A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the c...A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.展开更多
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differen...This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differences methods with back-propagation algorithm for updating the parameters continuously on the basis of recent data. This method can make the neural network model fit the recent characteristic of the time series as close as possible, therefore improves the prediction accuracy. We built models and made predictions for the sunspot series. The prediction results of adaptive modeling method are better than that of non-adaptive modeling methods.展开更多
This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the...This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered.展开更多
In this paper, three implicit finite difference methods are developed to solve one dimensional time fractional advection-diffusion equation. The fractional derivative is treated by applying right shifted Grünwald...In this paper, three implicit finite difference methods are developed to solve one dimensional time fractional advection-diffusion equation. The fractional derivative is treated by applying right shifted Grünwald-Letnikov formula of order α ∈(0, 1). We investigate the stability analysis by using von Neumann method with mathematical induction and prove that these three proposed methods are unconditionally stable. Numerical results are presented to demonstrate the effectiveness of the schemes mentioned in this paper.展开更多
Reaction-diffusion equations modeling Predator-Prey interaction are of current interest. Standard approaches such as first-order (in time) finite difference schemes for approximating the solution are widely spread. Th...Reaction-diffusion equations modeling Predator-Prey interaction are of current interest. Standard approaches such as first-order (in time) finite difference schemes for approximating the solution are widely spread. Though, this paper shows that recent advance methods can be more favored. In this work, we have incorporated, throughout numerical comparison experiments, spectral methods, for the space discretization, in conjunction with second and fourth-order time integrating methods for approximating the solution of the reaction-diffusion differential equations. The results have revealed that these methods have advantages over the conventional methods, some of which to mention are: the ease of implementation, accuracy and CPU time.展开更多
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ...The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.展开更多
The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method i...The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method is suitable to calculate the ground state of the quantum systems,it has been improved to calculate the higher excited states directly.The improvement is based on modifying the iterative process involved in this method to include two procedures.The first is known as cooling steps and the second is known as a heating step.By determining the required length of the cooling iteration steps using suitable excitation energy estimate,and repeating these two procedures using suitable initial guess function for sufficient times.This modified iteration will lead automatically to the desired excited state.In the two dimensional finite rectangular well potential problem both of the suitable excitation energy and the suitable initial guess wave function are calculated analytically using the separation of variables technique.展开更多
In this paper, we first provide a generalized difference method for the 2-dimensional Navier-Stokes equations by combing the ideas of staggered scheme m and generalized upwind scheme in space, and by backward Euler ti...In this paper, we first provide a generalized difference method for the 2-dimensional Navier-Stokes equations by combing the ideas of staggered scheme m and generalized upwind scheme in space, and by backward Euler time-stepping. Then we apply the abstract framework of to prove its long-time convergence. Finally, a numerical example for solving driven cavity flows is given.展开更多
An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D tra...An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.展开更多
Magneto-rhelological(MR) dampers are devices that employ rheological fluids to modify their mechanical properties. Their mechanical simplicity, high dynamic range, lower power requirements, large force capacity, rob...Magneto-rhelological(MR) dampers are devices that employ rheological fluids to modify their mechanical properties. Their mechanical simplicity, high dynamic range, lower power requirements, large force capacity, robustness and safe maimer of operation in cases of failure have made them attractive devices for semi-active real-time control in civil, aerospace and automotive applications. Time response characteristic is one of the most important technical performances of MR dampers, and response time directly affects the control frequency, application range and the actual effect of MR dampers. In this study, one kind of finite difference solution for predicting the response time ofmagneto-rheological dampers from "off-state" to "on-state" is put forward. A laminar flow model is used to describe the flow in the MR valve, and a bi-viscous fluid flow model is utilized to describe the relationship of shear stress and shear rate of MR fluid. An explicit difference format is used to diseretize the Novior-Stoks equation, and stability condition of this algorithm is built by Von-Neumann stability criterion. The pressure gradient along the flow duct is solved by a dichotomy algorithm with iteration, and the changing curve of the damping force versus time of MR damper is obtained as well. According to the abovementioned numerical algorithm, the damping forces versus time curves from "off-state" to "on-state" of a cylindrical piston type MR damper are computed. Moreover, the MR damper is installed in a material test system(MTS), the magnetic field in the wire circles of the MR damper is "triggered" when the MR damper is imposed to do a constant speed motion, and the damping force curves are recorded. The comparison between numerical results and experimental results indicates that this finite difference algorithm can be used to estimate the response time delay of MR dampers.展开更多
