We have introduced a new approach to calculate the orbital angular momentum(OAM)of bound states in continuum(BICs)and below-continuum-resonance(BCR)modes in the rotational periodic system nested inside and outside by ...We have introduced a new approach to calculate the orbital angular momentum(OAM)of bound states in continuum(BICs)and below-continuum-resonance(BCR)modes in the rotational periodic system nested inside and outside by transforming the Bloch wave number from the translational periodic system.We extensively classify and study these BICs and BCR modes,which exhibit high-quality(high-Q)factors,in different regions relative to the interface of the system.These BICs and BCR modes with a high-Q factor have been studied in detail based on distinctive structural parameters and scattering theory.The outcomes of this research break the periodic limitation of interface state-based BICs,and realize more and higher symmetry interface state-based BICs and BCR modes.Moreover,we can control the region where light is captured by adjusting the frequency,and show that the Q factor of BICs is more closely related to the ordinal number of rings and the rotational symmetry number of the system.展开更多
This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fr...This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fracture caging.The simulations are innovative because of modeling discrete fractures explicitly in continuum analysis.A key advantage of FBCM is that fracture initiation and propagation are modeled explicitly without changing the domain grid(i.e.no re-meshing).Further,multiple realizations of a preexisting fracture distribution can be analyzed using the same domain grid.The simulated hydraulic fracturing technique consists of pressurizing multiple wells simultaneously:initially without permeating fluids into the rock,to seed fractures uniformly and at high density in the wall rock of the wells;followed by fluid injection to propagate the seeded fracture density hydraulically.FBCM combines the ease of continuum modeling with the potential accuracy of modeling discrete fractures and fracturing explicitly.Fractures are modeled as piecewise planar based on intersections with domain elements;fracture geometry stored as continuum properties is used to calculate parameters needed to model individual fractures;and rock behavior is modeled through tensorial aggregation of the behavior of discrete fractures and unfractured rock.Simulations are presented for previously unfractured rock and for rock with preexisting fractures of horizontal,shallow-dipping,steeply dipping,or vertical orientation.Simulations of a single-well model are used to determine the pattern and spacing for a multiple-well design.The results illustrate high-density fracturing and fracture caging through simultaneous fluid injection in multiple wells:for previously unfractured rock or rock with preexisting shallow-dipping or horizontal fractures,and in situ vertical compressive stress greater than horizontal.If preexisting fractures are steeply dipping or vertical,and considering the same in situ stress condition,well pressurization without fluid permeation appears to be the only practical way to induce new fractures and contain fracturing within the target domain.展开更多
Quasi-bound state in the continuum(QBIC)resonance is gradually attracting attention and being applied in Goos-Hänchen(GH)shift enhancement due to its high quality(Q)factor and superior optical confinement.Current...Quasi-bound state in the continuum(QBIC)resonance is gradually attracting attention and being applied in Goos-Hänchen(GH)shift enhancement due to its high quality(Q)factor and superior optical confinement.Currently,symmetry-protected QBIC resonance is often achieved by breaking the geometric symmetry,but few cases are achieved by breaking the material symmetry.This paper proposes a dielectric compound grating to achieve a high Q factor and high-reflection symmetry-protectede QBIC resonance based on material asymmetry.Theoretical calculations show that the symmetry-protected QBIC resonance achieved by material asymmetry can significantly increase the GH shift up to-980 times the resonance wavelength,and the maximum GH shift is located at the reflection peak with unity reflectance.This paper provides a theoretical basis for designing and fabricating high-performance GH shift tunable metasurfaces/dielectric gratings in the future.展开更多
Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-const...Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-constant subsegment stiffness structure for tendon-driven quasi continuum robots(TDQCRs) comprising rigid-flexible coupling subsegments.Aiming at real-time control applications, we present a novel static-to-kinematic modeling approach to gain a comprehensive understanding of the TDQCR model. The analytical subsegment-based kinematics for the multisection manipulator is derived based on screw theory and product of exponentials formula, and the static model considering gravity loading,actuation loading, and robot constitutive laws is established. Additionally, the effect of tension attenuation caused by routing channel friction is considered in the robot statics, resulting in improved model accuracy. The root-mean-square error between the outputs of the static model and the experimental system is less than 1.63% of the arm length(0.5 m). By employing the proposed static model, a mapping of bending angles between the configuration space and the subsegment space is established. Furthermore, motion control experiments are conducted on our TDQCR system, and the results demonstrate the effectiveness of the static-to-kinematic model.展开更多
