In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose...In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average.展开更多
Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policy...Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policymanagement efficiency and difficulty in accurately describing the access control policy. To overcome theseproblems, this paper proposes a big data access control mechanism based on a two-layer permission decisionstructure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes areintroduced in the ABAC model as business constraints between entities. The proposed mechanism implementsa two-layer permission decision structure composed of the inherent attributes of access control entities and thebusiness attributes, which constitute the general permission decision algorithm based on logical calculation andthe business permission decision algorithm based on a bi-directional long short-term memory (BiLSTM) neuralnetwork, respectively. The general permission decision algorithm is used to implement accurate policy decisions,while the business permission decision algorithm implements fuzzy decisions based on the business constraints.The BiLSTM neural network is used to calculate the similarity of the business attributes to realize intelligent,adaptive, and efficient access control permission decisions. Through the two-layer permission decision structure,the complex and diverse big data access control management requirements can be satisfied by considering thesecurity and availability of resources. Experimental results show that the proposed mechanism is effective andreliable. In summary, it can efficiently support the secure sharing of big data resources.展开更多
In recent years,it has been observed that the disclosure of information increases the risk of terrorism.Without restricting the accessibility of information,providing security is difficult.So,there is a demand for tim...In recent years,it has been observed that the disclosure of information increases the risk of terrorism.Without restricting the accessibility of information,providing security is difficult.So,there is a demand for time tofill the gap between security and accessibility of information.In fact,security tools should be usable for improving the security as well as the accessibility of information.Though security and accessibility are not directly influenced,some of their factors are indirectly influenced by each other.Attributes play an important role in bridging the gap between security and accessibility.In this paper,we identify the key attributes of accessibility and security that impact directly and indirectly on each other,such as confidentiality,integrity,availability,and severity.The significance of every attribute on the basis of obtained weight is important for its effect on security during the big data security life cycle process.To calculate the proposed work,researchers utilised the Fuzzy Analytic Hierarchy Process(Fuzzy AHP).Thefindings show that the Fuzzy AHP is a very accurate mechanism for determining the best security solution in a real-time healthcare context.The study also looks at the rapidly evolving security technologies in healthcare that could help improve healthcare services and the future prospects in this area.展开更多
Lately,the Internet of Things(IoT)application requires millions of structured and unstructured data since it has numerous problems,such as data organization,production,and capturing.To address these shortcomings,big d...Lately,the Internet of Things(IoT)application requires millions of structured and unstructured data since it has numerous problems,such as data organization,production,and capturing.To address these shortcomings,big data analytics is the most superior technology that has to be adapted.Even though big data and IoT could make human life more convenient,those benefits come at the expense of security.To manage these kinds of threats,the intrusion detection system has been extensively applied to identify malicious network traffic,particularly once the preventive technique fails at the level of endpoint IoT devices.As cyberattacks targeting IoT have gradually become stealthy and more sophisticated,intrusion detection systems(IDS)must continually emerge to manage evolving security threats.This study devises Big Data Analytics with the Internet of Things Assisted Intrusion Detection using Modified Buffalo Optimization Algorithm with Deep Learning(IDMBOA-DL)algorithm.In the presented IDMBOA-DL model,the Hadoop MapReduce tool is exploited for managing big data.The MBOA algorithm is applied to derive an optimal subset of features from picking an optimum set of feature subsets.Finally,the sine cosine algorithm(SCA)with convolutional autoencoder(CAE)mechanism is utilized to recognize and classify the intrusions in the IoT network.A wide range of simulations was conducted to demonstrate the enhanced results of the IDMBOA-DL algorithm.The comparison outcomes emphasized the better performance of the IDMBOA-DL model over other approaches.展开更多
A vast amount of data (known as big data) may now be collected and stored from a variety of data sources, including event logs, the internet, smartphones, databases, sensors, cloud computing, and Internet of Things (I...A vast amount of data (known as big data) may now be collected and stored from a variety of data sources, including event logs, the internet, smartphones, databases, sensors, cloud computing, and Internet of Things (IoT) devices. The term “big data security” refers to all the safeguards and instruments used to protect both the data and analytics processes against intrusions, theft, and other hostile actions that could endanger or adversely influence them. Beyond being a high-value and desirable target, protecting Big Data has particular difficulties. Big Data security does not fundamentally differ from conventional data security. Big Data security issues are caused by extraneous distinctions rather than fundamental ones. This study meticulously outlines the numerous security difficulties Large Data analytics now faces and encourages additional joint research for reducing both big data security challenges utilizing Ontology Web Language (OWL). Although we focus on the Security Challenges of Big Data in this essay, we will also briefly cover the broader Challenges of Big Data. The proposed classification of Big Data security based on ontology web language resulting from the protégé software has 32 classes and 45 subclasses.展开更多
In recent years,China has witnessed continuous development and progress in its scientific and technological landscape,with widespread utilization of computer networks.Concurrently,issues related to computer network in...In recent years,China has witnessed continuous development and progress in its scientific and technological landscape,with widespread utilization of computer networks.Concurrently,issues related to computer network information security,such as information leakage and virus invasions,have become increasingly prominent.Consequently,there is a pressing need for the implementation of effective network security measures.This paper aims to provide a comprehensive summary and analysis of the challenges associated with computer network information security processing.It delves into the core concepts and characteristics of big data technology,exploring its potential as a solution.The study further scrutinizes the application strategy of big data technology in addressing the aforementioned security issues within computer networks.The insights presented in this paper are intended to serve as a valuable reference for individuals involved in the relevant fields,offering guidance on effective approaches to enhance computer network information security through the application of big data technology.展开更多
文摘In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average.
