions with Limetal anode(LMA),l...Li-metal batteries(LMBs)regain research prominence owing to the ever-increasing high-energy requirements.Commercially available carbonate electrolytes exhibit unfavourable parasitic reactions with Limetal anode(LMA),leading to the formation of unstable solid electrolyte interphase(SEI)and the breed of Li dendrites/dead Li.Significantly,lithium nitrate(LiNO_(3)),an excellent film-forming additive,proves crucial to construct a robust Li_(3)N/Li_(2)O/Li_(x)NO_(y)-rich SEI after combining with ether-based electrolytes.Thus,the given challenge leads to natural ideas which suggest the incorporation of LiNO_(3) into commercial carbonate for practical LMBs.Regrettably,LiNO_(3) demonstrates limited solubility(~800 ppm)in commercial carbonate electrolytes.Thence,developing stable SEI and dendrite-free LMA with the incorporation of LiNO_(3) into carbonate electrolytes is an efficacious strategy to realize robust LMBs via a scalable and cost-effective route.Therefore,this review unravels the grievances between LMA,LiNO_(3)and carbonate electrolytes,and enables a comprehensive analysis of LMA stabilizing mechanism with LiNO_(3),dissolution principle of LiNO_(3) in carbonate electrolytes,and LiNO_(3) introduction strategies.This review converges attention on a point that the LiNO_(3)-introduction into commercial carbonate electrolytes is an imperious choice to realize practical LMBs with commercial 4 V layered cathode.展开更多
Typically, relationship between well logs and lithofacies is complex, which leads to low accuracy of lithofacies identification. Machine learning (ML) methods are often applied to identify lithofacies using logs label...Typically, relationship between well logs and lithofacies is complex, which leads to low accuracy of lithofacies identification. Machine learning (ML) methods are often applied to identify lithofacies using logs labelled by rock cores. However, these methods have accuracy limits to some extent. To further improve their accuracies, practical and novel ensemble learning strategy and principles are proposed in this work, which allows geologists not familiar with ML to establish a good ML lithofacies identification model and help geologists familiar with ML further improve accuracy of lithofacies identification. The ensemble learning strategy combines ML methods as sub-classifiers to generate a comprehensive lithofacies identification model, which aims to reduce the variance errors in prediction. Each sub-classifier is trained by randomly sampled labelled data with random features. The novelty of this work lies in the ensemble principles making sub-classifiers just overfitting by algorithm parameter setting and sub-dataset sampling. The principles can help reduce the bias errors in the prediction. Two issues are discussed, videlicet (1) whether only a relatively simple single-classifier method can be as sub-classifiers and how to select proper ML methods as sub-classifiers;(2) whether different kinds of ML methods can be combined as sub-classifiers. If yes, how to determine a proper combination. In order to test the effectiveness of the ensemble strategy and principles for lithofacies identification, different kinds of machine learning algorithms are selected as sub-classifiers, including regular classifiers (LDA, NB, KNN, ID3 tree and CART), kernel method (SVM), and ensemble learning algorithms (RF, AdaBoost, XGBoost and LightGBM). In this work, the experiments used a published dataset of lithofacies from Daniudi gas field (DGF) in Ordes Basin, China. Based on a series of comparisons between ML algorithms and their corresponding ensemble models using the ensemble strategy and principles, conclusions are drawn: (1) not only decision tree but also other single-classifiers and ensemble-learning-classifiers can be used as sub-classifiers of homogeneous ensemble learning and the ensemble can improve the accuracy of the original classifiers;(2) the ensemble principles for the introduced homogeneous and heterogeneous ensemble strategy are effective in promoting ML in lithofacies identification;(3) in practice, heterogeneous ensemble is more suitable for building a more powerful lithofacies identification model, though it is complex.展开更多
BACKGROUND Many patients with ulcerative colitis(UC)do not respond well to,or tolerate conventional and biological therapies.There is currently no consensus on the treatment of refractory UC.Studies have demonstrated ...BACKGROUND Many patients with ulcerative colitis(UC)do not respond well to,or tolerate conventional and biological therapies.There is currently no consensus on the treatment of refractory UC.Studies have demonstrated that the selective Janus kinase 1 inhibitor upadacitinib,a small-molecule drug,is effective and safe for treating UC.However,no studies have revealed that upadacitinib is effective in treating refractory UC with primary nonresponse to infliximab and vedolizumab.CASE SUMMARY We report the case of a 44-year-old male patient with a chief complaint of bloody diarrhoea with mucus and pus,in addition to dizziness.The patient had recurrent disease after receiving mesalazine,prednisone,azathioprine,infliximab and vedolizumab over four years.Based on the endoscopic findings and pathological biopsy,the patient was diagnosed with refractory UC.In particular,the patient showed primary nonresponse to infliximab and vedolizumab.Based on the patient’s history and recurrent disease,we decided to administer upadacitinib.During hospitalisation,the patient was received upadacitinib under our guidance.Eight weeks after the initiation of upadacitinib treatment,the patient’s symptoms and endoscopic findings improved significantly.No notable adverse reactions have been reported to date.CONCLUSION Our case report suggests that upadacitinib may represent a valuable strategy for treating refractory UC with primary nonresponse.展开更多