The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can repr...The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude.展开更多
BACKGROUND The human immunodeficiency virus(HIV)continuum of care cascade illustrates the 90-90-90 goals defined by the Joint United Nations Program on HIV/acquired immunodeficiency syndrome(UNAIDS).The care cascade i...BACKGROUND The human immunodeficiency virus(HIV)continuum of care cascade illustrates the 90-90-90 goals defined by the Joint United Nations Program on HIV/acquired immunodeficiency syndrome(UNAIDS).The care cascade includes the following five steps:Diagnosis,linkage to care,retention in care,adherence to antiretroviral therapy(ART),and viral suppression.AIM To elaborate the HIV cascade of patients diagnosed with HIV at the Nossa Senhora da Conceição Hospital(HNSC)and to determine possible local causes for the loss of patients between each step of the cascade.METHODS This retrospective cohort study included patients diagnosed with HIV infection from January 1,2015 to December 31,2016 and followed up until July 31,2019.The data were analyzed by IBM SPSS software version 25,and Poisson regression with simple robust variance was used to analyze variables in relation to each step of the cascade.Variables with P<0.20 were included in multivariable analysis,and P<0.05 was considered significant.Pearson’sχ^(2) test was used to compare the groups of patients followed up at the HNSC and those followed up at other sites.RESULTS The results were lower than those expected by the UNAIDS,with 94%of patients linked,91%retained,81%adhering to ART,and 84%in viral suppression.Age and site of follow-up were the variables with the highest statistical significance.A comparison showed that the cascade of patients from the HNSC had superior results than outpatients,with a significant difference in the last step of the cascade.CONCLUSION The specialized and continued care provided at the HNSC was associated with better results and was closer to the goals set by the UNAIDS.The development of the HIV cascade using local data allowed for the stratification and evaluation of risk factors associated with the losses occurring between each step of the cascade.展开更多
Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and comp...Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and compressive force,and increase the structure's rigidity.In this paper,a generalized kinetostatics model for multi-module and multi-segment continuum robots considering the effect of friction based on the Cosserat rod theory is established.Then,the model is applied to a two-module rod-driven continuum robot with winding ropes to analyze its deformation and load characteristics.Four different in-plane configurations under the external load term as S1,S2,C1,and C2 are defined.Taking a bending plane as an example,the tip deformation along thex-axis of these shapes is simulated and compared,which shows that the load capacity of C1 and C2 is generally larger than that of S1 and S2.Furthermore,the deformation experiments and simulations show that the maximum error ratio without external loads relative to the total length is no more than 3%,and it is no more than 4.7%under the external load.The established kinetostatics model is proven sufficient to accurately analyze the rod-driven continuum robot with the consideration of internal friction.展开更多
Bound states in the continuum(BICs)have exhibited extraordinary properties in photonics for enhanced light-matter interactions that enable appealing applications in nonlinear optics,biosensors,and ultrafast optical sw...Bound states in the continuum(BICs)have exhibited extraordinary properties in photonics for enhanced light-matter interactions that enable appealing applications in nonlinear optics,biosensors,and ultrafast optical switches.The most common strategy to apply BICs in a metasurface is by breaking symmetry of resonators in the uniform array that leaks the otherwise uncoupled mode to free space and exhibits an inverse quadratic relationship between quality factor(Q)and asymmetry.Here,we propose a scheme to further reduce scattering losses and improve the robustness of symmetry-protected BICs by decreasing the radiation density with a hybrid BIC lattice.We observe a significant increase of radiative Q in the hybrid lattice compared to the uniform lattice with a factor larger than 14.6.In the hybrid BIC lattice,modes are transferred toГpoint inherited from high symmetric X,Y,and M points in the Brillouin zone that reveal as multiple Fano resonances in the far field and would find applications in hyperspectral sensing.This work initiates a novel and generalized path toward reducing scattering losses and improving the robustness of BICs in terms of lattice engineering that would release the rigid requirements of fabrication accuracy and benefit applications of photonics and optoelectronic devices.展开更多
Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and wa...Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and water cycle mechanisms.In this study,we analyzed the stable isotopic composition,relationship and indicative significance of precipitation,soil water(0~100 cm depth)and xylem water of Qinghai spruce(Picea crassifolia)forest in the eastern Qilian Mountains,and explored the circulation process among different water bodies.The results show that the stable isotopes of precipitation vary greatly during the entire observation period.The values ofδ2H andδ^(18)O in the precipitation in the warm season are richer than those in the cold season,and the slope and intercept of local meteoric water line(LMWL,δ2H=6.79δ18O+7.13)are both smaller than global meteoric water line(GMWL,δ2H=8.17δ18O+10.56).The stable isotopes of soil water at different depths underwent different degrees of evaporative fractionation,and theδ18O andδ2H of shallow soil water varied greatly,while the deep soil water tended to be similar.The topsoil(0~10 cm)can respond quickly to precipitation,and the response of the deep soil has a time lag.In the whole growing season,0~30 cm and 60~100 cm soil water are the main water sources of Qinghai spruce.The water source of Qinghai spruce was from all soil layers in May and September,mainly from the shallow soil layer(0~30 cm)in August and October,and mainly from the deep soil layer(60~100 cm)in June and July.展开更多
The inherent compliance of continuum robots holds great promise in the fields of soft manipulation and safe human–robot interaction.This compliance reduces the risk of damage to the manipulated object and its surroun...The inherent compliance of continuum robots holds great promise in the fields of soft manipulation and safe human–robot interaction.This compliance reduces the risk of damage to the manipulated object and its surroundings.However,continuum robots possess theoretically infinite degrees of freedom,and this high flexibility usually leads to complex deformations when subjected to external forces and positional constraints.Describing these complex deformations is the main challenge in modeling continuum robots.In this study,we investigated a novel variable curvature modeling method for continuum robots,considering external forces and positional constraints.The robot configuration curve is described using the developed mechanical model,and then the robot is fitted to the curve.A ten-section continuum robot prototype with a length of 1 m was developed in order to validate the model.The feasibility and accuracy of the model were verified by the ability of the robot to reach target points and track complex trajectories with a load.This work was able to serve as a new perspective for the design analysis and motion control of continuum robots.展开更多
In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The struc...In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The structure of the Alfvén wave continuum is calculated by considering only the coupling caused by the periodicity in the helical angle of the magnetic island.The results show that the magnetic island can induce an upshift in the Alfvén continuum.Moreover,the coupling between different branches of the continuous spectrum becomes more significant with increasing continuum mode numbers near the boundary of the magnetic island.展开更多
Photonic waveguides are the most fundamental element for photonic integrated circuits(PICs).Waveguide properties,such as propagation loss,modal areas,nonlinear coefficients,etc.,directly determine the functionalities ...Photonic waveguides are the most fundamental element for photonic integrated circuits(PICs).Waveguide properties,such as propagation loss,modal areas,nonlinear coefficients,etc.,directly determine the functionalities and performance of PICs.Recently,the emerging waveguides with bound states in the continuum(BICs)have opened new opportunities for PICs because of their special properties in resonance and radiation.Here,we review the recent progress of PICs composed of waveguides with BICs.First,fundamentals including background physics and design rules of a BIC-based waveguide will be introduced.Next,two types of BIC-based waveguide structures,including shallowly etched dielectric and hybrid waveguides,will be presented.Lastly,the challenges and opportunities of PICs with BICs will be discussed.展开更多
The present paper gives the proof of the set of primes as a continuum. It starts with the density of the primes, and shortly recapitulates the prime-number-formula and the complete-prime-number-formula. Reflecting the...The present paper gives the proof of the set of primes as a continuum. It starts with the density of the primes, and shortly recapitulates the prime-number-formula and the complete-prime-number-formula. Reflecting the series of the primes over any prime gives the double density of occupation of integer positions by the union of the series of multiples of the primes. The remaining free positions render it possible to prove Goldbach’s conjecture and the set of primes as a continuum. The theoretical evaluation is followed in annexes by numerical evaluation, demonstrating the theoretical results. The numerical evaluation results in different constants and relations, which represent inherent properties of the set of primes.展开更多
