To avoid carbonate precipitation for CO_(2) electrolysis,developing CO_(2) conversion in an acid electrolyte is viewed as an ultimately challenging technology.In Nature,Xia et al.recently explored a proton-exchange me...To avoid carbonate precipitation for CO_(2) electrolysis,developing CO_(2) conversion in an acid electrolyte is viewed as an ultimately challenging technology.In Nature,Xia et al.recently explored a proton-exchange membrane system for reducing CO_(2) to formic acid with a Pb±Pb SO_(4) composite catalyst derived from waste lead-acid batteries based on the lattice carbon activation mechanism.Up to 93%Faradaic efficiency was realized when formic acid was produced by this technology.展开更多
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c...The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.展开更多
Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbo...Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbon neutrality system that balances energy production and carbon reduction becomes crucial for the transformation of such basins.Under the framework of a green and intelligent energy system primarily based on“four news”,new energy,new electricity,new energy storage,and new intelligence,integrating a“super energy system”composed of a huge amount of underground resources of coal,oil,gas and heat highly overlapping with abundant wind and solar energy resources above ground,and a regional intelligent energy consumption system with coordinated development and utilization of fossil energy and new energy,with a carbon neutrality system centered around carbon cycling is essential.This paper aims to select the traditional oil and gas basins as“super energy basins”with the conditions to build world-class energy production and demonstration bases for carbon neutrality.The Ordos Basin has unique regional advantages,including abundant fossil fuel and new energy resources,as well as matching CO_(2)sources and sinks,position it as a carbon neutrality“super energy basin”which explores the path of transformation of traditional oil and gas basins.Under the integrated development concept and mode of“coal+oil+gas+new energy+carbon capture,utilization and storage(CCUS)/carbon capture and storage(CCS)”,the carbon neutrality in super energy basin is basically achieved,which enhance energy supply and contribute to the carbon peak and carbon neutrality goals,establish a modern energy industry and promote regional green and sustainable development.The pioneering construction of the world-class carbon neutrality“super energy system”demonstration basin in China represented by the Ordos Basin will reshape the new concept and new mode of exploration and development of super energy basins,which is of great significance to the global energy revolution under carbon neutrality.展开更多
The excessive use of nonrenewable energy has brought about serious greenhouse effect.Converting CO_(2) into high-value-added chemicals is undoubtedly the best choice to solve energy problems.Due to the excellent cost-...The excessive use of nonrenewable energy has brought about serious greenhouse effect.Converting CO_(2) into high-value-added chemicals is undoubtedly the best choice to solve energy problems.Due to the excellent cost-effectiveness and dramatic catalytic performance,nickel-based catalysts have been considered as the most promising candidates for the electrocatalytic CO_(2) reduction reaction(eCO_(2)RR).In this work,the electrocatalytic reduction mechanism of CO_(2) over Ni-based materials is reviewed.The strategies to improve the eCO_(2)RR performance are emphasized.Moreover,the research on Ni-based materials for syngas generation is briefly summarized.Finally,the prospects of nickel-based materials in the eCO_(2)RR are provided with the hope of improving transition-metal-based electrocatalysts for eCO_(2)RR in the future.展开更多
With the rapid development of plastic production and consumption globally,the amount of post-consumer plastic waste has reached levels that have posed environmental threats.Considering the substantial CO_(2)emissions ...With the rapid development of plastic production and consumption globally,the amount of post-consumer plastic waste has reached levels that have posed environmental threats.Considering the substantial CO_(2)emissions throughout the plastic lifecycle from material production to its disposal,photocatalysis is considered a promising strategy for eff ective plastic recycling and upcycling.It can upgrade plastics into value-added products under mild conditions using solar energy,realizing zero carbon emissions.In this paper,we explain the basics of photocatalytic plastic reformation and underscores plastic feedstock reformation pathways into high-value-added products,including both degradation into CO_(2)followed by reformation and direct reformation into high-value-added products.Finally,the current applications of transforming plastic waste into fuels,chemicals,and carbon materials and the outlook on upcycling plastic waste by photocatalysis are presented,facilitating the realization of carbon neutrality and zero plastic waste.展开更多
In the mid-21st century,natural gas will enter its golden age,and the era of natural gas is arriving.This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas...In the mid-21st century,natural gas will enter its golden age,and the era of natural gas is arriving.This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas revolution,summarizes the development history and achievements of the natural gas industry in China,analyzes the status and challenges of natural gas in the green and low-carbon energy transition,and puts forward the natural gas industry development strategies under carbon neutral target in China.The natural gas industry in China has experienced three periods:start,growth,and leap forward.At present,China has become the fourth largest natural gas producer and third largest natural gas consumer in the world,and has made great achievements in natural gas exploration and development theory and technology,providing important support for the growth of production and reserves.China has set its goal of carbon neutrality to promote green and sustainable development,which brings opportunities and challenges for natural gas industry.Natural gas has significant low-carbon advantages,and gas-electric peak shaving boosts new energy development;the difficulty and cost of development are more prominent.For the national energy security and harmonious development between