Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving ...Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification.This process involves selecting the most informative spectral bands,which leads to a reduction in data volume.Focusing on these key bands also enhances the accuracy of classification algorithms,as redundant or irrelevant bands,which can introduce noise and lower model performance,are excluded.In this paper,we propose an approach for HS image classification using deep Q learning(DQL)and a novel multi-objective binary grey wolf optimizer(MOBGWO).We investigate the MOBGWO for optimal band selection to further enhance the accuracy of HS image classification.In the suggested MOBGWO,a new sigmoid function is introduced as a transfer function to modify the wolves’position.The primary objective of this classification is to reduce the number of bands while maximizing classification accuracy.To evaluate the effectiveness of our approach,we conducted experiments on publicly available HS image datasets,including Pavia University,Washington Mall,and Indian Pines datasets.We compared the performance of our proposed method with several state-of-the-art deep learning(DL)and machine learning(ML)algorithms,including long short-term memory(LSTM),deep neural network(DNN),recurrent neural network(RNN),support vector machine(SVM),and random forest(RF).Our experimental results demonstrate that the Hybrid MOBGWO-DQL significantly improves classification accuracy compared to traditional optimization and DL techniques.MOBGWO-DQL shows greater accuracy in classifying most categories in both datasets used.For the Indian Pine dataset,the MOBGWO-DQL architecture achieved a kappa coefficient(KC)of 97.68%and an overall accuracy(OA)of 94.32%.This was accompanied by the lowest root mean square error(RMSE)of 0.94,indicating very precise predictions with minimal error.In the case of the Pavia University dataset,the MOBGWO-DQL model demonstrated outstanding performance with the highest KC of 98.72%and an impressive OA of 96.01%.It also recorded the lowest RMSE at 0.63,reinforcing its accuracy in predictions.The results clearly demonstrate that the proposed MOBGWO-DQL architecture not only reaches a highly accurate model more quickly but also maintains superior performance throughout the training process.展开更多
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)method...Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM).展开更多
Imagery analysis is a commonly used analytical method in literary analysis.In Angela Carter’s work,the image of wolves is particularly prominent.Her“Werewolf Tetralogy”rewrites traditional culture and subverts trad...Imagery analysis is a commonly used analytical method in literary analysis.In Angela Carter’s work,the image of wolves is particularly prominent.Her“Werewolf Tetralogy”rewrites traditional culture and subverts traditional consciousness,and is the research object of many scholars.Starting from the analysis of the wolf image in The Company of Wolves,this paper uses Deleuze’s Becoming-Animal Theory to explore the construction of harmony between nature,humans and gender relations in The Company of Wolves.展开更多
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ...Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms.展开更多
The translator, as the main body of a translation, has been in an invisible and ignored state for a long time. The position of the translator has been improved and the role of the translator has begun to be recognized...The translator, as the main body of a translation, has been in an invisible and ignored state for a long time. The position of the translator has been improved and the role of the translator has begun to be recognized since the field of translation studies multifaceted and deepened. In order to analyze the translator's subjectivity better, the thesis states comprehensive definitions of the translator's subjectivity and uses Wolf Totem as a case study, whose author is Jiang Rong and the translator is Howard Goldblatt, to show that how the translator Howard Goldblatt utilizes his subjectivity in the translation process.展开更多
This thesis is aimed at conducting a comparative study of the ecoethic thoughts in Silent Spring and Wolf Totem. It points out that Carson and Jiang's eco-ethics are relatively complete, ideal and objective. Moreo...This thesis is aimed at conducting a comparative study of the ecoethic thoughts in Silent Spring and Wolf Totem. It points out that Carson and Jiang's eco-ethics are relatively complete, ideal and objective. Moreover, the most shining features are that they not only unfold the grim fact of ecological crisis before the public, but also instil confidence and hope in each and every reader.展开更多
In the text of Wolf Totem, there are many spots of indeterminacy left purposely or involuntarily by the author in the depiction of characters, scenes, events and in the use of culture-related expressions, which are to...In the text of Wolf Totem, there are many spots of indeterminacy left purposely or involuntarily by the author in the depiction of characters, scenes, events and in the use of culture-related expressions, which are to be filled in by individual's interpretation through active reading of the work. Howard Goldblatt, as the translator of this work, adopts "creative rewriting" in the translation of Wolf Totem to actualize the indeterminacy and the factors guiding his concretization.展开更多
Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine learning.Each feature in a dataset has 2n possible subsets,making it challenging to select the optimum collectio...Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine learning.Each feature in a dataset has 2n possible subsets,making it challenging to select the optimum collection of features using typical methods.As a result,a new metaheuristicsbased feature selection method based on the dipper-throated and grey-wolf optimization(DTO-GW)algorithms has been developed in this research.Instability can result when the selection of features is subject to metaheuristics,which can lead to a wide range of results.Thus,we adopted hybrid optimization in our method of optimizing,which allowed us to better balance exploration and harvesting chores more equitably.We propose utilizing the binary DTO-GW search approach we previously devised for selecting the optimal subset of attributes.In the proposed method,the number of features selected is minimized,while classification accuracy is increased.To test the proposed method’s performance against eleven other state-of-theart approaches,eight datasets from the UCI repository were used,such as binary grey wolf search(bGWO),binary hybrid grey wolf,and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hysteresis optimization(bHy),and binary hysteresis optimization(bHWO).The suggested method is superior 4532 CMC,2023,vol.74,no.2 and successful in handling the problem of feature selection,according to the results of the experiments.展开更多
This paper tries to explore the ecological teachings in Wolf Totem. The causes of current environmental problems are analyzed, and the importance of environmental protection is stressed. This paper makes clear that th...This paper tries to explore the ecological teachings in Wolf Totem. The causes of current environmental problems are analyzed, and the importance of environmental protection is stressed. This paper makes clear that the relationship between man and nature is not domination and being dominated, conquest and conquered, but interdependence, peaceful coexistence and mutual promotion. Let's work together to prevent the grassland tragedy from happening again.展开更多
Smartphones have now become an integral part of our everyday lives.User authentication on smartphones is often accomplished by mechanisms(like face unlock,pattern,or pin password)that authenticate the user’s identity...Smartphones have now become an integral part of our everyday lives.User authentication on smartphones is often accomplished by mechanisms(like face unlock,pattern,or pin password)that authenticate the user’s identity.These technologies are simple,inexpensive,and fast for repeated logins.However,these technologies are still subject to assaults like smudge assaults and shoulder surfing.Users’touch behavior while using their cell phones might be used to authenticate them,which would solve the problem.The performance of the authentication process may be influenced by the attributes chosen(from these behaviors).The purpose of this study is to present an effective authentication technique that implicitly offers a better authentication method for smartphone usage while avoiding the cost of a particular device and considering the constrained capabilities of smartphones.We began by concentrating on feature selection methods utilizing the grey wolf optimization strategy.The random forest classifier is used to evaluate these tactics.The testing findings demonstrated that the grey wolf-based methodology works as a better optimum feature selection for building an implicit authentication mechanism for the smartphone environment when using a public dataset.It achieved a 97.89%accuracy rate while utilizing just 16 of the 53 characteristics like utilizing minimum mobile resources mainly;processing power of the device and memory to validate individuals.Simultaneously,the findings revealed that our approach has a lower equal error rate(EER)of 0.5104,a false acceptance rate(FAR)of 1.00,and a false rejection rate(FRR)of 0.0209 compared to the methods discussed in the literature.These promising results will be used to create a mobile application that enables implicit validation of authorized users yet avoids current identification concerns and requires fewer mobile resources.展开更多
文摘Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification.This process involves selecting the most informative spectral bands,which leads to a reduction in data volume.Focusing on these key bands also enhances the accuracy of classification algorithms,as redundant or irrelevant bands,which can introduce noise and lower model performance,are excluded.In this paper,we propose an approach for HS image classification using deep Q learning(DQL)and a novel multi-objective binary grey wolf optimizer(MOBGWO).We investigate the MOBGWO for optimal band selection to further enhance the accuracy of HS image classification.In the suggested MOBGWO,a new sigmoid function is introduced as a transfer function to modify the wolves’position.The primary objective of this classification is to reduce the number of bands while maximizing classification accuracy.To evaluate the effectiveness of our approach,we conducted experiments on publicly available HS image datasets,including Pavia University,Washington Mall,and Indian Pines datasets.We compared the performance of our proposed method with several state-of-the-art deep learning(DL)and machine learning(ML)algorithms,including long short-term memory(LSTM),deep neural network(DNN),recurrent neural network(RNN),support vector machine(SVM),and random forest(RF).Our experimental results demonstrate that the Hybrid MOBGWO-DQL significantly improves classification accuracy compared to traditional optimization and DL techniques.MOBGWO-DQL shows greater accuracy in classifying most categories in both datasets used.For the Indian Pine dataset,the MOBGWO-DQL architecture achieved a kappa coefficient(KC)of 97.68%and an overall accuracy(OA)of 94.32%.This was accompanied by the lowest root mean square error(RMSE)of 0.94,indicating very precise predictions with minimal error.In the case of the Pavia University dataset,the MOBGWO-DQL model demonstrated outstanding performance with the highest KC of 98.72%and an impressive OA of 96.01%.It also recorded the lowest RMSE at 0.63,reinforcing its accuracy in predictions.The results clearly demonstrate that the proposed MOBGWO-DQL architecture not only reaches a highly accurate model more quickly but also maintains superior performance throughout the training process.
