[Objectives] To increase the survival rate of tissue culture seedlings of Dendrobium officinale,and optimize the conditions of rooting medium by the response surface methodology( RSM). [Methods]The effects of 6-BA con...[Objectives] To increase the survival rate of tissue culture seedlings of Dendrobium officinale,and optimize the conditions of rooting medium by the response surface methodology( RSM). [Methods]The effects of 6-BA concentration,NAA concentration,potato amount and the amount of mashed banana on the growth of seedlings were determined by single factor experiment and were analyzed by Box-Behnken design and response surface methodology. [Results]The optimal culture conditions: rooting medium 1/2 MS + 6-BA 0. 24 mg/L + mashed banana 87. 63 g/L + potato 89. 30 g/L + NAA 0. 52 mg/L + sucrose 20. 0 g/L + activated carbon 4. 0 g/L + agar 7. 0 g/L,p H 5. 8,and light intensity 2 000 Lx. [Conclusions]The model established by response surface methodology has a good predictability and could be used to optimize the conditions of tissue culture and rooting medium of D. officinale.展开更多
High enzymatic activity is required for laccase applications.Central composite design (CCD)-based response surface methodology (RSM) can effectively increase the enzymatic activity of Pleurotus ostreatus P40 in li...High enzymatic activity is required for laccase applications.Central composite design (CCD)-based response surface methodology (RSM) can effectively increase the enzymatic activity of Pleurotus ostreatus P40 in liquid substrate fermentation.Initial screening of the nutritional components was performed using a Plackett-Burman design.The variables,namely,bran,bagasse,Tween 80,and yeast extract,were found to have statistically significant effects on laccase activity.These variables were further optimized using CCD-based RSM.Optimal concentrations for the maximum laccase activity were 8.144 2 g/L bran,50 g/L bagasse,0.424 1 mL/L Tween 80,and 2.832 5 g/L yeast extract.Under optimized conditions,the maximum measured laccase activity reached 96 480 U/L,which was close to the predicted value (104 830 U/L) by RSM.Therefore,RSM can be used to optimize culture components for laccase activity from Pieurotus ostreatus P40.展开更多
In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimizatio...In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.展开更多
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization...A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.展开更多
Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock ma...Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.展开更多
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr...With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ...To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.展开更多
To explore the optimal evaluation mechanism of open-cast mining procedure,this paper takes the actual operation status of Huolinhe No.1 Open-cast Mine as the research basis,and makes a deep analysis of the four repres...To explore the optimal evaluation mechanism of open-cast mining procedure,this paper takes the actual operation status of Huolinhe No.1 Open-cast Mine as the research basis,and makes a deep analysis of the four representative mining procedures proposed by this mine.A detailed and comprehensive evaluation system is constructed using rank-sum ratio(RSR)method.The system covers 17 key indicators and aims to evaluate the advantages and disadvantages of each scheme in an all-round and multi-angle manner.Through the calculation and analysis by RSR method,the comprehensive evaluation of the four types of mining procedure schemes is carried out,and finally the secondary river improvement project is determined as the optimal mining implementation scheme,and the joint mining scheme of the south and north areas is the alternative strategy.The research results of this paper are objective,clear and definite,can not only reveal the effectiveness and feasibility of RSR method in solving the problem of open-cast mining procedure optimization,but also provide a strong technical support and decision-making basis for the future production development of Huolinhe No.1 Open-cast Mine.Thus,this study is expected to further promote the scientific and refined process of mining operations.展开更多
The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferenc...The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.展开更多
In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality o...In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.展开更多
This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and tra...This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and trajectory guidance for vehicles entering the gap is determined under safety constraints.Based on the initial state and sequence of vehicles entering the merging area,individual vehicle trajectories are optimized sequentially.An optimization model and method for ramp entry trajectories in mixed traffic flow are developed,incorporating on-ramp vehicle entry sequencing and ordinary vehicle trajectory prediction.Key performance indicators,including driving safety,total travel time,parking wait probability,and trajectory smoothness,are compared and analyzed to evaluate the proposed approach.展开更多