economy and ecology under the carbon neutral goal,based on the principle of"comprehensive planning,technological innovation,multi-energy complementarity,diversified integration,flexibility and efficiency,optimization and upgrading",the construction of the production-supplystorage-marketing system has to be improved so as to boost the development of the natural gas industry.First,it is necessary to strengthen efforts in the exploration and development of natural gas,making projects and arrangement in key exploration and development areas,meanwhile,it is urgent to make breakthroughs in key science theories and technologies,so as to increase reserve and production.Second,it should promote green and innovative development of the natural gas by developing new techniques,expanding new fields and integrating with new energy.Third,there is a demand to realize transformation and upgrading of the supply and demand structure of natural gas by strengthening the layout of pipeline gas,liquefied natural gas and the construction of underground gas storage,establishing reserve system for improving abilities of emergency response and adjustment,raising the proportion of natural gas in the primary energy consumption and contributing to the transformation of energy consumption structure,realizing low-carbon resources utilization and clean energy consumption.展开更多
To address climate change,the world needs deep decarbonization to achieve carbon neutrality(CN),which implies net-zero human-caused CO_(2) emissions in the atmosphere.This study used emission-side drivers,including so...To address climate change,the world needs deep decarbonization to achieve carbon neutrality(CN),which implies net-zero human-caused CO_(2) emissions in the atmosphere.This study used emission-side drivers,including socioeconomic and net primary productivity(NPP)-based factors,to determine the changes in CN based on vegetation carbon sequestration in the case of China during 2001-2015.Spatial exploratory analysis as well as the combined use of production-theoretical decomposition analysis(PDA)and an econometric model were also utilized.We showed that CN was significantly spatially correlated over the study period;Yunnan,Heilongjiang,and Jilin presented positive spatial autocorrelations,whereas Guizhou showed a negative spatial autocorrelation.More than half of CN declined over the period during which potential energy intensity(PEIE)and energy usage technological change were the largest negative and positive drivers for increasing CN.PEIE played a significantly negative role in increasing CN.We advise policymakers to focus more on emission-side drivers(e.g.,energy intensity)in addition to strengthening NPP management to achieve CN.展开更多
Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon...Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.展开更多
"Carbon neutrality movies"are movies that focus on carbon neutrality as the object of expression and dissemination.Using carbon neutrality as an element,it influences the development of the plot,reflects env..."Carbon neutrality movies"are movies that focus on carbon neutrality as the object of expression and dissemination.Using carbon neutrality as an element,it influences the development of the plot,reflects environmental changes,and focuses on climate change caused by carbon emissions.At the same time,it focuses on offsetting carbon emissions through carbon neutrality behavior,showcasing the impact of carbon neutrality.From the perspective of ecological movies,the evolution of carbon neutrality movies at three stages can be explored.The first stage is high-carbon movies that reflect the high conflict between humans and the natural environment.The second stage is low-carbon movies,reflecting humanity's pursuit of a harmonious coexistence between humans and nature,thus adopting green and low-carbon behaviors.The third stage is carbon neutrality movies,which awaken or guide the public to pay attention to carbon emissions,promote low-carbon living,guide life practice in a carbon neutrality way,and create a better life.There are three characteristics of"carbon neutrality movies",including scientific reflection on global warming,advocating energy conservation and emission reduction in daily life,and promoting clean energy in policies.展开更多
Consolidating carbon sink capacity and reducing carbon pressure are important channels to achieve the carbon peaking and carbon neutrality goals actively yet prudently.In order to study the current situation of carbon...Consolidating carbon sink capacity and reducing carbon pressure are important channels to achieve the carbon peaking and carbon neutrality goals actively yet prudently.In order to study the current situation of carbon pressure in the Northwestern Sichuan,we took the carbon pressure of the Aba Tibetan-Qiang autonomous prefecture(Aba prefecture)as an example and used the Intergovernmental Panel on Climate Change(IPCC)approach to measure the carbon emissions,carbon uptake,and the carbon balance index(CBI)of each county-level city in Aba prefecture from 2012 to 2020.The study found that:(a)There was a continuous trend of declining carbon emissions,increased carbon uptake,and decreased CBI in Aba prefecture during the sample period,but there is a large variability among county-level cities;(b)Aba prefecture differs in the spatiotemporal distribution of carbon emissions,carbon uptake,and CBI.Based on the research results,we propose several optimized paths for alleviating the current carbon pressure situation in the Northwestern Sichuan.展开更多
Against the backdrop of the dual carbon goals,the papermaking industry in China faces significant pressure to reduce emissions and lower carbon intensity.Based on historical data of energy consumption in the pulp and ...Against the backdrop of the dual carbon goals,the papermaking industry in China faces significant pressure to reduce emissions and lower carbon intensity.Based on historical data of energy consumption in the pulp and paper industry in China from 2000 to 2020,this study analyzed the current status of paper production and energy consumption in China.Two methods were employed to predict the growth trend of paper production in China,and three carbon dioxide emission accounting methods were compared.The study used an accounting method based on the industry’s overall energy consumption and predicted the carbon dioxide(CO_(2))emissions of the Chinese papermaking industry from 2021 to 2060 under three scenarios.The study identified the timing for achieving carbon peak and proposed the measures for carbon neutrality.The results indicated that:(1)the CO_(2)emissions of the Chinese papermaking industry in 2020 were 111.98 million tons.(2)Under low-demand,high-demand,and baseline scenarios,the papermaking industry is expected to achieve carbon peak during the“14th Five-Year Plan”period.(3)In 2060,under the three scenarios,CO_(2)emissions from the papermaking industry will decrease by 11%-31%compared to the baseline year.However,there will still be emissions of 72-93 million tons,requiring reductions in fossil energy consumption at the source,increasing forestry carbon sequestration and utilization of Carbon Capture,Utilization and Storage(CCUS)technology,and taking measures such as carbon trading to achieve carbon neutrality.展开更多