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
文摘Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM).
文摘Imagery analysis is a commonly used analytical method in literary analysis.In Angela Carter’s work,the image of wolves is particularly prominent.Her“Werewolf Tetralogy”rewrites traditional culture and subverts traditional consciousness,and is the research object of many scholars.Starting from the analysis of the wolf image in The Company of Wolves,this paper uses Deleuze’s Becoming-Animal Theory to explore the construction of harmony between nature,humans and gender relations in The Company of Wolves.
文摘Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms.
文摘The translator, as the main body of a translation, has been in an invisible and ignored state for a long time. The position of the translator has been improved and the role of the translator has begun to be recognized since the field of translation studies multifaceted and deepened. In order to analyze the translator's subjectivity better, the thesis states comprehensive definitions of the translator's subjectivity and uses Wolf Totem as a case study, whose author is Jiang Rong and the translator is Howard Goldblatt, to show that how the translator Howard Goldblatt utilizes his subjectivity in the translation process.
文摘This thesis is aimed at conducting a comparative study of the ecoethic thoughts in Silent Spring and Wolf Totem. It points out that Carson and Jiang's eco-ethics are relatively complete, ideal and objective. Moreover, the most shining features are that they not only unfold the grim fact of ecological crisis before the public, but also instil confidence and hope in each and every reader.
文摘In the text of Wolf Totem, there are many spots of indeterminacy left purposely or involuntarily by the author in the depiction of characters, scenes, events and in the use of culture-related expressions, which are to be filled in by individual's interpretation through active reading of the work. Howard Goldblatt, as the translator of this work, adopts "creative rewriting" in the translation of Wolf Totem to actualize the indeterminacy and the factors guiding his concretization.
文摘Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine learning.Each feature in a dataset has 2n possible subsets,making it challenging to select the optimum collection of features using typical methods.As a result,a new metaheuristicsbased feature selection method based on the dipper-throated and grey-wolf optimization(DTO-GW)algorithms has been developed in this research.Instability can result when the selection of features is subject to metaheuristics,which can lead to a wide range of results.Thus,we adopted hybrid optimization in our method of optimizing,which allowed us to better balance exploration and harvesting chores more equitably.We propose utilizing the binary DTO-GW search approach we previously devised for selecting the optimal subset of attributes.In the proposed method,the number of features selected is minimized,while classification accuracy is increased.To test the proposed method’s performance against eleven other state-of-theart approaches,eight datasets from the UCI repository were used,such as binary grey wolf search(bGWO),binary hybrid grey wolf,and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hysteresis optimization(bHy),and binary hysteresis optimization(bHWO).The suggested method is superior 4532 CMC,2023,vol.74,no.2 and successful in handling the problem of feature selection,according to the results of the experiments.
文摘This paper tries to explore the ecological teachings in Wolf Totem. The causes of current environmental problems are analyzed, and the importance of environmental protection is stressed. This paper makes clear that the relationship between man and nature is not domination and being dominated, conquest and conquered, but interdependence, peaceful coexistence and mutual promotion. Let's work together to prevent the grassland tragedy from happening again.
基金This work was funded by the University of Jeddah,Jeddah,Saudi Arabia,under grant No.(UJ-21-DR-25)The authors,therefore,acknowledge with thanks the University of Jeddah technical and financial support.
文摘Smartphones have now become an integral part of our everyday lives.User authentication on smartphones is often accomplished by mechanisms(like face unlock,pattern,or pin password)that authenticate the user’s identity.These technologies are simple,inexpensive,and fast for repeated logins.However,these technologies are still subject to assaults like smudge assaults and shoulder surfing.Users’touch behavior while using their cell phones might be used to authenticate them,which would solve the problem.The performance of the authentication process may be influenced by the attributes chosen(from these behaviors).The purpose of this study is to present an effective authentication technique that implicitly offers a better authentication method for smartphone usage while avoiding the cost of a particular device and considering the constrained capabilities of smartphones.We began by concentrating on feature selection methods utilizing the grey wolf optimization strategy.The random forest classifier is used to evaluate these tactics.The testing findings demonstrated that the grey wolf-based methodology works as a better optimum feature selection for building an implicit authentication mechanism for the smartphone environment when using a public dataset.It achieved a 97.89%accuracy rate while utilizing just 16 of the 53 characteristics like utilizing minimum mobile resources mainly;processing power of the device and memory to validate individuals.Simultaneously,the findings revealed that our approach has a lower equal error rate(EER)of 0.5104,a false acceptance rate(FAR)of 1.00,and a false rejection rate(FRR)of 0.0209 compared to the methods discussed in the literature.These promising results will be used to create a mobile application that enables implicit validation of authorized users yet avoids current identification concerns and requires fewer mobile resources.