Harmful algal blooms(HABs) have led to extensive ecological and environmental issues and huge economic losses.Various HAB control techniques have been developed,and biological methods have been paid more attention.Alg...Harmful algal blooms(HABs) have led to extensive ecological and environmental issues and huge economic losses.Various HAB control techniques have been developed,and biological methods have been paid more attention.Algicidal bacteria is a general designation for bacteria which inhibit algal growth in a direct or indirect manner,and kill or damage the algal cells.A metabolite which is strongly toxic to the dinoflagellate Alexandrium tamarense was produced by strain DH46 of the alga-lysing bacterium Alteromonas sp.The culture conditions were optimized using a single-factor test method.Factors including carbon source,nitrogen source,temperature,initial pH value,rotational speed and salinity were studied.The results showed that the cultivation of the bacteria at 28℃ and 180 r min-1with initial pH 7 and 30 salt contcentration favored both the cell growth and the lysing effect of strain DH46.The optimal medium composition for strain DH46 was determined by means of uniform design experimentation,and the most important components influencing the cell density were tryptone,yeast extract,soluble starch,NaNO3 and MgSO4.When the following culture medium was used(tryptone 14.0g,yeast extract 1.63g,soluble starch 5.0 g,NaNO3 1.6 g,MgSO4 2.3 g in 1L),the largest bacterial dry weight(7.36 g L-1) was obtained,which was an enhancement of 107% compared to the initial medium;and the algal lysis rate was as high as 98.4% which increased nearly 10% after optimization.展开更多
An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface ...An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface method-ology were applied to optimize the medium constituents. A central composite design was used to explain the combined effect of three medium constituents, viz, glucose, K2HPO4, MgSO47H2O. The strain produced more elastase in the completely optimized medium, as compared with the partially optimized medium. The fitted model of the second model, as per RSM, showed that glucose was 7.4 g/100 ml, casein 1.13 g/100 ml, corn steep flour 0.616 g/100 ml, K2HPO4 0.206 g/100 ml and MgSO47H2O 0.034 g/100 ml. The fermentation kinetics of these two culture media in the flask experiments were analyzed. It was found that the highest elastase productivity occurred at 54 hours. Higher glucose concentration had inhibitory effect on elastase production. At the same time, we observed that the glucose consumption rate was slow in the completely optimized medium, which can explain the lag period of the highest elastase production. Some metal ions and surfactant additives also affected elastase production and cell growth.展开更多
Cordyceps ophioglossoides is a valuable traditional medicinal material.We have found that intracellular polysaccharide(IPS) is the major biologically active ingredient in Cordyceps ophioglossoides.This study is the fi...Cordyceps ophioglossoides is a valuable traditional medicinal material.We have found that intracellular polysaccharide(IPS) is the major biologically active ingredient in Cordyceps ophioglossoides.This study is the first time to optimize the yield of IPS from Cordyceps ophioglossoides.The optimal medium for IPS production consists of glucose 54.50 g·L·1,yeast powder 25.50 g·L·1,NaH2PO4 0.4 g·L·1 and K2HPO4 0.4 g·L·1.The suggested culture conditions are 24 ℃,initial pH 4.5 with a rotary speed of 120 r·min·1 for 168 h.The yield of IPS is 737.93 mg·L·1,which is 50% higher than the yield under the conditions prior to optimization.The anti-oxidative activities of IPS in Cordyceps ophioglossoides L2 are also characterized using various in vitro assay.The anti-oxidative activity may explain the reason why IPS from Cordyceps ophioglossoides can be used to fight against neurodegenerative dis-eases and menopausal symptoms.展开更多
Based on current rural tourism development of China and its typical modes,this paper on the basis of studying significance and impact of characteristic culture on rural tourism proposes the concept of"integrating...Based on current rural tourism development of China and its typical modes,this paper on the basis of studying significance and impact of characteristic culture on rural tourism proposes the concept of"integrating characteristic culture and rural tourism,elaborates significance of attractive force of folk cultures,expressive power of vernacular cultures,appeal of characteristic cultures for the optimization of rural tourism industry.展开更多
Alfalfa (Medicago sativa) is an important forage crop belonging to the Fabaceae family. It is cultivated across the world for fodder and originated in Asia. Alfalfa cultivar Regen-SY was used in this study which is a ...Alfalfa (Medicago sativa) is an important forage crop belonging to the Fabaceae family. It is cultivated across the world for fodder and originated in Asia. Alfalfa cultivar Regen-SY was used in this study which is a hybrid of first-generation self-parents from Regen-S (M. sativa) and Regen-Y (Medicago falcata) research cultivars. The main objective of the study was to optimize conditions for the isolation and liquid culture of alfalfa Regen-SY protoplasts. Several factors like enzyme combination, incubation time, plant age, centrifugation speed and shaker speed affecting protoplast isolation and culture were optimized in the study. The yield and viability of the protoplasts was determined by using hemocytometer and Fluorescein diacetate (FDA) staining respectively. Results showed that factors like enzyme combination, incubation time, plant age, centrifugation speed and Mannitol concentration significantly (p ≤ 0.05) affect protoplast yield and viability whereas shaker speed didn’t result in any significant difference in the yield and viability of protoplasts. Using optimum conditions protoplasts were cultured in the liquid medium and microcalli formation was achieved after five weeks of the culture. The protocol established in this study will assist researchers in the isolation and culture of protoplasts in alfalfa and will accelerate the research processes like protoplast fusion and genetic engineering.展开更多