AIM:To compare the three-dimensional choroidal vascularity index(CVI)and choroidal thickness between fellow eyes of acute primary angle-closure(F-APAC)and chronic primary angle-closure glaucoma(F-CPACG)and the eyes of...AIM:To compare the three-dimensional choroidal vascularity index(CVI)and choroidal thickness between fellow eyes of acute primary angle-closure(F-APAC)and chronic primary angle-closure glaucoma(F-CPACG)and the eyes of normal controls.METHODS:This study included 37 patients with unilateral APAC,37 with asymmetric CPACG without prior treatment,and 36 healthy participants.Using swept-source optical coherence tomography(SS-OCT),the macular and peripapillary choroidal thickness and three-dimensional CVI were measured and compared globally and sectorally.Pearson’s correlation analysis and multivariate regression models were used to evaluate choroidal thickness or CVI with related factors.RESULTS:The mean subfoveal CVIs were 0.35±0.10,0.33±0.09,and 0.29±0.04,and the mean subfoveal choroidal thickness were 315.62±52.92,306.22±59.29,and 262.69±45.55μm in the F-APAC,F-CPACG,and normal groups,respectively.All macular sectors showed significantly higher CVIs and choroidal thickness in the F-APAC and F-CPACG eyes than in the normal eyes(P<0.05),while there were no significant differences between the F-APAC and F-CPACG eyes.In the peripapillary region,the mean overall CVIs were 0.21±0.08,0.20±0.08,and 0.19±0.05,and the mean overall choroidal thickness were 180.45±54.18,174.82±50.67,and 176.18±37.94μm in the F-APAC,F-CPACG,and normal groups,respectively.There were no significant differences between any of the two groups in all peripapillary sectors.Younger age,shorter axial length,and the F-APAC or F-CPACG diagnosis were significantly associated with higher subfoveal CVI and thicker subfoveal choroidal thickness(P<0.05).CONCLUSION:The fellow eyes of unilateral APAC or asymmetric CPACG have higher macular CVI and choroidal thickness than those of the normal controls.Neither CVI nor choroidal thickness can distinguish between eyes predisposed to APAC or CPACG.A thicker choroid with a higher vascular volume may play a role in the pathogenesis of primary angle-closure glaucoma.展开更多
Objective:Primary urethral carcinoma(PUC)is a rare malignant carcinoma but with limited therapeutic options.This review aims to provide an overview of the current strategies on this patient settings.Methods:Recent lit...Objective:Primary urethral carcinoma(PUC)is a rare malignant carcinoma but with limited therapeutic options.This review aims to provide an overview of the current strategies on this patient settings.Methods:Recent literature ranging from January 1987 and December 2021 was assessed through PubMed search to assess the diagnostic and therapeutic principles of PUC.Results:A complete of examination including cystoscopy,imaging,and biopsy should be conducted for these patients.Once diagnosed,the clinical decision of PUC should be made according to the tumor location,pathological pattern,and extent of the tumor.For patients with superficial and distal urethral lesions,organ sparing approaches or radical reconstructive procedures can be utilized.While for more advanced disease or nodal involvement,an optimal multimodal treatment strategy consisted of surgery and radiochemotherapy should be adopted.For patients with urothelial carcinoma of the prostate,the management including transurethral resection of the prostate followed by bacille Calmette-Guerin or radical cysto-prostatectomy should depend on the infiltration depth of PUC.Conclusion:A complete of examination is important for the diagnosis of PUC.The management of PUC should be determined by the location,pathological pattern,and extent of the tumor.More multi-institutional collaborations should be held to investigate better treatment modal-ities for PUC.展开更多