The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the ...The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the analysis. By using the SO-FDTD method, the transmission spectrum is obtained and its characteristics are investigated for different thicknesses of superconductor layers and dielectric layers, from which a stop band starting from zero frequency can be apparently observed. The relation between this low-frequency stop band and relative temperature, and also the London penetration depth at a superconductor temperature of zero degree are discussed, separately. The low-frequency stop band properties of superconductor-dielectric superlattice thus are well disclosed.展开更多
The numerical time step integrations of PDEs are mainly carried out by the finitedifference method to date. However,when the time step becomes longer, it causes theproblem of numerical instability,. The explicit integ...The numerical time step integrations of PDEs are mainly carried out by the finitedifference method to date. However,when the time step becomes longer, it causes theproblem of numerical instability,. The explicit integration schemes derived by the singlepoint precise integration method given in this paper are proved unconditionally stable.Comparisons between the schemes derived by the finite difference method and theschemes by the method employed in the present paper are made for diffusion andconvective-diffusion equations. Nunierical examples show the superiority of the singlepoint integration method.展开更多
The valuation relation of potential difference with discharging time in Electrical Discharge Machining (EDM) is analyzed theoretically and tested and verified by experiments designed in this paper and the relation bet...The valuation relation of potential difference with discharging time in Electrical Discharge Machining (EDM) is analyzed theoretically and tested and verified by experiments designed in this paper and the relation between potential difference and spark location is induced and analyzed, and proceed by experiments under the condition of onedimension.展开更多
A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretizatio...A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.展开更多
This paper considers pricing European options under the well-known of SVJ model of Bates and related computational methods. According to the no-arbitrage principle, we first derive a partial differential equation that...This paper considers pricing European options under the well-known of SVJ model of Bates and related computational methods. According to the no-arbitrage principle, we first derive a partial differential equation that the value of any European contingent claim should satisfy, where the asset price obeys the SVJ model. This equation is numerically solved by using the implicit- explicit backward difference method and time semi-discretization. In order to explain the validity of our method, the stability of time semi-discretization scheme is also proved. Finally, we use a simulation example to illustrate the efficiency of the method.展开更多
The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulat...The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulated directly to facilitate the analysis of cylindrically conformal microstrip patch antennas. The algorithm has second-order accuracy both in time and space domain and has the potential to eliminate the spurious wave reflection from the numerical boundaries of the computational domain, Numerical results demonstrate the important merits and accuracy of the proposed technique in computational electromagnetics,展开更多
The improvements of high-throughput experimental devices such as microarray and mass spectrometry have allowed an effective acquisition of biological comprehensive data which include genome, transcriptome, proteome, a...The improvements of high-throughput experimental devices such as microarray and mass spectrometry have allowed an effective acquisition of biological comprehensive data which include genome, transcriptome, proteome, and metabolome (multi-layered omics data). In Systems Biology, we try to elucidate various dynamical characteristics of biological functions with applying the omics data to detailed mathematical model based on the central dogma. However, such mathematical models possess multi-time-scale properties which are often accompanied by time-scale differences seen among biological layers. The differences cause time stiff problem, and have a grave influence on numerical calculation stability. In the present conventional method, the time stiff problem remained because the calculation of all layers was implemented by adaptive time step sizes of the smallest time-scale layer to ensure stability and maintain calculation accuracy. In this paper, we designed and developed an effective numerical calculation method to improve the time stiff problem. This method consisted of ahead, backward, and cumulative algorithms. Both ahead and cumulative algorithms enhanced calculation efficiency of numerical calculations via adjustments of step sizes of each layer, and reduced the number of numerical calculations required for multi-time-scale models with the time stiff problem. Backward algorithm ensured calculation accuracy in the multi-time-scale models. In case studies which were focused on three layers system with 60 times difference in time-scale order in between layers, a proposed method had almost the same calculation accuracy compared with the conventional method in spite of a reduction of the total amount of the number of numerical calculations. Accordingly, the proposed method is useful in a numerical analysis of multi-time-scale models with time stiff problem.展开更多
基金the National Natural Science Foundation of China(No.11701103)the Young Top-notch Talent Program of Guangdong Province of China(No.2017GC010379)+4 种基金the Natural Science Foundation of Guangdong Province of China(No.2022A1515012147)the Project of Science and Technology of Guangzhou of China(No.202102020704)the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University of China(2021023)the Science and Technology Development Fund,Macao SAR(File No.0005/2019/A)the University of Macao of China(File Nos.MYRG2020-00035-FST,MYRG2018-00047-FST).