The“3060”goal demonstrates China’s responsibility in actively responding to global climate,enhances China’s voice and influence in climate governance,and sets an example of energy conservation and emission reducti...The“3060”goal demonstrates China’s responsibility in actively responding to global climate,enhances China’s voice and influence in climate governance,and sets an example of energy conservation and emission reduction for developing countries.As the main institutions that educate people for the Party and the country,colleges and universities have the responsibility to explore the realization path of carbon peak and carbon neutralization against the new problems encountered in the practice of energy conservation and emission reduction in colleges and universities.In response to the national strategy and the action plan of the Ministry of Education,taking the carbon practice of China University of Geosciences(Beijing)as the starting point,this paper conducts benchmarking research on the path of carbon peak and carbon neutralization in universities through the ecological factor method,campus carbon footprint,and questionnaire analysis.展开更多
Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research ob...Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern.展开更多
Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological lev...Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.展开更多
The global energy transition is a widespread phenomenon that requires international exchange of experiences and mutual learning.Germany’s success in its first phase of energy transition can be attributed to its adopt...The global energy transition is a widespread phenomenon that requires international exchange of experiences and mutual learning.Germany’s success in its first phase of energy transition can be attributed to its adoption of smart energy technology and implementation of electricity futures and spot marketization,which enabled the achievement of multiple energy spatial–temporal complementarities and overall grid balance through energy conversion and reconversion technologies.While China can draw from Germany’s experience to inform its own energy transition efforts,its 11-fold higher annual electricity consumption requires a distinct approach.We recommend a clean energy system based on smart sector coupling(ENSYSCO)as a suitable pathway for achieving sustainable energy in China,given that renewable energy is expected to guarantee 85%of China’s energy production by 2060,requiring significant future electricity storage capacity.Nonetheless,renewable energy storage remains a significant challenge.We propose four large-scale underground energy storage methods based on ENSYSCO to address this challenge,while considering China’s national conditions.These proposals have culminated in pilot projects for large-scale underground energy storage in China,which we believe is a necessary choice for achieving carbon neutrality in China and enabling efficient and safe grid integration of renewable energy within the framework of ENSYSCO.展开更多
Under the carbon neutrality goal,coal enterprises must seek breakthroughs from abandoned mines,develop new resources in the new era,turn problems into countermeasures,and participate in the carbon emissions market,for...Under the carbon neutrality goal,coal enterprises must seek breakthroughs from abandoned mines,develop new resources in the new era,turn problems into countermeasures,and participate in the carbon emissions market,for contributing to the accomplishment of the national strategic goal of carbon neutrality.To this end,we investigated the relevant national policies and regulations to clarify the boundaries disclosed by the carbon information of enterprises,understood the development direction of carbon storage in abandoned mines,and clarified the transformation and development of carbon storage in aban-doned mines.We made a few suggestions:(1)China should learn from its past experience and other countries to develop the energy industry with Chinese characteristics and reform the economic system.(2)Coal enterprises must actively respond to the national carbon information disclosure policy,clarify their own responsibilities and carbon emission boundaries.(3)It is necessary to proactively obtain advanced knowledge and plan carbon storage pathways for abandoned mines.(4)Devel-opment problems of coal enterprises should be deduced using cases.The'dual carbon'goals should be achieved steadily step-by-step.(5)Three measures,i.e.improving the existing resource structure,coordinating the information of abandoned mines,and promoting the cultivation of scientific and technological talents.展开更多
Carbon dioxide storage and utilization has become an inevitable trend and choice for sustainable development under the background of global climate change and carbon neutrality.Carbon industry which is dominated by CO...Carbon dioxide storage and utilization has become an inevitable trend and choice for sustainable development under the background of global climate change and carbon neutrality.Carbon industry which is dominated by CO_(2) capture,utilization and storage/CO_(2) capture and storage(CCUS/CCS)is becoming a new strategic industry under the goal of carbon neutrality.The sustainable development of carbon industry needs to learn from the experiences of global oil and gas industry development.There are three types of“carbon”in the earth system.Black carbon is the CO_(2) that has not been sequestered or used and remains in the atmosphere for a long time;grey carbon is the CO_(2) that has been fixed or permanently sequestered in the geological body,and blue carbon is the CO_(2) that could be