Background:Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis.Although primary prevention drugs,including non-selectiveβ-blockers,have effectively reduced the incide...Background:Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis.Although primary prevention drugs,including non-selectiveβ-blockers,have effectively reduced the incidence of bleeding,their efficacy is limited due to side effects and related contraindications.With recent advances in precision medicine,precise drug treatment provides better treatment efficacy.Data sources:Literature search was conducted in PubMed,MEDLINE and Web of Science for relevant articles published up to May 2022.Information on clinical trials was obtained from https://clinicaltrials.gov/and http://www.chictr.org.cn/.Results:The in-depth understanding of the pathogenesis and advances of portal hypertension has enabled the discovery of multiple molecular targets for promising drugs.According to the site of action,these drugs could be classified into four classes:intrahepatic,extrahepatic,both intrahepatic and extrahepatic targets and others.All these classes of drugs offer advantages over traditional treatments in prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.Conclusions:This review classified and summarized the promising drugs,which prevent gastroesophageal variceal bleeding by targeting specific markers of pathogenesis of portal hypertension,demonstrating the significance of using the precision medicine strategy to discover and develop promising drugs for the primary prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.展开更多
Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial deliv...Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.展开更多
Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipien...Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipients at high risk of PNF and EAF were urgently needed. Recently, the Model for Early Allograft Function(MEAF), PNF score by King's College(King-PNF) and Balance-and-Risk-Lactate(BAR-Lac) score were developed to assess the risks of PNF and EAF. This study aimed to externally validate and compare the prognostic performance of these three scores for predicting PNF and EAF. Methods: A retrospective study included 720 patients with primary LT between January 2015 and December 2020. MEAF, King-PNF and BAR-Lac scores were compared using receiver operating characteristic(ROC) and the net reclassification improvement(NRI) and integrated discrimination improvement(IDI) analyses. Results: Of all 720 patients, 28(3.9%) developed PNF and 67(9.3%) developed EAF in 3 months. The overall early allograft dysfunction(EAD) rate was 39.0%. The 3-month patient mortality was 8.6% while 1-year graft-failure-free survival was 89.2%. The median MEAF, King-PNF and BAR-Lac scores were 5.0(3.5–6.3),-2.1(-2.6 to-1.2), and 5.0(2.0–11.0), respectively. For predicting PNF, MEAF and King-PNF scores had excellent area under curves(AUCs) of 0.872 and 0.891, superior to BAR-Lac(AUC = 0.830). The NRI and IDI analyses confirmed that King-PNF score had the best performance in predicting PNF while MEAF served as a better predictor of EAD. The EAF risk curve and 1-year graft-failure-free survival curve showed that King-PNF was superior to MEAF and BAR-Lac scores for stratifying the risk of EAF. Conclusions: MEAF, King-PNF and BAR-Lac were validated as practical and effective risk assessment tools of PNF. King-PNF score outperformed MEAF and BAR-Lac in predicting PNF and EAF within 6 months. BAR-Lac score had a huge advantage in the prediction for PNF without post-transplant variables. Proper use of these scores will help early identify PNF, standardize grading of EAF and reasonably select clinical endpoints in relative studies.展开更多
As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities ...As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer,providing a new perspective for understanding the development of liver cancer.Ferroptosis regulation,lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer.The regulation of ferroptosis is involved in apoptosis and necrosis,affecting cell survival and death.Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells.Metabolic abnormalities,especially the disorders of glucose and lipid metabolism,directly affect the proliferation and growth of liver cancer cells.Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes.The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer,and reduce the risk of disease by adjusting the metabolic process.This review focuses on the key roles of ferroptosis regulation,lipid peroxidation and metabolic abnormalities in this process.展开更多
基金the Natural Science Foundation of China(Grant No:22309180)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No:XDB0600000,XDB0600400)+3 种基金Liaoning Binhai Laboratory,(Grant No:LILBLB-2023-04)Dalian Revitalization Talents Program(Grant No:2022RG01)Youth Science and Technology Foundation of Dalian(Grant No:2023RQ015)the University of Waterloo.
文摘Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
基金This work is supported by the Natural Science Foundation of China(Grant Nos.62274143&62204216)Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LHZSD24E020001)+4 种基金the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant Nos.2022C0102&2023C01010)Partial support was provided by the Leading Innovative and Entrepreneur Team Introduction Program of Hangzhou(Grant No.TD2022012)Fundamental Research Funds for the Central Universities(Grant No.226-2022-00200)the Natural Science Foundation of China for Innovative Research Groups(Grant No.61721005)the Open Fund of Zhejiang Provincial Key Laboratory of Wide Bandgap Semiconductors,Hangzhou Global Scientific and Technological Innovation Center,Zhejiang University.