[ Objective] This study aimed to establish an optimized suspension culture for hairy roots of Aconitum coreanum (Levi.) Raipaics. [ Method ] Hairy root of Aconitum coreanum ( Levl. ) Raipaics A0489 was selected as...[ Objective] This study aimed to establish an optimized suspension culture for hairy roots of Aconitum coreanum (Levi.) Raipaics. [ Method ] Hairy root of Aconitum coreanum ( Levl. ) Raipaics A0489 was selected as experimental material, to screen the optimal medium for suspension culture. [ Result] Aconitum coreanum (Levl.) Raipaics hairy roots showed different growth conditions in various liquid medium; salt concentration, nitrogen content, sugar content, rotation speed and room temperature had great influences on the growth of Aconitum coreanum (Levi.) Raipaics hairy roots. [ Conclusion] The optimal suspension culture system for Aconitum coreanum ( Levi. ) Raipaics hairy roots was established : B5 was used as basic medium, culture temperature was 20℃ under dark conditions, rotation speed was 140 r/m in the first 15 d and 110 r/m in the latter 15 d.展开更多
Anti-lipopolysaccharide factors (ALFs) are important antimicrobial peptides that are isolated from some aquatic species. In a previous study, we isolated ALF genes from Chinese mitten crab, Eriocheir sinensis. In th...Anti-lipopolysaccharide factors (ALFs) are important antimicrobial peptides that are isolated from some aquatic species. In a previous study, we isolated ALF genes from Chinese mitten crab, Eriocheir sinensis. In this study, we optimized the production of a recombinant ALF by expressing E. sinensis ALF genes in Eseherichia coli maintained in shake-flasks. In particular, we focused on optimization of both the medium composition and the culture condition. Various medium components were analyzed by the Plackett-Burman design, and two significant screened factors, (NH4)2SO4 and KH2PO4, were further optimized via the central composite design (CCD). Based on the CCD analysis, we investigated the induction start-up time, the isopropylthio-D-galactoside (IPTG) concentration, the post-induction time, and the temperature by response surface methodology. We found that the highest level of ALF fusion protein was achieved in the medium containing 1.89 g/L (NH4)2SO4 and 3.18 g/L KH2PO4, with a cell optical density of 0.8 at 600 nm before induction, an IPTG concentration of 0.5 mmol/L, a post-induction temperature of 32.7~C, and a post-induction time of 4 h. Applying the whole optimization strategy using all optimal factors improved the target protein content from 6.1% (without optimization) to 13.2%. We further applied the optimized medium and conditions in high cell density cultivation, and determined that the soluble target protein constituted 105% of the total protein. Our identification of the economic medium composition, optimal culture conditions, and details of the fermentation process should facilitate the potential application of ALF for further research.展开更多
Based on the problems of traditional living environment of the Tibetan Gongbu culture and the concept of inheriting the Tibetan Gongbu culture and the harmonious coexistence of environment and human,living environment...Based on the problems of traditional living environment of the Tibetan Gongbu culture and the concept of inheriting the Tibetan Gongbu culture and the harmonious coexistence of environment and human,living environment design of Juemu Village on the side of the Niyang River is optimized. It adheres to the importance of traditional culture,and especially emphasizes the layout of buildings with Tibetan style and their surrounding,function optimization,and the plant design,thereby exploring and attempting planning method of Tibetan living environment under the background of new rural construction.展开更多
基金Supported by Scientific and Technological Planning Project of Pu'er City of Yunnan Province(2012kj007)
文摘[Objectives] To increase the survival rate of tissue culture seedlings of Dendrobium officinale,and optimize the conditions of rooting medium by the response surface methodology( RSM). [Methods]The effects of 6-BA concentration,NAA concentration,potato amount and the amount of mashed banana on the growth of seedlings were determined by single factor experiment and were analyzed by Box-Behnken design and response surface methodology. [Results]The optimal culture conditions: rooting medium 1/2 MS + 6-BA 0. 24 mg/L + mashed banana 87. 63 g/L + potato 89. 30 g/L + NAA 0. 52 mg/L + sucrose 20. 0 g/L + activated carbon 4. 0 g/L + agar 7. 0 g/L,p H 5. 8,and light intensity 2 000 Lx. [Conclusions]The model established by response surface methodology has a good predictability and could be used to optimize the conditions of tissue culture and rooting medium of D. officinale.
