目的分析2009~2024年间国际延时现场救护领域的文献,探究主要研究主题及其发展趋势,以期为未来救护策略提供理论支持。方法系统检索PubMed、Embase、Web of Science和中国知网等数据库,筛选并纳入283篇相关文献。运用BERTopic主题建模...目的分析2009~2024年间国际延时现场救护领域的文献,探究主要研究主题及其发展趋势,以期为未来救护策略提供理论支持。方法系统检索PubMed、Embase、Web of Science和中国知网等数据库,筛选并纳入283篇相关文献。运用BERTopic主题建模技术对文献进行主题识别和关键词分析,并进行可视化展示。结果当前研究主要聚焦在“急救策略研究”“智能技术与信息管理”“实战应用”与“政策与理论研究”等4个方面,预测这些领域将持续成为研究热点。结论国际延时现场救护研究正处于快速发展阶段,建议未来研究深入重点领域,开发有效的救护策略,以提升救治效率和伤员生存率。展开更多
[背景/意义]研究和对比不同主题建模方法在科学文献主题识别上的应用表现,对于合理选择使用主题建模技术开展科学文献主题挖掘具有重要意义。[方法/过程]通过构建中英文科学文献实验语料,选择3种主题建模方法(LDA、Top2vec、Bertopic)和...[背景/意义]研究和对比不同主题建模方法在科学文献主题识别上的应用表现,对于合理选择使用主题建模技术开展科学文献主题挖掘具有重要意义。[方法/过程]通过构建中英文科学文献实验语料,选择3种主题建模方法(LDA、Top2vec、Bertopic)和5种文本特征计算方法(Bag of Words、TFIDF、Doc2vec、MiniLM、SciBert)进行中英文科学文献主题建模实验,并对不同建模结果的主题多样性、主题一致性、主题稳定性和主题离散性指标进行对比分析。[结果/结论]不同建模工具的主题识别结果存在较大差异,其中LDA与Bertopic在英文和中文语料上识别出的主题中具有相似性关系的主题占比相对较高,但也仅为9.81%和7.46%;基于Doc2vec算法的Top2vec模型在主题多样性指标上的表现相对最优;基于文本预训练算法的Top2vec模型和Bertopic模型的主题稳定性和离散性指标优于传统主题建模方法。针对大语言模型技术的快速发展和广泛应用,加快推进科学文献预训练模型研发,并将之应用于科技情报业务实践是当前的重要研究方向。展开更多
揭示技术演化脉络是把握技术发展规律的前提,基于专利信息的主题挖掘是基于技术发展微观机制呈现宏观规律的重要研究内容,对技术超前布局和创新驱动实践具有重大意义。技术主题动态演化分析DPL-BMM(Dirichlet process biterm-based mixt...揭示技术演化脉络是把握技术发展规律的前提,基于专利信息的主题挖掘是基于技术发展微观机制呈现宏观规律的重要研究内容,对技术超前布局和创新驱动实践具有重大意义。技术主题动态演化分析DPL-BMM(Dirichlet process biterm-based mixture model with labelling)是一种附有标签的基于双项狄利克雷过程的混合模型,其突破了传统主题模型在进行主题识别时需固定主题数目的局限,通过增加技术主题表示模块使识别到的技术主题内容更加明确。本文以人工智能领域技术为例进行实证分析,研究结果表明,该方法对技术主题及其演化脉络展示具有实际应用价值。展开更多
文摘目的分析2009~2024年间国际延时现场救护领域的文献,探究主要研究主题及其发展趋势,以期为未来救护策略提供理论支持。方法系统检索PubMed、Embase、Web of Science和中国知网等数据库,筛选并纳入283篇相关文献。运用BERTopic主题建模技术对文献进行主题识别和关键词分析,并进行可视化展示。结果当前研究主要聚焦在“急救策略研究”“智能技术与信息管理”“实战应用”与“政策与理论研究”等4个方面,预测这些领域将持续成为研究热点。结论国际延时现场救护研究正处于快速发展阶段,建议未来研究深入重点领域,开发有效的救护策略,以提升救治效率和伤员生存率。
文摘[背景/意义]研究和对比不同主题建模方法在科学文献主题识别上的应用表现,对于合理选择使用主题建模技术开展科学文献主题挖掘具有重要意义。[方法/过程]通过构建中英文科学文献实验语料,选择3种主题建模方法(LDA、Top2vec、Bertopic)和5种文本特征计算方法(Bag of Words、TFIDF、Doc2vec、MiniLM、SciBert)进行中英文科学文献主题建模实验,并对不同建模结果的主题多样性、主题一致性、主题稳定性和主题离散性指标进行对比分析。[结果/结论]不同建模工具的主题识别结果存在较大差异,其中LDA与Bertopic在英文和中文语料上识别出的主题中具有相似性关系的主题占比相对较高,但也仅为9.81%和7.46%;基于Doc2vec算法的Top2vec模型在主题多样性指标上的表现相对最优;基于文本预训练算法的Top2vec模型和Bertopic模型的主题稳定性和离散性指标优于传统主题建模方法。针对大语言模型技术的快速发展和广泛应用,加快推进科学文献预训练模型研发,并将之应用于科技情报业务实践是当前的重要研究方向。
文摘揭示技术演化脉络是把握技术发展规律的前提,基于专利信息的主题挖掘是基于技术发展微观机制呈现宏观规律的重要研究内容,对技术超前布局和创新驱动实践具有重大意义。技术主题动态演化分析DPL-BMM(Dirichlet process biterm-based mixture model with labelling)是一种附有标签的基于双项狄利克雷过程的混合模型,其突破了传统主题模型在进行主题识别时需固定主题数目的局限,通过增加技术主题表示模块使识别到的技术主题内容更加明确。本文以人工智能领域技术为例进行实证分析,研究结果表明,该方法对技术主题及其演化脉络展示具有实际应用价值。