文摘Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching mechanism of 4H-SiC is limited misunderstood.In this letter,we reveal the anisotropic etching mechanism of the Si face and C face of 4H-SiC by combining molten-KOH etching,X-ray photoelectron spectroscopy(XPS)and first-principles investigations.The activation energies for the molten-KOH etching of the C face and Si face of 4H-SiC are calculated to be 25.09 and 35.75 kcal/mol,respectively.The molten-KOH etching rate of the C face is higher than the Si face.Combining XPS analysis and first-principles calculations,we find that the molten-KOH etching of 4H-SiC is proceeded by the cycling of the oxidation of 4H-SiC by the dissolved oxygen and the removal of oxides by molten KOH.The faster etching rate of the C face is caused by the fact that the oxides on the C face are unstable,and easier to be removed with molten alkali,rather than the C face being easier to be oxidized.
基金the National Key Research and Development Programme of China(Grant No.2023YFC3804903).
文摘The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more scientific principles to understand the complex socio-ecological systems(SES)and their interactions influencing the 17 SDGs.Here,we propose a scientific framework to clarify the common scientific principles and the rational treatment of diversity under these principles.The framework’s core is revealing the complex mechanisms underlying the achievement of each Sustainable Development Goal(SDG)and SDG interactions.Building upon the identified mechanisms,complex SES models can be established,and the implementation of SDGs can be formulated as a multi-objective optimization problem,seeking a compromise in competition between essential costs and desired benefits.Our framework can assist countries,and even the world in accelerating progress towards the SDGs.
文摘The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.
文摘The objective principles of shiology are mainly reflected in three fields as food acquisition, eaters' health and shiance order. Most of the objective principles in the field of food acquisition have been revealed by agronomy and foodstuff science. This research mainly focuses on 10 principles in the field of eaters' health and shiance order and in addition, there are also five lemmas that extend from the above principles. The 10 principles are the core theory of the shiology knowledge system, which play an important role in the objective principles revealed by human beings and constitute one of the basic principles of human civilization. Compared with the scientific principles of mathematics, physics, chemistry and economics, the principles of shiology have three characteristics as popularity, practicability and survivability. The principles of shiology in the field of eaters' health are all around us, and everyone can understand and master them. Using the principles of shiology can improve the healthy life span of 8 billion people. The principles of shiology in the field of shiance order is an important tool of social governance, which can reduce human social conflicts, reduce social involution, improve overall efficiency of social operation, and maintain the sustainable development of human beings.
基金funded by the Research on National Greenhouse Gas Emission Reduction Obligations under the Carbon Peak and Carbon Neutral Commitment,General Program of Humanities and Social Sciences,Ministry of Education of China[Grant No.21YJA820010].
文摘The disposal of contaminated water from Japan’s Fukushima nuclear power plant is a significant international nuclear safety issue with considerable cross-border implications.This matter requires compliance not only with the law of the sea but also with the principles of nuclear safety under international law.These principles serve as the overarching tenet of international and China’s domestic nuclear laws,applicable to nuclear facilities and activities.The principle of safety in nuclear activities is fully recognized in international and domestic laws,carrying broad legal binding force.Japan’s discharge of nuclear-contaminated water into the sea violates its obligations under the principle of safety in nuclear activities,including commitments to optimum protection,as low as reasonably practicable,and prevention.The Japanese government and the International Atomic Energy Agency(IAEA)have breached the obligation of optimum protection by restricting the scope of assessments,substituting core concepts,and shielding dissenting views.In the absence of clear radiation standards,they have acted unilaterally without fulfilling the obligation as low as reasonably practicable principle.The discharge of Fukushima nuclear-contaminated water poses an imminent and unpredictable risk to all countries worldwide,including Japanese residents.Japan and the IAEA should fulfill their obligations under international law regarding disposal,adhering to the principles of nuclear safety,including optimum protection,the obligation as low as reasonably practicable,and prevention through multilateral cooperation.Specifically,the obligation to provide optimum protection should be implemented by re-evaluating the most reliable disposal technologies and methods currently available and comprehensively assessing various options.The standard of the obligation as low as reasonably practicable requires that the minimization of negative impacts on human health,livelihoods,and the environment should not be subordinated to considerations of cutting costs and expenses.Multilateral cooperation should be promoted through the establishment of sound multilateral long-term monitoring mechanisms for the discharge of nuclear-contaminated water,notification and consultation obligations,and periodic assessments.These obligations under international law were fulfilled after the accidents at the Three Mile Island and Chernobyl nuclear power plants.The implications of the principles of nuclear safety align with the concept of building a community of shared future for nuclear safety advocated by China.In cases of violations of international law regarding the disposal of nuclear-contaminated water that jeopardize the concept of a community of a shared future for nuclear safety,China can also rely on its own strength to promote the implementation of due obligations through self-help.