文摘A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
文摘This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differences methods with back-propagation algorithm for updating the parameters continuously on the basis of recent data. This method can make the neural network model fit the recent characteristic of the time series as close as possible, therefore improves the prediction accuracy. We built models and made predictions for the sunspot series. The prediction results of adaptive modeling method are better than that of non-adaptive modeling methods.
基金Project supported by Tianjin Research Program Application Foundation and Advanced Technology,China(Grant No.15JCQNJC01100)
文摘This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered.
文摘In this paper, three implicit finite difference methods are developed to solve one dimensional time fractional advection-diffusion equation. The fractional derivative is treated by applying right shifted Grünwald-Letnikov formula of order α ∈(0, 1). We investigate the stability analysis by using von Neumann method with mathematical induction and prove that these three proposed methods are unconditionally stable. Numerical results are presented to demonstrate the effectiveness of the schemes mentioned in this paper.
文摘Reaction-diffusion equations modeling Predator-Prey interaction are of current interest. Standard approaches such as first-order (in time) finite difference schemes for approximating the solution are widely spread. Though, this paper shows that recent advance methods can be more favored. In this work, we have incorporated, throughout numerical comparison experiments, spectral methods, for the space discretization, in conjunction with second and fourth-order time integrating methods for approximating the solution of the reaction-diffusion differential equations. The results have revealed that these methods have advantages over the conventional methods, some of which to mention are: the ease of implementation, accuracy and CPU time.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304074,61475042,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048)the Key Subject Construction Project of Hebei Province University,China
文摘The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.
文摘The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method is suitable to calculate the ground state of the quantum systems,it has been improved to calculate the higher excited states directly.The improvement is based on modifying the iterative process involved in this method to include two procedures.The first is known as cooling steps and the second is known as a heating step.By determining the required length of the cooling iteration steps using suitable excitation energy estimate,and repeating these two procedures using suitable initial guess function for sufficient times.This modified iteration will lead automatically to the desired excited state.In the two dimensional finite rectangular well potential problem both of the suitable excitation energy and the suitable initial guess wave function are calculated analytically using the separation of variables technique.
基金The project supported by Laboratory of Computational Physics,Institute of Applied Physics & Computational Mathematics,T.O.Box 80 0 9,Beijing 1 0 0 0 88
文摘In this paper, we first provide a generalized difference method for the 2-dimensional Navier-Stokes equations by combing the ideas of staggered scheme m and generalized upwind scheme in space, and by backward Euler time-stepping. Then we apply the abstract framework of to prove its long-time convergence. Finally, a numerical example for solving driven cavity flows is given.
基金supported by the National Natural Science Foundation of China(Grant Nos.61331007 and 61471105)
文摘An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.
基金supported by National Natural Science Foundation of China (Grant No. 50675106)
文摘Magneto-rhelological(MR) dampers are devices that employ rheological fluids to modify their mechanical properties. Their mechanical simplicity, high dynamic range, lower power requirements, large force capacity, robustness and safe maimer of operation in cases of failure have made them attractive devices for semi-active real-time control in civil, aerospace and automotive applications. Time response characteristic is one of the most important technical performances of MR dampers, and response time directly affects the control frequency, application range and the actual effect of MR dampers. In this study, one kind of finite difference solution for predicting the response time ofmagneto-rheological dampers from "off-state" to "on-state" is put forward. A laminar flow model is used to describe the flow in the MR valve, and a bi-viscous fluid flow model is utilized to describe the relationship of shear stress and shear rate of MR fluid. An explicit difference format is used to diseretize the Novior-Stoks equation, and stability condition of this algorithm is built by Von-Neumann stability criterion. The pressure gradient along the flow duct is solved by a dichotomy algorithm with iteration, and the changing curve of the damping force versus time of MR damper is obtained as well. According to the abovementioned numerical algorithm, the damping forces versus time curves from "off-state" to "on-state" of a cylindrical piston type MR damper are computed. Moreover, the MR damper is installed in a material test system(MTS), the magnetic field in the wire circles of the MR damper is "triggered" when the MR damper is imposed to do a constant speed motion, and the damping force curves are recorded. The comparison between numerical results and experimental results indicates that this finite difference algorithm can be used to estimate the response time delay of MR dampers.