Any scientific system has a unified basic theory. But physics has no unified basic theory in the modern sense. Classical mechanics, relativity and quantum mechanics have their own basic concepts, categories and princi...Any scientific system has a unified basic theory. But physics has no unified basic theory in the modern sense. Classical mechanics, relativity and quantum mechanics have their own basic concepts, categories and principles, so none of them can be regarded as true basic theories of physics. Cosmic Continuum Theory holds that the continuity and discreteness of the universe are fundamental issues related to the unification of physics. Because the contradiction between quantum non-locality and local reality is the fundamental obstacle to the unification of physics, while locality and non-locality correspond to the continuity and discreteness of physical reality respectively. The cosmic continuum theory introduces mathematical continuum and axiomatic ideas to reconstruct the basic theory of physics, and by the correspondence of existence and its dimensions to achieve the unification of the essence of physical reality, by introducing the cosmic continuum hypothesis to achieve the unification of the continuity and discreteness of physical reality, by introducing axiomatic methods to achieve formal unification of the foundations on physics. From the perspective of Cosmic Continuum, classical mechanics, relativity and quantum mechanics are no longer the basic theories of physics, but three branch theories of physics that are respectively applicable to macroscopic, cosmoscopic and microcosmic systems.展开更多
To address the problems of strain localization, the exact Mohr-Coulomb (MC) model is used based on second-order cone programming (mpcFEM-SOCP) in the framework of micropolar continuum finite element method. Using the ...To address the problems of strain localization, the exact Mohr-Coulomb (MC) model is used based on second-order cone programming (mpcFEM-SOCP) in the framework of micropolar continuum finite element method. Using the uniaxial compression test, we focused on the earth pressure problem of rigid wall segment involving non-associated plasticity. The numerical results reveal that when mpcFEM-SOCP is applied, the problems of mesh dependency can be effectively addressed. For geotechnical strain localization analysis involving non-associated MC plasticity, mpcFEM-SOCP in conjunction with the pseudo-time discrete scheme can improve the numerical stability and avoid the unreasonable softening issue in the pressure-displacement curves, which may be encountered in the conventional FEM. It also shows that the pressure-displacement responses calculated by mpcFEM-SOCP with the pseudo-time discrete scheme are higher than those calculated by mpcFEM-SOCP with the Davis scheme. The inclination angle of shear band predicted by mpcFEM-SOCP with the pseudo-time discrete scheme agrees well with the theoretical solution of non-associated MC plasticity.展开更多
本文设计了由不对称半圆柱对阵列组成的全介质超构表面,获得了两个高品质因子的准连续域束缚态模式(quasi-bound states in the continuum,QBIC).通过选择不同形式的对称破缺,在近红外频段均可产生两个稳健的QBIC,并且二者的谐振波长、...本文设计了由不对称半圆柱对阵列组成的全介质超构表面,获得了两个高品质因子的准连续域束缚态模式(quasi-bound states in the continuum,QBIC).通过选择不同形式的对称破缺,在近红外频段均可产生两个稳健的QBIC,并且二者的谐振波长、品质因子、偏振依赖等表现出不同的特性.模拟计算表明,通过测量两个QBIC的谐振波长,能够实现折射率和温度的双参数传感;通过调节不对称参数,利用QBIC的品质因子依赖于不对称参数的二次方反比关系,理论上能够提高品质因子到任意的数值,从而实现传感性能的提升和调节.该超构表面的折射率传感灵敏度、品质因子和优值分别达到194.7 nm/RIU,45829和8197,其温度传感灵敏度达到24 pm/℃.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.61405058 and 62075059)the Natural Science Foundation of Hunan Province (Grant Nos.2017JJ2048 and 2020JJ4161)+2 种基金the Scientific Research Foundation of Hunan Provincial Education Department (Grant No.21A0013)the Open Project of State Key Laboratory of Advanced Optical Communication Systems and Networks of China (Grant No.2024GZKF20)the Guangdong Basic and Applied Basic Research Foundation (Grant No.2024A1515011353)。
文摘We have introduced a new approach to calculate the orbital angular momentum(OAM)of bound states in continuum(BICs)and below-continuum-resonance(BCR)modes in the rotational periodic system nested inside and outside by transforming the Bloch wave number from the translational periodic system.We extensively classify and study these BICs and BCR modes,which exhibit high-quality(high-Q)factors,in different regions relative to the interface of the system.These BICs and BCR modes with a high-Q factor have been studied in detail based on distinctive structural parameters and scattering theory.The outcomes of this research break the periodic limitation of interface state-based BICs,and realize more and higher symmetry interface state-based BICs and BCR modes.Moreover,we can control the region where light is captured by adjusting the frequency,and show that the Q factor of BICs is more closely related to the ordinal number of rings and the rotational symmetry number of the system.