converted into products for human use through biological,physical,chemical and other ways.The carbon industry system covers carbon generation,carbon capture,carbon transportation,carbon utilization,carbon sequestration,carbon products,carbon finance,and other businesses.It is a revolutionary industrial field to completely eliminate“black carbon”.The development of carbon industry technical system takes carbon emission reduction,zero carbon,negative carbon and carbon economy as the connotation,and the construction of a low-cost and energy-efficient carbon industry system based on CCUS/CCS are strategic measures to achieve the goal of carbon neutrality and clean energy utilization globally.This will promote the“four 80%s”transformation of China's energy supply,namely,to 2060,the percentage of zero-carbon new energy in the energy consumption will be over 80%and the CO_(2) emission will be decreased by 80%to ensure the carbon emission reduction of total 80×10^(8) t from the percentage of carbon-based fossil energy in the energy consumption of over 80%,and the percentage of CO_(2) emission from energy of over 80%in 2021.The carbon industry in China is facing three challenges,large CO_(2) emissions,high percentage of coal in energy consumption,and poor innovative system.Three strategic measures are proposed accordingly,including:(1)unswervingly develop carbon industrial system and ensure the achievement of carbon neutrality as scheduled by 2060;(2)vigorously develop new energy sources and promote a revolutionary transformation of China’s energy production and consumption structure;(3)accelerate the establishment of scientific and technological innovation system of the whole CO_(2) industry.It is of great significance for continuously optimization of ecological environment and construction of green earth and ecological earth to develop the carbon industry system,utilize clean energy,and achieve the strategic goal of global carbon neutrality.展开更多
In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increas...In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increased attention toward carbon capture,utilization,and storage strategies.Among these strategies,monodisperse microcapsules,produced by using droplet microfluidics,have emerged as promising tools for carbon capture,offering a potential solution to mitigate CO_(2) emissions.However,the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge.In this comprehensive review,the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on.Specifically,the detailed insights into microfluidic chip fabrication technologies,the microfluidic generation of emulsion droplets,along with the associated hydrodynamic considerations,and the generation of carbon capture microcapsules through droplet microfluidics are provided.This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production,which could play a significant role in achieving carbon neutralization and emission reduction goals.展开更多
The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an ef...The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an effective backup way to achieve carbon neutrality.In this case,the potential of saline aquifers for CO_(2) storage serves as a critical basis for subsequent geological storage project.This study calculated the technical control capacities of CO_(2) of the saline aquifers in the fifth member of the Shiqianfeng Formation(the Qian-5 member)based on the statistical analysis of the logging and the drilling and core data from more than 200 wells in the northeastern Ordos Basin,as well as the sedimentary facies,formation lithology,and saline aquifer development patterns of the Qian-5 member.The results show that(1)the reservoirs of saline aquifers in the Qian-5 member,which comprise distributary channel sand bodies of deltaic plains,feature low porosities and permeabilities;(2)The study area hosts three NNE-directed saline aquifer zones,where saline aquifers generally have a single-layer thickness of 3‒8 m and a cumulative thickness of 8‒24 m;(3)The saline aquifers of the Qian-5 member have a total technical control capacity of CO_(2) of 119.25×10^(6) t.With the largest scale and the highest technical control capacity(accounting for 61%of the total technical control capacity),the Jinjie-Yulin saline aquifer zone is an important prospect area for the geological storage of CO_(2) in the saline aquifers of the Qian-5 member in the study area.展开更多
The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emiss...The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emissions.Developing high-efficient,low-cost,energy-efficient and eco-friendly microfluidicbased microchemical engineering is of great significance.Such kind of“green microfluidics”can reduce carbon emissions from the source of raw materials and facilitate controllable and intensified microchemical engineering processes,which represents the new power for the transformation and upgrading of chemical engineering industry.Here,a brief review of green microfluidics for achieving carbon neutral microchemical engineering is presented,with specific discussions about the characteristics and feasibility of applying green microfluidics in realizing carbon neutrality.Development of green microfluidic systems are categorized and reviewed,including the construction of microfluidic devices by bio-based substrate materials and by low carbon fabrication methods,and the use of more biocompatible and nondestructive fluidic systems such as aqueous two-phase systems(ATPSs).Moreover,low carbon applications benefit from green microfluidics are summarized,ranging from separation and purification of biomolecules,high-throughput screening of chemicals and drugs,rapid and cost-effective detections,to synthesis of fine chemicals and novel materials.Finally,challenges and perspectives for further advancing green microfluidics in microchemical engineering for carbon neutrality are proposed and discussed.展开更多
基金supported by the Natural Science Foundation of China (No. 22268003)。
文摘To avoid carbonate precipitation for CO_(2) electrolysis,developing CO_(2) conversion in an acid electrolyte is viewed as an ultimately challenging technology.In Nature,Xia et al.recently explored a proton-exchange membrane system for reducing CO_(2) to formic acid with a Pb±Pb SO_(4) composite catalyst derived from waste lead-acid batteries based on the lattice carbon activation mechanism.Up to 93%Faradaic efficiency was realized when formic acid was produced by this technology.