文摘The attribution of climate change is complex,and the current mainstream view is more inclined towards human activities and carbon dioxide emissions from fossil fuels.Any complex problem is composed of basic principles.This article elaborates on the basic logic behind climate change(a global hot topic)through basic principles such as reaction types,carbon thermal properties of biomass energy,greenhouse gas attribution,ecological basic theory,and energy cycle.
基金supported by Program of curriculum ideological and political education teaching reform,Zhoukou Normal University-Research on the Path of Ideological and Political Construction of College English Course in local universities from the perspective of cultural confidence(Fund No.SZJG-2022004)Program of Educational Curriculum Reform Henan Province-The exploration of the cultivation of the mentors in normal universities under the background of teacher professional certification(Fund No.2022-JSJYZD-028)+1 种基金the research and practice program of teaching and learning in Zhoukou Normal University(Fund No.JF2021016)achievements of the training program for young and middle-aged key teachers at Zhoukou Normal University in 2021.
文摘Integrating Chinese culture into college English can not only enhance students’humanities literacy and cultivate their cultural confidence,but also facilitate the inheritance and international dissemination of Chinese culture.Taking Tyler’s curriculum framework as the starting point,this paper analyzes some factors that affect the integration of Chinese culture into the college English teaching and proposes some strategies for the integration of Chinese culture into college English teaching by innovating teaching objectives,enriching teaching contents,transforming modes of course delivery,and reconstructing the assessment system.
文摘With the rapid development of China’s civil aviation industry,the teaching method of operating knowledge of flight principles has changed greatly,which creates a good implementation environment to improve the safety of civil aviation in our country.At present,the main training content of air route transport pilots in China is basic aviation theory,initial flight training,airline modification,etc.The principles of flight control are an important part of basic aviation theoretical knowledge training,which will involve a large number of flight technology training content,instructors will also be based on the pilot type.Teaching flight control theory and practical knowledge requires relatively high theoretical learning ability of students,and the learning effect of this part of theoretical knowledge will directly affect the quality of subsequent learning,but also directly affect the effectiveness of flight training.This paper focuses on the analysis of the basic concepts of flight control,studies the existing problems in the teaching of flight control principles,summarizes the teaching measures of flight control principles,aiming to provide a reference to teaching personnel.
文摘Nowadays,education and teaching have become a hot topic,and teaching in colleges and universities is facing a brand-new development direction.Principles of Concrete Structure Design,as one of the main courses,transmits professional knowledge for students,enhances the students’professional ability,and further carries out in-depth research on the course to bring a better teaching effect for students.The article mainly focuses on the research of the principles of concrete structure design course,conducts an analysis of the teaching characteristics of the principles of concrete structure design course,and reasonably sets the teaching content from the optimization of the course teaching objectives;innovative course teaching methods can deepen the effect of knowledge understanding;reform of experimental practice teaching can lay down the effect of the internalization of knowledge,etc.The in-depth description and discussion of the relevant aspects of the research aim to provide guidelines for related research.
文摘This study delves into the charge transfer mechanism of boron (B)-doped 3C-SiC through first-principles investigations. We explore the effects of B doping on the electronic properties of 3C-SiC, focusing on a 12.5% impurity concentration. Our comprehensive analysis encompasses structural properties, electronic band structures, and charge density distributions. The optimized lattice constant and band gap energy of 3C-SiC were found to be 4.373 Å and 1.36 eV respectively, which is in agreement with previous research (Bui, 2012;Muchiri et al., 2018). Our results show that B doping narrows the band gap, enhances electrical conductivity, and influences charge transfer interactions. The charge density analysis reveals substantial interactions between B dopants and surrounding carbon atoms. This work not only enhances our understanding of the material’s electronic properties, but also highlights the importance of charge density analysis for characterizing charge transfer mechanisms and their implications in the 3C-SiC semiconductors.