文摘This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fracture caging.The simulations are innovative because of modeling discrete fractures explicitly in continuum analysis.A key advantage of FBCM is that fracture initiation and propagation are modeled explicitly without changing the domain grid(i.e.no re-meshing).Further,multiple realizations of a preexisting fracture distribution can be analyzed using the same domain grid.The simulated hydraulic fracturing technique consists of pressurizing multiple wells simultaneously:initially without permeating fluids into the rock,to seed fractures uniformly and at high density in the wall rock of the wells;followed by fluid injection to propagate the seeded fracture density hydraulically.FBCM combines the ease of continuum modeling with the potential accuracy of modeling discrete fractures and fracturing explicitly.Fractures are modeled as piecewise planar based on intersections with domain elements;fracture geometry stored as continuum properties is used to calculate parameters needed to model individual fractures;and rock behavior is modeled through tensorial aggregation of the behavior of discrete fractures and unfractured rock.Simulations are presented for previously unfractured rock and for rock with preexisting fractures of horizontal,shallow-dipping,steeply dipping,or vertical orientation.Simulations of a single-well model are used to determine the pattern and spacing for a multiple-well design.The results illustrate high-density fracturing and fracture caging through simultaneous fluid injection in multiple wells:for previously unfractured rock or rock with preexisting shallow-dipping or horizontal fractures,and in situ vertical compressive stress greater than horizontal.If preexisting fractures are steeply dipping or vertical,and considering the same in situ stress condition,well pressurization without fluid permeation appears to be the only practical way to induce new fractures and contain fracturing within the target domain.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ23F040001)the National Natural Science Foundation of China(Grant No.12204446)+1 种基金the Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGC22E050006)the Quzhou Science and Technology Project of China(Grant No.2022K104).
文摘Quasi-bound state in the continuum(QBIC)resonance is gradually attracting attention and being applied in Goos-Hänchen(GH)shift enhancement due to its high quality(Q)factor and superior optical confinement.Currently,symmetry-protected QBIC resonance is often achieved by breaking the geometric symmetry,but few cases are achieved by breaking the material symmetry.This paper proposes a dielectric compound grating to achieve a high Q factor and high-reflection symmetry-protectede QBIC resonance based on material asymmetry.Theoretical calculations show that the symmetry-protected QBIC resonance achieved by material asymmetry can significantly increase the GH shift up to-980 times the resonance wavelength,and the maximum GH shift is located at the reflection peak with unity reflectance.This paper provides a theoretical basis for designing and fabricating high-performance GH shift tunable metasurfaces/dielectric gratings in the future.
基金Project supported by the National Natural Science Foundation of China (Grant No.61973167)the Jiangsu Funding Program for Excellent Postdoctoral Talent。
文摘Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-constant subsegment stiffness structure for tendon-driven quasi continuum robots(TDQCRs) comprising rigid-flexible coupling subsegments.Aiming at real-time control applications, we present a novel static-to-kinematic modeling approach to gain a comprehensive understanding of the TDQCR model. The analytical subsegment-based kinematics for the multisection manipulator is derived based on screw theory and product of exponentials formula, and the static model considering gravity loading,actuation loading, and robot constitutive laws is established. Additionally, the effect of tension attenuation caused by routing channel friction is considered in the robot statics, resulting in improved model accuracy. The root-mean-square error between the outputs of the static model and the experimental system is less than 1.63% of the arm length(0.5 m). By employing the proposed static model, a mapping of bending angles between the configuration space and the subsegment space is established. Furthermore, motion control experiments are conducted on our TDQCR system, and the results demonstrate the effectiveness of the static-to-kinematic model.