基金financial support from the King Abdullah University of Science and Technology(KAUST).
文摘The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.
基金Supported by the National Natural Science Foundation of China(42072187)PetroChina Science and Technology Special Project(2021ZZ01-05)。
文摘Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbon neutrality system that balances energy production and carbon reduction becomes crucial for the transformation of such basins.Under the framework of a green and intelligent energy system primarily based on“four news”,new energy,new electricity,new energy storage,and new intelligence,integrating a“super energy system”composed of a huge amount of underground resources of coal,oil,gas and heat highly overlapping with abundant wind and solar energy resources above ground,and a regional intelligent energy consumption system with coordinated development and utilization of fossil energy and new energy,with a carbon neutrality system centered around carbon cycling is essential.This paper aims to select the traditional oil and gas basins as“super energy basins”with the conditions to build world-class energy production and demonstration bases for carbon neutrality.The Ordos Basin has unique regional advantages,including abundant fossil fuel and new energy resources,as well as matching CO_(2)sources and sinks,position it as a carbon neutrality“super energy basin”which explores the path of transformation of traditional oil and gas basins.Under the integrated development concept and mode of“coal+oil+gas+new energy+carbon capture,utilization and storage(CCUS)/carbon capture and storage(CCS)”,the carbon neutrality in super energy basin is basically achieved,which enhance energy supply and contribute to the carbon peak and carbon neutrality goals,establish a modern energy industry and promote regional green and sustainable development.The pioneering construction of the world-class carbon neutrality“super energy system”demonstration basin in China represented by the Ordos Basin will reshape the new concept and new mode of exploration and development of super energy basins,which is of great significance to the global energy revolution under carbon neutrality.
基金support from the National Natural Science Foundation of China(52072389,52311530113)the Science and Technology Commission of Shanghai Municipality(22DZ1205600,20520760900)+2 种基金the Program of Shanghai Academic Research Leader(20XD1424300)for financial support.The authors also would like to express their gratitude to Tangshan Basic Research Funding Projects(23130210E),Hebei Province High-level Talent(Postdoctor)Funding Project(B2022003025)Key R&D projects of North China University of Science and Technology(ZD-ST-202301)Tangshan Talent Funding Project(A202202007)for their financial support.
文摘The excessive use of nonrenewable energy has brought about serious greenhouse effect.Converting CO_(2) into high-value-added chemicals is undoubtedly the best choice to solve energy problems.Due to the excellent cost-effectiveness and dramatic catalytic performance,nickel-based catalysts have been considered as the most promising candidates for the electrocatalytic CO_(2) reduction reaction(eCO_(2)RR).In this work,the electrocatalytic reduction mechanism of CO_(2) over Ni-based materials is reviewed.The strategies to improve the eCO_(2)RR performance are emphasized.Moreover,the research on Ni-based materials for syngas generation is briefly summarized.Finally,the prospects of nickel-based materials in the eCO_(2)RR are provided with the hope of improving transition-metal-based electrocatalysts for eCO_(2)RR in the future.
基金supported by the support by the Natural Science Foundation of China projects(Nos.22225604 and 22076082)the Frontiers Science Center for New Organic Matter(No.63181206)Haihe Laboratory of Sustainable Chemical Transformations.
文摘With the rapid development of plastic production and consumption globally,the amount of post-consumer plastic waste has reached levels that have posed environmental threats.Considering the substantial CO_(2)emissions throughout the plastic lifecycle from material production to its disposal,photocatalysis is considered a promising strategy for eff ective plastic recycling and upcycling.It can upgrade plastics into value-added products under mild conditions using solar energy,realizing zero carbon emissions.In this paper,we explain the basics of photocatalytic plastic reformation and underscores plastic feedstock reformation pathways into high-value-added products,including both degradation into CO_(2)followed by reformation and direct reformation into high-value-added products.Finally,the current applications of transforming plastic waste into fuels,chemicals,and carbon materials and the outlook on upcycling plastic waste by photocatalysis are presented,facilitating the realization of carbon neutrality and zero plastic waste.