基金the support by the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2019R01006)the National Natural Science Foundation of China(NSFC:12205252)+3 种基金A Project Supported by Scientific Research Fund of Zhejiang Provincial Education Department(Y202250795)the Research Funds of Institute of Zhejiang University-Quzhou,the Basic Public Welfare Research Special Project of Zhejiang Province(LZY22B040001)the Science and Technology Project of Quzhou Research Institute,Zhejiang University(IZQ2021KJ2032)the Independent Scientific Research Project of Quzhou Research Institute,Zhejiang University(IZQ2021RCZX007)。
文摘Li-metal batteries(LMBs)regain research prominence owing to the ever-increasing high-energy requirements.Commercially available carbonate electrolytes exhibit unfavourable parasitic reactions with Limetal anode(LMA),leading to the formation of unstable solid electrolyte interphase(SEI)and the breed of Li dendrites/dead Li.Significantly,lithium nitrate(LiNO_(3)),an excellent film-forming additive,proves crucial to construct a robust Li_(3)N/Li_(2)O/Li_(x)NO_(y)-rich SEI after combining with ether-based electrolytes.Thus,the given challenge leads to natural ideas which suggest the incorporation of LiNO_(3) into commercial carbonate for practical LMBs.Regrettably,LiNO_(3) demonstrates limited solubility(~800 ppm)in commercial carbonate electrolytes.Thence,developing stable SEI and dendrite-free LMA with the incorporation of LiNO_(3) into carbonate electrolytes is an efficacious strategy to realize robust LMBs via a scalable and cost-effective route.Therefore,this review unravels the grievances between LMA,LiNO_(3)and carbonate electrolytes,and enables a comprehensive analysis of LMA stabilizing mechanism with LiNO_(3),dissolution principle of LiNO_(3) in carbonate electrolytes,and LiNO_(3) introduction strategies.This review converges attention on a point that the LiNO_(3)-introduction into commercial carbonate electrolytes is an imperious choice to realize practical LMBs with commercial 4 V layered cathode.
基金financially supported by the National Natural Science Foundation of China(Grant No.42002134)China Postdoctoral Science Foundation(Grant No.2021T140735)Science Foundation of China University of Petroleum,Beijing(Grant Nos.2462020XKJS02 and 2462020YXZZ004).
文摘Typically, relationship between well logs and lithofacies is complex, which leads to low accuracy of lithofacies identification. Machine learning (ML) methods are often applied to identify lithofacies using logs labelled by rock cores. However, these methods have accuracy limits to some extent. To further improve their accuracies, practical and novel ensemble learning strategy and principles are proposed in this work, which allows geologists not familiar with ML to establish a good ML lithofacies identification model and help geologists familiar with ML further improve accuracy of lithofacies identification. The ensemble learning strategy combines ML methods as sub-classifiers to generate a comprehensive lithofacies identification model, which aims to reduce the variance errors in prediction. Each sub-classifier is trained by randomly sampled labelled data with random features. The novelty of this work lies in the ensemble principles making sub-classifiers just overfitting by algorithm parameter setting and sub-dataset sampling. The principles can help reduce the bias errors in the prediction. Two issues are discussed, videlicet (1) whether only a relatively simple single-classifier method can be as sub-classifiers and how to select proper ML methods as sub-classifiers;(2) whether different kinds of ML methods can be combined as sub-classifiers. If yes, how to determine a proper combination. In order to test the effectiveness of the ensemble strategy and principles for lithofacies identification, different kinds of machine learning algorithms are selected as sub-classifiers, including regular classifiers (LDA, NB, KNN, ID3 tree and CART), kernel method (SVM), and ensemble learning algorithms (RF, AdaBoost, XGBoost and LightGBM). In this work, the experiments used a published dataset of lithofacies from Daniudi gas field (DGF) in Ordes Basin, China. Based on a series of comparisons between ML algorithms and their corresponding ensemble models using the ensemble strategy and principles, conclusions are drawn: (1) not only decision tree but also other single-classifiers and ensemble-learning-classifiers can be used as sub-classifiers of homogeneous ensemble learning and the ensemble can improve the accuracy of the original classifiers;(2) the ensemble principles for the introduced homogeneous and heterogeneous ensemble strategy are effective in promoting ML in lithofacies identification;(3) in practice, heterogeneous ensemble is more suitable for building a more powerful lithofacies identification model, though it is complex.
基金Supported by Shenzhen Science and Technology Program,No.JCYJ20220530154013031Guangdong Province Health and Health Appropriate Technology Promotion Project,No.2023385Guangdong Province Grassroots Science Popularization Action Plan,No.20240205.