基金the support of Texas A&M University at Qatar for the 2022 Sixth Cycle Seed Grant Project。
文摘The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude.
文摘BACKGROUND The human immunodeficiency virus(HIV)continuum of care cascade illustrates the 90-90-90 goals defined by the Joint United Nations Program on HIV/acquired immunodeficiency syndrome(UNAIDS).The care cascade includes the following five steps:Diagnosis,linkage to care,retention in care,adherence to antiretroviral therapy(ART),and viral suppression.AIM To elaborate the HIV cascade of patients diagnosed with HIV at the Nossa Senhora da Conceição Hospital(HNSC)and to determine possible local causes for the loss of patients between each step of the cascade.METHODS This retrospective cohort study included patients diagnosed with HIV infection from January 1,2015 to December 31,2016 and followed up until July 31,2019.The data were analyzed by IBM SPSS software version 25,and Poisson regression with simple robust variance was used to analyze variables in relation to each step of the cascade.Variables with P<0.20 were included in multivariable analysis,and P<0.05 was considered significant.Pearson’sχ^(2) test was used to compare the groups of patients followed up at the HNSC and those followed up at other sites.RESULTS The results were lower than those expected by the UNAIDS,with 94%of patients linked,91%retained,81%adhering to ART,and 84%in viral suppression.Age and site of follow-up were the variables with the highest statistical significance.A comparison showed that the cascade of patients from the HNSC had superior results than outpatients,with a significant difference in the last step of the cascade.CONCLUSION The specialized and continued care provided at the HNSC was associated with better results and was closer to the goals set by the UNAIDS.The development of the HIV cascade using local data allowed for the stratification and evaluation of risk factors associated with the losses occurring between each step of the cascade.
基金Supported by National Natural Science Foundation of China(Grant No.51875033)Fundamental Research Funds for the Central Universities of China(Grant No.2021YJS137).
文摘Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and compressive force,and increase the structure's rigidity.In this paper,a generalized kinetostatics model for multi-module and multi-segment continuum robots considering the effect of friction based on the Cosserat rod theory is established.Then,the model is applied to a two-module rod-driven continuum robot with winding ropes to analyze its deformation and load characteristics.Four different in-plane configurations under the external load term as S1,S2,C1,and C2 are defined.Taking a bending plane as an example,the tip deformation along thex-axis of these shapes is simulated and compared,which shows that the load capacity of C1 and C2 is generally larger than that of S1 and S2.Furthermore,the deformation experiments and simulations show that the maximum error ratio without external loads relative to the total length is no more than 3%,and it is no more than 4.7%under the external load.The established kinetostatics model is proven sufficient to accurately analyze the rod-driven continuum robot with the consideration of internal friction.
基金This work was supported by the National Natural Science Foundation of China(Award No.62175099)Guangdong Basic and Applied Basic Research Foundation(Award No.2023A1515011085)+1 种基金Stable Support Program for Higher Education Institutions from Shenzhen Science,Technology&Innovation Commission(Award No.20220815151149004)Global recruitment program of young experts of China,and startup funding of Southern University of Science and Technology.The authors acknowledge the assistance of SUSTech Core Research Facilities and thank Yao Wang for helpful discussions on fabrication.
文摘Bound states in the continuum(BICs)have exhibited extraordinary properties in photonics for enhanced light-matter interactions that enable appealing applications in nonlinear optics,biosensors,and ultrafast optical switches.The most common strategy to apply BICs in a metasurface is by breaking symmetry of resonators in the uniform array that leaks the otherwise uncoupled mode to free space and exhibits an inverse quadratic relationship between quality factor(Q)and asymmetry.Here,we propose a scheme to further reduce scattering losses and improve the robustness of symmetry-protected BICs by decreasing the radiation density with a hybrid BIC lattice.We observe a significant increase of radiative Q in the hybrid lattice compared to the uniform lattice with a factor larger than 14.6.In the hybrid BIC lattice,modes are transferred toГpoint inherited from high symmetric X,Y,and M points in the Brillouin zone that reveal as multiple Fano resonances in the far field and would find applications in hyperspectral sensing.This work initiates a novel and generalized path toward reducing scattering losses and improving the robustness of BICs in terms of lattice engineering that would release the rigid requirements of fabrication accuracy and benefit applications of photonics and optoelectronic devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.41761047,41861040 and 41861034).