文摘In the mid-21st century,natural gas will enter its golden age,and the era of natural gas is arriving.This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas revolution,summarizes the development history and achievements of the natural gas industry in China,analyzes the status and challenges of natural gas in the green and low-carbon energy transition,and puts forward the natural gas industry development strategies under carbon neutral target in China.The natural gas industry in China has experienced three periods:start,growth,and leap forward.At present,China has become the fourth largest natural gas producer and third largest natural gas consumer in the world,and has made great achievements in natural gas exploration and development theory and technology,providing important support for the growth of production and reserves.China has set its goal of carbon neutrality to promote green and sustainable development,which brings opportunities and challenges for natural gas industry.Natural gas has significant low-carbon advantages,and gas-electric peak shaving boosts new energy development;the difficulty and cost of development are more prominent.For the national energy security and harmonious development between economy and ecology under the carbon neutral goal,based on the principle of"comprehensive planning,technological innovation,multi-energy complementarity,diversified integration,flexibility and efficiency,optimization and upgrading",the construction of the production-supplystorage-marketing system has to be improved so as to boost the development of the natural gas industry.First,it is necessary to strengthen efforts in the exploration and development of natural gas,making projects and arrangement in key exploration and development areas,meanwhile,it is urgent to make breakthroughs in key science theories and technologies,so as to increase reserve and production.Second,it should promote green and innovative development of the natural gas by developing new techniques,expanding new fields and integrating with new energy.Third,there is a demand to realize transformation and upgrading of the supply and demand structure of natural gas by strengthening the layout of pipeline gas,liquefied natural gas and the construction of underground gas storage,establishing reserve system for improving abilities of emergency response and adjustment,raising the proportion of natural gas in the primary energy consumption and contributing to the transformation of energy consumption structure,realizing low-carbon resources utilization and clean energy consumption.
文摘To address climate change,the world needs deep decarbonization to achieve carbon neutrality(CN),which implies net-zero human-caused CO_(2) emissions in the atmosphere.This study used emission-side drivers,including socioeconomic and net primary productivity(NPP)-based factors,to determine the changes in CN based on vegetation carbon sequestration in the case of China during 2001-2015.Spatial exploratory analysis as well as the combined use of production-theoretical decomposition analysis(PDA)and an econometric model were also utilized.We showed that CN was significantly spatially correlated over the study period;Yunnan,Heilongjiang,and Jilin presented positive spatial autocorrelations,whereas Guizhou showed a negative spatial autocorrelation.More than half of CN declined over the period during which potential energy intensity(PEIE)and energy usage technological change were the largest negative and positive drivers for increasing CN.PEIE played a significantly negative role in increasing CN.We advise policymakers to focus more on emission-side drivers(e.g.,energy intensity)in addition to strengthening NPP management to achieve CN.
文摘Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.
文摘"Carbon neutrality movies"are movies that focus on carbon neutrality as the object of expression and dissemination.Using carbon neutrality as an element,it influences the development of the plot,reflects environmental changes,and focuses on climate change caused by carbon emissions.At the same time,it focuses on offsetting carbon emissions through carbon neutrality behavior,showcasing the impact of carbon neutrality.From the perspective of ecological movies,the evolution of carbon neutrality movies at three stages can be explored.The first stage is high-carbon movies that reflect the high conflict between humans and the natural environment.The second stage is low-carbon movies,reflecting humanity's pursuit of a harmonious coexistence between humans and nature,thus adopting green and low-carbon behaviors.The third stage is carbon neutrality movies,which awaken or guide the public to pay attention to carbon emissions,promote low-carbon living,guide life practice in a carbon neutrality way,and create a better life.There are three characteristics of"carbon neutrality movies",including scientific reflection on global warming,advocating energy conservation and emission reduction in daily life,and promoting clean energy in policies.
基金This paper is part of“A Study on the Spatiotemporal Evolution,Dilemma and Optimized Paths of Carbon Balance in Aba Prefecture Under the Carbon Peaking and Carbon Neutrality Goals”(ABKT2022065)a program funded by the Prefecture Social Science Fund Project of Aba Prefecture。
文摘Consolidating carbon sink capacity and reducing carbon pressure are important channels to achieve the carbon peaking and carbon neutrality goals actively yet prudently.In order to study the current situation of carbon pressure in the Northwestern Sichuan,we took the carbon pressure of the Aba Tibetan-Qiang autonomous prefecture(Aba prefecture)as an example and used the Intergovernmental Panel on Climate Change(IPCC)approach to measure the carbon emissions,carbon uptake,and the carbon balance index(CBI)of each county-level city in Aba prefecture from 2012 to 2020.The study found that:(a)There was a continuous trend of declining carbon emissions,increased carbon uptake,and decreased CBI in Aba prefecture during the sample period,but there is a large variability among county-level cities;(b)Aba prefecture differs in the spatiotemporal distribution of carbon emissions,carbon uptake,and CBI.Based on the research results,we propose several optimized paths for alleviating the current carbon pressure situation in the Northwestern Sichuan.