基金Project supported partly by the Open Research Program in State Key Laboratory of Millimeter Waves of China(Grant No.K200802)partly by the National Natural Science Foundation of China(Grant No.60971122)
文摘The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the analysis. By using the SO-FDTD method, the transmission spectrum is obtained and its characteristics are investigated for different thicknesses of superconductor layers and dielectric layers, from which a stop band starting from zero frequency can be apparently observed. The relation between this low-frequency stop band and relative temperature, and also the London penetration depth at a superconductor temperature of zero degree are discussed, separately. The low-frequency stop band properties of superconductor-dielectric superlattice thus are well disclosed.
文摘The numerical time step integrations of PDEs are mainly carried out by the finitedifference method to date. However,when the time step becomes longer, it causes theproblem of numerical instability,. The explicit integration schemes derived by the singlepoint precise integration method given in this paper are proved unconditionally stable.Comparisons between the schemes derived by the finite difference method and theschemes by the method employed in the present paper are made for diffusion andconvective-diffusion equations. Nunierical examples show the superiority of the singlepoint integration method.
文摘The valuation relation of potential difference with discharging time in Electrical Discharge Machining (EDM) is analyzed theoretically and tested and verified by experiments designed in this paper and the relation between potential difference and spark location is induced and analyzed, and proceed by experiments under the condition of onedimension.
基金supported by the National Natural Science Foundation of China(No.10771150)the National Basic Research Program of China(No.2005CB321701)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-07-0584)the Natural Science Foundation of Sichuan Province(No.07ZB087)
文摘A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.
文摘This paper considers pricing European options under the well-known of SVJ model of Bates and related computational methods. According to the no-arbitrage principle, we first derive a partial differential equation that the value of any European contingent claim should satisfy, where the asset price obeys the SVJ model. This equation is numerically solved by using the implicit- explicit backward difference method and time semi-discretization. In order to explain the validity of our method, the stability of time semi-discretization scheme is also proved. Finally, we use a simulation example to illustrate the efficiency of the method.
文摘The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulated directly to facilitate the analysis of cylindrically conformal microstrip patch antennas. The algorithm has second-order accuracy both in time and space domain and has the potential to eliminate the spurious wave reflection from the numerical boundaries of the computational domain, Numerical results demonstrate the important merits and accuracy of the proposed technique in computational electromagnetics,
文摘The improvements of high-throughput experimental devices such as microarray and mass spectrometry have allowed an effective acquisition of biological comprehensive data which include genome, transcriptome, proteome, and metabolome (multi-layered omics data). In Systems Biology, we try to elucidate various dynamical characteristics of biological functions with applying the omics data to detailed mathematical model based on the central dogma. However, such mathematical models possess multi-time-scale properties which are often accompanied by time-scale differences seen among biological layers. The differences cause time stiff problem, and have a grave influence on numerical calculation stability. In the present conventional method, the time stiff problem remained because the calculation of all layers was implemented by adaptive time step sizes of the smallest time-scale layer to ensure stability and maintain calculation accuracy. In this paper, we designed and developed an effective numerical calculation method to improve the time stiff problem. This method consisted of ahead, backward, and cumulative algorithms. Both ahead and cumulative algorithms enhanced calculation efficiency of numerical calculations via adjustments of step sizes of each layer, and reduced the number of numerical calculations required for multi-time-scale models with the time stiff problem. Backward algorithm ensured calculation accuracy in the multi-time-scale models. In case studies which were focused on three layers system with 60 times difference in time-scale order in between layers, a proposed method had almost the same calculation accuracy compared with the conventional method in spite of a reduction of the total amount of the number of numerical calculations. Accordingly, the proposed method is useful in a numerical analysis of multi-time-scale models with time stiff problem.