基金National Science&Technology Pillar Program of China(No.2012BAC02B04)National Natural Science Foundation of China(No.41201306)
文摘High enzymatic activity is required for laccase applications.Central composite design (CCD)-based response surface methodology (RSM) can effectively increase the enzymatic activity of Pleurotus ostreatus P40 in liquid substrate fermentation.Initial screening of the nutritional components was performed using a Plackett-Burman design.The variables,namely,bran,bagasse,Tween 80,and yeast extract,were found to have statistically significant effects on laccase activity.These variables were further optimized using CCD-based RSM.Optimal concentrations for the maximum laccase activity were 8.144 2 g/L bran,50 g/L bagasse,0.424 1 mL/L Tween 80,and 2.832 5 g/L yeast extract.Under optimized conditions,the maximum measured laccase activity reached 96 480 U/L,which was close to the predicted value (104 830 U/L) by RSM.Therefore,RSM can be used to optimize culture components for laccase activity from Pieurotus ostreatus P40.
基金sponsored by R&D Program of Beijing Municipal Education Commission(KM202410009013).
文摘In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.
基金supported by a Major Research Project in Higher Education Institutions in Henan Province,with Project Number 23A560015.
文摘A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.
基金funded by the National Natural Science Foundation of China(52074298)Beijing Municipal Natural Science Foundation(8232056)+1 种基金Guizhou Province science and technology plan project([2020]3008)Liulin Energy and Environment Academician Workstation(2022XDHZ12).
文摘Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.
基金the National Key Research and Development Program of China(Grant Number 2021YFB1714600)the National Natural Science Foundation of China(Grant Number 52075195)the Fundamental Research Funds for the Central Universities,China through Program No.2172019kfyXJJS078.
文摘With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.
文摘To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.
文摘To explore the optimal evaluation mechanism of open-cast mining procedure,this paper takes the actual operation status of Huolinhe No.1 Open-cast Mine as the research basis,and makes a deep analysis of the four representative mining procedures proposed by this mine.A detailed and comprehensive evaluation system is constructed using rank-sum ratio(RSR)method.The system covers 17 key indicators and aims to evaluate the advantages and disadvantages of each scheme in an all-round and multi-angle manner.Through the calculation and analysis by RSR method,the comprehensive evaluation of the four types of mining procedure schemes is carried out,and finally the secondary river improvement project is determined as the optimal mining implementation scheme,and the joint mining scheme of the south and north areas is the alternative strategy.The research results of this paper are objective,clear and definite,can not only reveal the effectiveness and feasibility of RSR method in solving the problem of open-cast mining procedure optimization,but also provide a strong technical support and decision-making basis for the future production development of Huolinhe No.1 Open-cast Mine.Thus,this study is expected to further promote the scientific and refined process of mining operations.
基金Supported by projects of National Natural Science Foundation of China(No.42074150)National Key Research and Development Program of China(No.2023YFC3707901)Futian District Integrated Ground Collapse Monitoring and Early Warning System Construction Project(No.FTCG2023000209).
文摘The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.
文摘In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.
文摘This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and trajectory guidance for vehicles entering the gap is determined under safety constraints.Based on the initial state and sequence of vehicles entering the merging area,individual vehicle trajectories are optimized sequentially.An optimization model and method for ramp entry trajectories in mixed traffic flow are developed,incorporating on-ramp vehicle entry sequencing and ordinary vehicle trajectory prediction.Key performance indicators,including driving safety,total travel time,parking wait probability,and trajectory smoothness,are compared and analyzed to evaluate the proposed approach.