文摘Against the backdrop of the dual carbon goals,the papermaking industry in China faces significant pressure to reduce emissions and lower carbon intensity.Based on historical data of energy consumption in the pulp and paper industry in China from 2000 to 2020,this study analyzed the current status of paper production and energy consumption in China.Two methods were employed to predict the growth trend of paper production in China,and three carbon dioxide emission accounting methods were compared.The study used an accounting method based on the industry’s overall energy consumption and predicted the carbon dioxide(CO_(2))emissions of the Chinese papermaking industry from 2021 to 2060 under three scenarios.The study identified the timing for achieving carbon peak and proposed the measures for carbon neutrality.The results indicated that:(1)the CO_(2)emissions of the Chinese papermaking industry in 2020 were 111.98 million tons.(2)Under low-demand,high-demand,and baseline scenarios,the papermaking industry is expected to achieve carbon peak during the“14th Five-Year Plan”period.(3)In 2060,under the three scenarios,CO_(2)emissions from the papermaking industry will decrease by 11%-31%compared to the baseline year.However,there will still be emissions of 72-93 million tons,requiring reductions in fossil energy consumption at the source,increasing forestry carbon sequestration and utilization of Carbon Capture,Utilization and Storage(CCUS)technology,and taking measures such as carbon trading to achieve carbon neutrality.
文摘The“3060”goal demonstrates China’s responsibility in actively responding to global climate,enhances China’s voice and influence in climate governance,and sets an example of energy conservation and emission reduction for developing countries.As the main institutions that educate people for the Party and the country,colleges and universities have the responsibility to explore the realization path of carbon peak and carbon neutralization against the new problems encountered in the practice of energy conservation and emission reduction in colleges and universities.In response to the national strategy and the action plan of the Ministry of Education,taking the carbon practice of China University of Geosciences(Beijing)as the starting point,this paper conducts benchmarking research on the path of carbon peak and carbon neutralization in universities through the ecological factor method,campus carbon footprint,and questionnaire analysis.
基金Under the auspices of National Natural Science Foundation of China(No.42171230)。
文摘Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern.
基金supported by the Henan Institute for Chinese Development Strategy of Engineering&Technology(Grant No.2022HENZDA02)by the Science&Technology Department of Sichuan Province Project(Grant No.2021YFH0010).
文摘Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.
基金Henan Institute for Chinese Development Strategy of Engineering&Technology(No.2022HENZDA02)the Science&Technology Department of Sichuan Province(No.2021YFH0010)。
文摘The global energy transition is a widespread phenomenon that requires international exchange of experiences and mutual learning.Germany’s success in its first phase of energy transition can be attributed to its adoption of smart energy technology and implementation of electricity futures and spot marketization,which enabled the achievement of multiple energy spatial–temporal complementarities and overall grid balance through energy conversion and reconversion technologies.While China can draw from Germany’s experience to inform its own energy transition efforts,its 11-fold higher annual electricity consumption requires a distinct approach.We recommend a clean energy system based on smart sector coupling(ENSYSCO)as a suitable pathway for achieving sustainable energy in China,given that renewable energy is expected to guarantee 85%of China’s energy production by 2060,requiring significant future electricity storage capacity.Nonetheless,renewable energy storage remains a significant challenge.We propose four large-scale underground energy storage methods based on ENSYSCO to address this challenge,while considering China’s national conditions.These proposals have culminated in pilot projects for large-scale underground energy storage in China,which we believe is a necessary choice for achieving carbon neutrality in China and enabling efficient and safe grid integration of renewable energy within the framework of ENSYSCO.
基金support provided by the Institute of Energy,Hefei Comprehensive National Science Center (Grant No.21KZS216),ChinaCollaborative Innovation Project of Colleges and Universities of Anhui Province (Grant No.GXXT-2021-019),China+3 种基金the Open Fund of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Grant No.SKLMRDPC19ZZ05),ChinaOpen Fund of National Local Joint Engineering Research Center for Safe and Accurate Coal Mining (EC2021002)Natural Science Research Project of University in Anhui (KJ2021ZD0050)Excellent Youth Project of Anhui Province (2022AH030086).