文摘Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and water cycle mechanisms.In this study,we analyzed the stable isotopic composition,relationship and indicative significance of precipitation,soil water(0~100 cm depth)and xylem water of Qinghai spruce(Picea crassifolia)forest in the eastern Qilian Mountains,and explored the circulation process among different water bodies.The results show that the stable isotopes of precipitation vary greatly during the entire observation period.The values ofδ2H andδ^(18)O in the precipitation in the warm season are richer than those in the cold season,and the slope and intercept of local meteoric water line(LMWL,δ2H=6.79δ18O+7.13)are both smaller than global meteoric water line(GMWL,δ2H=8.17δ18O+10.56).The stable isotopes of soil water at different depths underwent different degrees of evaporative fractionation,and theδ18O andδ2H of shallow soil water varied greatly,while the deep soil water tended to be similar.The topsoil(0~10 cm)can respond quickly to precipitation,and the response of the deep soil has a time lag.In the whole growing season,0~30 cm and 60~100 cm soil water are the main water sources of Qinghai spruce.The water source of Qinghai spruce was from all soil layers in May and September,mainly from the shallow soil layer(0~30 cm)in August and October,and mainly from the deep soil layer(60~100 cm)in June and July.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975566,61821005,U1908214)Key Research Program of Frontier Sciences,CAS,China(Grant No.ZDBS-LY-JSC011).
文摘The inherent compliance of continuum robots holds great promise in the fields of soft manipulation and safe human–robot interaction.This compliance reduces the risk of damage to the manipulated object and its surroundings.However,continuum robots possess theoretically infinite degrees of freedom,and this high flexibility usually leads to complex deformations when subjected to external forces and positional constraints.Describing these complex deformations is the main challenge in modeling continuum robots.In this study,we investigated a novel variable curvature modeling method for continuum robots,considering external forces and positional constraints.The robot configuration curve is described using the developed mechanical model,and then the robot is fitted to the curve.A ten-section continuum robot prototype with a length of 1 m was developed in order to validate the model.The feasibility and accuracy of the model were verified by the ability of the robot to reach target points and track complex trajectories with a load.This work was able to serve as a new perspective for the design analysis and motion control of continuum robots.
基金supported by the ITER Project of Ministry of Science and Technology(No.2022YFE03080002)National Natural Science Foundation of China(Nos.11605088 and 12005100)+5 种基金the Key Scientific Research Program of Education Department of Hunan Province(Nos.20A417 and 20A439)the National Magnetic Confinement Fusion Science Program of China(No.2015GB110002)the Hunan Provincial Natural Science Foundation of China(No.2017JJ3268)the International Cooperation Base Project of Hunan Province of China(No.2018WK4009)the Key Laboratory of Magnetic Confinement Nuclear Fusion Research in Hengyang(No.2018KJ108)the PhD Start-Up Fund of University of South China(No.2017XQD08)。
文摘In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The structure of the Alfvén wave continuum is calculated by considering only the coupling caused by the periodicity in the helical angle of the magnetic island.The results show that the magnetic island can induce an upshift in the Alfvén continuum.Moreover,the coupling between different branches of the continuous spectrum becomes more significant with increasing continuum mode numbers near the boundary of the magnetic island.
