Parallel continuum robots(PCRs) have attracted increasing attention in the robotics community due to their simplicity in structure,inherence with compliance, and easiness of realization. Over the past decade, a variet...Parallel continuum robots(PCRs) have attracted increasing attention in the robotics community due to their simplicity in structure,inherence with compliance, and easiness of realization. Over the past decade, a variety of novel designs have been reported to enrich their diversity. However, there is a lack of systematic review of these emerging robots. To this end, this paper conducts a comprehensive survey on the mechanism design, kinetostatic modeling and analysis, and performance evaluation. For these robots, kinetostatic modeling plays a fundamental role throughout the design, analysis, and control stages. A systematic review of the existing approaches for kinetostatic modeling and analysis is provided, and a comparison is made to distinguish their differences. As well, a classification is made according to the characteristics of structure and actuation. In addition, performance evaluation on the workspace, stability, and singularity is also overviewed. Finally, the scenarios of potential applications are elaborated, and future research prospects are discussed. We believe that the information provided in this paper will be particularly useful for those who are interested in PCRs.展开更多
基金supported by the National Key R&D Program of China(Grant No. 2022YFB4701200)the National Natural Science Foundation of China(NSFC)(Grant Nos. 52022056 and 51875334)the Innovation Foundation of the Manufacturing Engineering Technology Research Center of Commercial Aircraft Corporation of China(Grant No. COMAC-SFGS-2023-41)。
文摘Parallel continuum robots(PCRs) have attracted increasing attention in the robotics community due to their simplicity in structure,inherence with compliance, and easiness of realization. Over the past decade, a variety of novel designs have been reported to enrich their diversity. However, there is a lack of systematic review of these emerging robots. To this end, this paper conducts a comprehensive survey on the mechanism design, kinetostatic modeling and analysis, and performance evaluation. For these robots, kinetostatic modeling plays a fundamental role throughout the design, analysis, and control stages. A systematic review of the existing approaches for kinetostatic modeling and analysis is provided, and a comparison is made to distinguish their differences. As well, a classification is made according to the characteristics of structure and actuation. In addition, performance evaluation on the workspace, stability, and singularity is also overviewed. Finally, the scenarios of potential applications are elaborated, and future research prospects are discussed. We believe that the information provided in this paper will be particularly useful for those who are interested in PCRs.