文摘BACKGROUND Many patients with ulcerative colitis(UC)do not respond well to,or tolerate conventional and biological therapies.There is currently no consensus on the treatment of refractory UC.Studies have demonstrated that the selective Janus kinase 1 inhibitor upadacitinib,a small-molecule drug,is effective and safe for treating UC.However,no studies have revealed that upadacitinib is effective in treating refractory UC with primary nonresponse to infliximab and vedolizumab.CASE SUMMARY We report the case of a 44-year-old male patient with a chief complaint of bloody diarrhoea with mucus and pus,in addition to dizziness.The patient had recurrent disease after receiving mesalazine,prednisone,azathioprine,infliximab and vedolizumab over four years.Based on the endoscopic findings and pathological biopsy,the patient was diagnosed with refractory UC.In particular,the patient showed primary nonresponse to infliximab and vedolizumab.Based on the patient’s history and recurrent disease,we decided to administer upadacitinib.During hospitalisation,the patient was received upadacitinib under our guidance.Eight weeks after the initiation of upadacitinib treatment,the patient’s symptoms and endoscopic findings improved significantly.No notable adverse reactions have been reported to date.CONCLUSION Our case report suggests that upadacitinib may represent a valuable strategy for treating refractory UC with primary nonresponse.
基金Supported by the National Natural Science Foundation of China(No.82101087)Shanghai Clinical Research Key Project(No.SHDC2020CR6029).
文摘AIM:To compare the three-dimensional choroidal vascularity index(CVI)and choroidal thickness between fellow eyes of acute primary angle-closure(F-APAC)and chronic primary angle-closure glaucoma(F-CPACG)and the eyes of normal controls.METHODS:This study included 37 patients with unilateral APAC,37 with asymmetric CPACG without prior treatment,and 36 healthy participants.Using swept-source optical coherence tomography(SS-OCT),the macular and peripapillary choroidal thickness and three-dimensional CVI were measured and compared globally and sectorally.Pearson’s correlation analysis and multivariate regression models were used to evaluate choroidal thickness or CVI with related factors.RESULTS:The mean subfoveal CVIs were 0.35±0.10,0.33±0.09,and 0.29±0.04,and the mean subfoveal choroidal thickness were 315.62±52.92,306.22±59.29,and 262.69±45.55μm in the F-APAC,F-CPACG,and normal groups,respectively.All macular sectors showed significantly higher CVIs and choroidal thickness in the F-APAC and F-CPACG eyes than in the normal eyes(P<0.05),while there were no significant differences between the F-APAC and F-CPACG eyes.In the peripapillary region,the mean overall CVIs were 0.21±0.08,0.20±0.08,and 0.19±0.05,and the mean overall choroidal thickness were 180.45±54.18,174.82±50.67,and 176.18±37.94μm in the F-APAC,F-CPACG,and normal groups,respectively.There were no significant differences between any of the two groups in all peripapillary sectors.Younger age,shorter axial length,and the F-APAC or F-CPACG diagnosis were significantly associated with higher subfoveal CVI and thicker subfoveal choroidal thickness(P<0.05).CONCLUSION:The fellow eyes of unilateral APAC or asymmetric CPACG have higher macular CVI and choroidal thickness than those of the normal controls.Neither CVI nor choroidal thickness can distinguish between eyes predisposed to APAC or CPACG.A thicker choroid with a higher vascular volume may play a role in the pathogenesis of primary angle-closure glaucoma.
文摘Objective:Primary urethral carcinoma(PUC)is a rare malignant carcinoma but with limited therapeutic options.This review aims to provide an overview of the current strategies on this patient settings.Methods:Recent literature ranging from January 1987 and December 2021 was assessed through PubMed search to assess the diagnostic and therapeutic principles of PUC.Results:A complete of examination including cystoscopy,imaging,and biopsy should be conducted for these patients.Once diagnosed,the clinical decision of PUC should be made according to the tumor location,pathological pattern,and extent of the tumor.For patients with superficial and distal urethral lesions,organ sparing approaches or radical reconstructive procedures can be utilized.While for more advanced disease or nodal involvement,an optimal multimodal treatment strategy consisted of surgery and radiochemotherapy should be adopted.For patients with urothelial carcinoma of the prostate,the management including transurethral resection of the prostate followed by bacille Calmette-Guerin or radical cysto-prostatectomy should depend on the infiltration depth of PUC.Conclusion:A complete of examination is important for the diagnosis of PUC.The management of PUC should be determined by the location,pathological pattern,and extent of the tumor.More multi-institutional collaborations should be held to investigate better treatment modal-ities for PUC.