基金Project supported by the National Key Research and Development Program of China (2021YFB2800404)National Natural Science Foundation of China (62105283)+1 种基金Zhejiang Provincial Natural Science Foundation of China (LDT23F04012F05)Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2021R01001)
文摘Photonic waveguides are the most fundamental element for photonic integrated circuits(PICs).Waveguide properties,such as propagation loss,modal areas,nonlinear coefficients,etc.,directly determine the functionalities and performance of PICs.Recently,the emerging waveguides with bound states in the continuum(BICs)have opened new opportunities for PICs because of their special properties in resonance and radiation.Here,we review the recent progress of PICs composed of waveguides with BICs.First,fundamentals including background physics and design rules of a BIC-based waveguide will be introduced.Next,two types of BIC-based waveguide structures,including shallowly etched dielectric and hybrid waveguides,will be presented.Lastly,the challenges and opportunities of PICs with BICs will be discussed.
文摘The present paper gives the proof of the set of primes as a continuum. It starts with the density of the primes, and shortly recapitulates the prime-number-formula and the complete-prime-number-formula. Reflecting the series of the primes over any prime gives the double density of occupation of integer positions by the union of the series of multiples of the primes. The remaining free positions render it possible to prove Goldbach’s conjecture and the set of primes as a continuum. The theoretical evaluation is followed in annexes by numerical evaluation, demonstrating the theoretical results. The numerical evaluation results in different constants and relations, which represent inherent properties of the set of primes.
文摘Any scientific system has a unified basic theory. But physics has no unified basic theory in the modern sense. Classical mechanics, relativity and quantum mechanics have their own basic concepts, categories and principles, so none of them can be regarded as true basic theories of physics. Cosmic Continuum Theory holds that the continuity and discreteness of the universe are fundamental issues related to the unification of physics. Because the contradiction between quantum non-locality and local reality is the fundamental obstacle to the unification of physics, while locality and non-locality correspond to the continuity and discreteness of physical reality respectively. The cosmic continuum theory introduces mathematical continuum and axiomatic ideas to reconstruct the basic theory of physics, and by the correspondence of existence and its dimensions to achieve the unification of the essence of physical reality, by introducing the cosmic continuum hypothesis to achieve the unification of the continuity and discreteness of physical reality, by introducing axiomatic methods to achieve formal unification of the foundations on physics. From the perspective of Cosmic Continuum, classical mechanics, relativity and quantum mechanics are no longer the basic theories of physics, but three branch theories of physics that are respectively applicable to macroscopic, cosmoscopic and microcosmic systems.
基金support from National Natural Science Foundation of China(Grant No.52178309)the National Key R&D Program of China(Grant No.2017YFC0804602)the Fundamental Research Funds for the Central Universities(Grant No.2019JBM092)。
文摘To address the problems of strain localization, the exact Mohr-Coulomb (MC) model is used based on second-order cone programming (mpcFEM-SOCP) in the framework of micropolar continuum finite element method. Using the uniaxial compression test, we focused on the earth pressure problem of rigid wall segment involving non-associated plasticity. The numerical results reveal that when mpcFEM-SOCP is applied, the problems of mesh dependency can be effectively addressed. For geotechnical strain localization analysis involving non-associated MC plasticity, mpcFEM-SOCP in conjunction with the pseudo-time discrete scheme can improve the numerical stability and avoid the unreasonable softening issue in the pressure-displacement curves, which may be encountered in the conventional FEM. It also shows that the pressure-displacement responses calculated by mpcFEM-SOCP with the pseudo-time discrete scheme are higher than those calculated by mpcFEM-SOCP with the Davis scheme. The inclination angle of shear band predicted by mpcFEM-SOCP with the pseudo-time discrete scheme agrees well with the theoretical solution of non-associated MC plasticity.
文摘本文设计了由不对称半圆柱对阵列组成的全介质超构表面,获得了两个高品质因子的准连续域束缚态模式(quasi-bound states in the continuum,QBIC).通过选择不同形式的对称破缺,在近红外频段均可产生两个稳健的QBIC,并且二者的谐振波长、品质因子、偏振依赖等表现出不同的特性.模拟计算表明,通过测量两个QBIC的谐振波长,能够实现折射率和温度的双参数传感;通过调节不对称参数,利用QBIC的品质因子依赖于不对称参数的二次方反比关系,理论上能够提高品质因子到任意的数值,从而实现传感性能的提升和调节.该超构表面的折射率传感灵敏度、品质因子和优值分别达到194.7 nm/RIU,45829和8197,其温度传感灵敏度达到24 pm/℃.