基金financially supported by the National Natural Science Foundation(40930847,31070442)the Natural Science Foundation of Fujian Province(2012J01150)Public science and technology research funds projects of ocean(201305016,201305041,201305022) and MELRI1003
文摘Harmful algal blooms(HABs) have led to extensive ecological and environmental issues and huge economic losses.Various HAB control techniques have been developed,and biological methods have been paid more attention.Algicidal bacteria is a general designation for bacteria which inhibit algal growth in a direct or indirect manner,and kill or damage the algal cells.A metabolite which is strongly toxic to the dinoflagellate Alexandrium tamarense was produced by strain DH46 of the alga-lysing bacterium Alteromonas sp.The culture conditions were optimized using a single-factor test method.Factors including carbon source,nitrogen source,temperature,initial pH value,rotational speed and salinity were studied.The results showed that the cultivation of the bacteria at 28℃ and 180 r min-1with initial pH 7 and 30 salt contcentration favored both the cell growth and the lysing effect of strain DH46.The optimal medium composition for strain DH46 was determined by means of uniform design experimentation,and the most important components influencing the cell density were tryptone,yeast extract,soluble starch,NaNO3 and MgSO4.When the following culture medium was used(tryptone 14.0g,yeast extract 1.63g,soluble starch 5.0 g,NaNO3 1.6 g,MgSO4 2.3 g in 1L),the largest bacterial dry weight(7.36 g L-1) was obtained,which was an enhancement of 107% compared to the initial medium;and the algal lysis rate was as high as 98.4% which increased nearly 10% after optimization.
文摘An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface method-ology were applied to optimize the medium constituents. A central composite design was used to explain the combined effect of three medium constituents, viz, glucose, K2HPO4, MgSO47H2O. The strain produced more elastase in the completely optimized medium, as compared with the partially optimized medium. The fitted model of the second model, as per RSM, showed that glucose was 7.4 g/100 ml, casein 1.13 g/100 ml, corn steep flour 0.616 g/100 ml, K2HPO4 0.206 g/100 ml and MgSO47H2O 0.034 g/100 ml. The fermentation kinetics of these two culture media in the flask experiments were analyzed. It was found that the highest elastase productivity occurred at 54 hours. Higher glucose concentration had inhibitory effect on elastase production. At the same time, we observed that the glucose consumption rate was slow in the completely optimized medium, which can explain the lag period of the highest elastase production. Some metal ions and surfactant additives also affected elastase production and cell growth.
基金Supported by the National High Technology Research and Development Program of China (2007AA021506)the Natural Science Foundation of Zhejiang Province (R207609)the Research Project of Science and Technology of Zhejiang Province,China (2005C23027)
文摘Cordyceps ophioglossoides is a valuable traditional medicinal material.We have found that intracellular polysaccharide(IPS) is the major biologically active ingredient in Cordyceps ophioglossoides.This study is the first time to optimize the yield of IPS from Cordyceps ophioglossoides.The optimal medium for IPS production consists of glucose 54.50 g·L·1,yeast powder 25.50 g·L·1,NaH2PO4 0.4 g·L·1 and K2HPO4 0.4 g·L·1.The suggested culture conditions are 24 ℃,initial pH 4.5 with a rotary speed of 120 r·min·1 for 168 h.The yield of IPS is 737.93 mg·L·1,which is 50% higher than the yield under the conditions prior to optimization.The anti-oxidative activities of IPS in Cordyceps ophioglossoides L2 are also characterized using various in vitro assay.The anti-oxidative activity may explain the reason why IPS from Cordyceps ophioglossoides can be used to fight against neurodegenerative dis-eases and menopausal symptoms.
基金Supported by Program of Yunnan Provincial Department of Education(2010C222)
文摘Based on current rural tourism development of China and its typical modes,this paper on the basis of studying significance and impact of characteristic culture on rural tourism proposes the concept of"integrating characteristic culture and rural tourism,elaborates significance of attractive force of folk cultures,expressive power of vernacular cultures,appeal of characteristic cultures for the optimization of rural tourism industry.