基金Key Research and Development and Promotion Program of Henan Province(No.222102210069)Zhongyuan Science and Technology Innovation Leading Talent Project(224200510003)National Natural Science Foundation of China(No.62102449).
文摘Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policymanagement efficiency and difficulty in accurately describing the access control policy. To overcome theseproblems, this paper proposes a big data access control mechanism based on a two-layer permission decisionstructure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes areintroduced in the ABAC model as business constraints between entities. The proposed mechanism implementsa two-layer permission decision structure composed of the inherent attributes of access control entities and thebusiness attributes, which constitute the general permission decision algorithm based on logical calculation andthe business permission decision algorithm based on a bi-directional long short-term memory (BiLSTM) neuralnetwork, respectively. The general permission decision algorithm is used to implement accurate policy decisions,while the business permission decision algorithm implements fuzzy decisions based on the business constraints.The BiLSTM neural network is used to calculate the similarity of the business attributes to realize intelligent,adaptive, and efficient access control permission decisions. Through the two-layer permission decision structure,the complex and diverse big data access control management requirements can be satisfied by considering thesecurity and availability of resources. Experimental results show that the proposed mechanism is effective andreliable. In summary, it can efficiently support the secure sharing of big data resources.
基金Funding for this study was received from the Taif University,Taif,Saudi Arabia under the Grant No.TURSP-2020/150.
文摘In recent years,it has been observed that the disclosure of information increases the risk of terrorism.Without restricting the accessibility of information,providing security is difficult.So,there is a demand for time tofill the gap between security and accessibility of information.In fact,security tools should be usable for improving the security as well as the accessibility of information.Though security and accessibility are not directly influenced,some of their factors are indirectly influenced by each other.Attributes play an important role in bridging the gap between security and accessibility.In this paper,we identify the key attributes of accessibility and security that impact directly and indirectly on each other,such as confidentiality,integrity,availability,and severity.The significance of every attribute on the basis of obtained weight is important for its effect on security during the big data security life cycle process.To calculate the proposed work,researchers utilised the Fuzzy Analytic Hierarchy Process(Fuzzy AHP).Thefindings show that the Fuzzy AHP is a very accurate mechanism for determining the best security solution in a real-time healthcare context.The study also looks at the rapidly evolving security technologies in healthcare that could help improve healthcare services and the future prospects in this area.
文摘Lately,the Internet of Things(IoT)application requires millions of structured and unstructured data since it has numerous problems,such as data organization,production,and capturing.To address these shortcomings,big data analytics is the most superior technology that has to be adapted.Even though big data and IoT could make human life more convenient,those benefits come at the expense of security.To manage these kinds of threats,the intrusion detection system has been extensively applied to identify malicious network traffic,particularly once the preventive technique fails at the level of endpoint IoT devices.As cyberattacks targeting IoT have gradually become stealthy and more sophisticated,intrusion detection systems(IDS)must continually emerge to manage evolving security threats.This study devises Big Data Analytics with the Internet of Things Assisted Intrusion Detection using Modified Buffalo Optimization Algorithm with Deep Learning(IDMBOA-DL)algorithm.In the presented IDMBOA-DL model,the Hadoop MapReduce tool is exploited for managing big data.The MBOA algorithm is applied to derive an optimal subset of features from picking an optimum set of feature subsets.Finally,the sine cosine algorithm(SCA)with convolutional autoencoder(CAE)mechanism is utilized to recognize and classify the intrusions in the IoT network.A wide range of simulations was conducted to demonstrate the enhanced results of the IDMBOA-DL algorithm.The comparison outcomes emphasized the better performance of the IDMBOA-DL model over other approaches.
文摘A vast amount of data (known as big data) may now be collected and stored from a variety of data sources, including event logs, the internet, smartphones, databases, sensors, cloud computing, and Internet of Things (IoT) devices. The term “big data security” refers to all the safeguards and instruments used to protect both the data and analytics processes against intrusions, theft, and other hostile actions that could endanger or adversely influence them. Beyond being a high-value and desirable target, protecting Big Data has particular difficulties. Big Data security does not fundamentally differ from conventional data security. Big Data security issues are caused by extraneous distinctions rather than fundamental ones. This study meticulously outlines the numerous security difficulties Large Data analytics now faces and encourages additional joint research for reducing both big data security challenges utilizing Ontology Web Language (OWL). Although we focus on the Security Challenges of Big Data in this essay, we will also briefly cover the broader Challenges of Big Data. The proposed classification of Big Data security based on ontology web language resulting from the protégé software has 32 classes and 45 subclasses.
基金supported by the Hainan Provincial Key Laboratory of Philosophy and Social Sciences for Hainan Free Trade Port International Shipping Development and Property Rights Digitization,Hainan Vocational University of Science and Technology(Qiong Social Science[2022]No.26).
文摘In recent years,China has witnessed continuous development and progress in its scientific and technological landscape,with widespread utilization of computer networks.Concurrently,issues related to computer network information security,such as information leakage and virus invasions,have become increasingly prominent.Consequently,there is a pressing need for the implementation of effective network security measures.This paper aims to provide a comprehensive summary and analysis of the challenges associated with computer network information security processing.It delves into the core concepts and characteristics of big data technology,exploring its potential as a solution.The study further scrutinizes the application strategy of big data technology in addressing the aforementioned security issues within computer networks.The insights presented in this paper are intended to serve as a valuable reference for individuals involved in the relevant fields,offering guidance on effective approaches to enhance computer network information security through the application of big data technology.