基金This work was supported by grants from the National Natural Science Foundation of China(81902484)China Postdoctoral Science Foundation(2020M670864)+2 种基金Youth Support Project of Jilin Association for Science and Technology(202028)Jilin Provincial Health Special Project(2020SCZT039)Jilin Health and Healthy Youth Science and Technology Training Plan(2020Q017).
文摘Background:Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis.Although primary prevention drugs,including non-selectiveβ-blockers,have effectively reduced the incidence of bleeding,their efficacy is limited due to side effects and related contraindications.With recent advances in precision medicine,precise drug treatment provides better treatment efficacy.Data sources:Literature search was conducted in PubMed,MEDLINE and Web of Science for relevant articles published up to May 2022.Information on clinical trials was obtained from https://clinicaltrials.gov/and http://www.chictr.org.cn/.Results:The in-depth understanding of the pathogenesis and advances of portal hypertension has enabled the discovery of multiple molecular targets for promising drugs.According to the site of action,these drugs could be classified into four classes:intrahepatic,extrahepatic,both intrahepatic and extrahepatic targets and others.All these classes of drugs offer advantages over traditional treatments in prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.Conclusions:This review classified and summarized the promising drugs,which prevent gastroesophageal variceal bleeding by targeting specific markers of pathogenesis of portal hypertension,demonstrating the significance of using the precision medicine strategy to discover and develop promising drugs for the primary prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.
文摘Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.
基金supported by grants from the National Nat-ural Science Foundation of China (81570587 and 81700557)the Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology (2013A061401007 and 2017B030314018)+3 种基金Guangdong Provincial Natural Science Funds for Major Basic Science Culture Project (2015A030308010)Science and Technology Program of Guangzhou (201704020150)the Natural Science Foundations of Guangdong province (2016A030310141 and 2020A1515010091)Young Teachers Training Project of Sun Yat-sen University (K0401068) and the Guangdong Science and Technology Innovation Strategy (pdjh2022b0010 and pdjh2023a0002)。
文摘Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipients at high risk of PNF and EAF were urgently needed. Recently, the Model for Early Allograft Function(MEAF), PNF score by King's College(King-PNF) and Balance-and-Risk-Lactate(BAR-Lac) score were developed to assess the risks of PNF and EAF. This study aimed to externally validate and compare the prognostic performance of these three scores for predicting PNF and EAF. Methods: A retrospective study included 720 patients with primary LT between January 2015 and December 2020. MEAF, King-PNF and BAR-Lac scores were compared using receiver operating characteristic(ROC) and the net reclassification improvement(NRI) and integrated discrimination improvement(IDI) analyses. Results: Of all 720 patients, 28(3.9%) developed PNF and 67(9.3%) developed EAF in 3 months. The overall early allograft dysfunction(EAD) rate was 39.0%. The 3-month patient mortality was 8.6% while 1-year graft-failure-free survival was 89.2%. The median MEAF, King-PNF and BAR-Lac scores were 5.0(3.5–6.3),-2.1(-2.6 to-1.2), and 5.0(2.0–11.0), respectively. For predicting PNF, MEAF and King-PNF scores had excellent area under curves(AUCs) of 0.872 and 0.891, superior to BAR-Lac(AUC = 0.830). The NRI and IDI analyses confirmed that King-PNF score had the best performance in predicting PNF while MEAF served as a better predictor of EAD. The EAF risk curve and 1-year graft-failure-free survival curve showed that King-PNF was superior to MEAF and BAR-Lac scores for stratifying the risk of EAF. Conclusions: MEAF, King-PNF and BAR-Lac were validated as practical and effective risk assessment tools of PNF. King-PNF score outperformed MEAF and BAR-Lac in predicting PNF and EAF within 6 months. BAR-Lac score had a huge advantage in the prediction for PNF without post-transplant variables. Proper use of these scores will help early identify PNF, standardize grading of EAF and reasonably select clinical endpoints in relative studies.
文摘As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer,providing a new perspective for understanding the development of liver cancer.Ferroptosis regulation,lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer.The regulation of ferroptosis is involved in apoptosis and necrosis,affecting cell survival and death.Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells.Metabolic abnormalities,especially the disorders of glucose and lipid metabolism,directly affect the proliferation and growth of liver cancer cells.Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes.The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer,and reduce the risk of disease by adjusting the metabolic process.This review focuses on the key roles of ferroptosis regulation,lipid peroxidation and metabolic abnormalities in this process.