文摘Alfalfa (Medicago sativa) is an important forage crop belonging to the Fabaceae family. It is cultivated across the world for fodder and originated in Asia. Alfalfa cultivar Regen-SY was used in this study which is a hybrid of first-generation self-parents from Regen-S (M. sativa) and Regen-Y (Medicago falcata) research cultivars. The main objective of the study was to optimize conditions for the isolation and liquid culture of alfalfa Regen-SY protoplasts. Several factors like enzyme combination, incubation time, plant age, centrifugation speed and shaker speed affecting protoplast isolation and culture were optimized in the study. The yield and viability of the protoplasts was determined by using hemocytometer and Fluorescein diacetate (FDA) staining respectively. Results showed that factors like enzyme combination, incubation time, plant age, centrifugation speed and Mannitol concentration significantly (p ≤ 0.05) affect protoplast yield and viability whereas shaker speed didn’t result in any significant difference in the yield and viability of protoplasts. Using optimum conditions protoplasts were cultured in the liquid medium and microcalli formation was achieved after five weeks of the culture. The protocol established in this study will assist researchers in the isolation and culture of protoplasts in alfalfa and will accelerate the research processes like protoplast fusion and genetic engineering.
基金Supported by Project of Applied Basic Research from the Institute of Special Wild Economic Animal and Plant Science,Chinese Academy of Agricultural Sciences(tcs2004-08)Project of Jilin Science and Technology Bureau(201222306)
文摘[ Objective] This study aimed to establish an optimized suspension culture for hairy roots of Aconitum coreanum (Levi.) Raipaics. [ Method ] Hairy root of Aconitum coreanum ( Levl. ) Raipaics A0489 was selected as experimental material, to screen the optimal medium for suspension culture. [ Result] Aconitum coreanum (Levl.) Raipaics hairy roots showed different growth conditions in various liquid medium; salt concentration, nitrogen content, sugar content, rotation speed and room temperature had great influences on the growth of Aconitum coreanum (Levi.) Raipaics hairy roots. [ Conclusion] The optimal suspension culture system for Aconitum coreanum ( Levi. ) Raipaics hairy roots was established : B5 was used as basic medium, culture temperature was 20℃ under dark conditions, rotation speed was 140 r/m in the first 15 d and 110 r/m in the latter 15 d.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2006AA100311)
文摘Anti-lipopolysaccharide factors (ALFs) are important antimicrobial peptides that are isolated from some aquatic species. In a previous study, we isolated ALF genes from Chinese mitten crab, Eriocheir sinensis. In this study, we optimized the production of a recombinant ALF by expressing E. sinensis ALF genes in Eseherichia coli maintained in shake-flasks. In particular, we focused on optimization of both the medium composition and the culture condition. Various medium components were analyzed by the Plackett-Burman design, and two significant screened factors, (NH4)2SO4 and KH2PO4, were further optimized via the central composite design (CCD). Based on the CCD analysis, we investigated the induction start-up time, the isopropylthio-D-galactoside (IPTG) concentration, the post-induction time, and the temperature by response surface methodology. We found that the highest level of ALF fusion protein was achieved in the medium containing 1.89 g/L (NH4)2SO4 and 3.18 g/L KH2PO4, with a cell optical density of 0.8 at 600 nm before induction, an IPTG concentration of 0.5 mmol/L, a post-induction temperature of 32.7~C, and a post-induction time of 4 h. Applying the whole optimization strategy using all optimal factors improved the target protein content from 6.1% (without optimization) to 13.2%. We further applied the optimized medium and conditions in high cell density cultivation, and determined that the soluble target protein constituted 105% of the total protein. Our identification of the economic medium composition, optimal culture conditions, and details of the fermentation process should facilitate the potential application of ALF for further research.
基金Supported by Higher Vocational Education Quality Promotion Plan of 2016(Education Quality Improvement Plan of Higher Vocational College of Garden Technology)Humanities and Social Sciences Research Projects in Tibet Colleges and Universities(sk2015-36)Innovative Entrepreneurship Training Program for Undergraduate at Autonomous Region Level in 2015(Riverfront Landscape Design of Niyang River Scenery Belt)
文摘Based on the problems of traditional living environment of the Tibetan Gongbu culture and the concept of inheriting the Tibetan Gongbu culture and the harmonious coexistence of environment and human,living environment design of Juemu Village on the side of the Niyang River is optimized. It adheres to the importance of traditional culture,and especially emphasizes the layout of buildings with Tibetan style and their surrounding,function optimization,and the plant design,thereby exploring and attempting planning method of Tibetan living environment under the background of new rural construction.