文摘Under the carbon neutrality goal,coal enterprises must seek breakthroughs from abandoned mines,develop new resources in the new era,turn problems into countermeasures,and participate in the carbon emissions market,for contributing to the accomplishment of the national strategic goal of carbon neutrality.To this end,we investigated the relevant national policies and regulations to clarify the boundaries disclosed by the carbon information of enterprises,understood the development direction of carbon storage in abandoned mines,and clarified the transformation and development of carbon storage in aban-doned mines.We made a few suggestions:(1)China should learn from its past experience and other countries to develop the energy industry with Chinese characteristics and reform the economic system.(2)Coal enterprises must actively respond to the national carbon information disclosure policy,clarify their own responsibilities and carbon emission boundaries.(3)It is necessary to proactively obtain advanced knowledge and plan carbon storage pathways for abandoned mines.(4)Devel-opment problems of coal enterprises should be deduced using cases.The'dual carbon'goals should be achieved steadily step-by-step.(5)Three measures,i.e.improving the existing resource structure,coordinating the information of abandoned mines,and promoting the cultivation of scientific and technological talents.
基金Supported by the National Natural Science Foundation of China(42072187)PetroChina Science and Technology Major Project(2021ZZ01-05,2021DJ18).
文摘Carbon dioxide storage and utilization has become an inevitable trend and choice for sustainable development under the background of global climate change and carbon neutrality.Carbon industry which is dominated by CO_(2) capture,utilization and storage/CO_(2) capture and storage(CCUS/CCS)is becoming a new strategic industry under the goal of carbon neutrality.The sustainable development of carbon industry needs to learn from the experiences of global oil and gas industry development.There are three types of“carbon”in the earth system.Black carbon is the CO_(2) that has not been sequestered or used and remains in the atmosphere for a long time;grey carbon is the CO_(2) that has been fixed or permanently sequestered in the geological body,and blue carbon is the CO_(2) that could be converted into products for human use through biological,physical,chemical and other ways.The carbon industry system covers carbon generation,carbon capture,carbon transportation,carbon utilization,carbon sequestration,carbon products,carbon finance,and other businesses.It is a revolutionary industrial field to completely eliminate“black carbon”.The development of carbon industry technical system takes carbon emission reduction,zero carbon,negative carbon and carbon economy as the connotation,and the construction of a low-cost and energy-efficient carbon industry system based on CCUS/CCS are strategic measures to achieve the goal of carbon neutrality and clean energy utilization globally.This will promote the“four 80%s”transformation of China's energy supply,namely,to 2060,the percentage of zero-carbon new energy in the energy consumption will be over 80%and the CO_(2) emission will be decreased by 80%to ensure the carbon emission reduction of total 80×10^(8) t from the percentage of carbon-based fossil energy in the energy consumption of over 80%,and the percentage of CO_(2) emission from energy of over 80%in 2021.The carbon industry in China is facing three challenges,large CO_(2) emissions,high percentage of coal in energy consumption,and poor innovative system.Three strategic measures are proposed accordingly,including:(1)unswervingly develop carbon industrial system and ensure the achievement of carbon neutrality as scheduled by 2060;(2)vigorously develop new energy sources and promote a revolutionary transformation of China’s energy production and consumption structure;(3)accelerate the establishment of scientific and technological innovation system of the whole CO_(2) industry.It is of great significance for continuously optimization of ecological environment and construction of green earth and ecological earth to develop the carbon industry system,utilize clean energy,and achieve the strategic goal of global carbon neutrality.
基金supported by the National Natural Science Foundation of China (No.52036006)。
文摘In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increased attention toward carbon capture,utilization,and storage strategies.Among these strategies,monodisperse microcapsules,produced by using droplet microfluidics,have emerged as promising tools for carbon capture,offering a potential solution to mitigate CO_(2) emissions.However,the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge.In this comprehensive review,the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on.Specifically,the detailed insights into microfluidic chip fabrication technologies,the microfluidic generation of emulsion droplets,along with the associated hydrodynamic considerations,and the generation of carbon capture microcapsules through droplet microfluidics are provided.This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production,which could play a significant role in achieving carbon neutralization and emission reduction goals.
基金funded by the Top 10 key scientific and technological projects of CHN Energy in 2021 entitled Research and Demonstration of Technology for Carbon Dioxide Capture and Energy Recycling Utilization(GJNYKJ[2021]No.128,No.:GJNY-21-51)the Carbon Neutrality College(Yulin)Northwest University project entitled Design and research of large-scale CCUS cluster construction in Yulin area,Shaanxi Province(YL2022-38-01).
文摘The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an effective backup way to achieve carbon neutrality.In this case,the potential of saline aquifers for CO_(2) storage serves as a critical basis for subsequent geological storage project.This study calculated the technical control capacities of CO_(2) of the saline aquifers in the fifth member of the Shiqianfeng Formation(the Qian-5 member)based on the statistical analysis of the logging and the drilling and core data from more than 200 wells in the northeastern Ordos Basin,as well as the sedimentary facies,formation lithology,and saline aquifer development patterns of the Qian-5 member.The results show that(1)the reservoirs of saline aquifers in the Qian-5 member,which comprise distributary channel sand bodies of deltaic plains,feature low porosities and permeabilities;(2)The study area hosts three NNE-directed saline aquifer zones,where saline aquifers generally have a single-layer thickness of 3‒8 m and a cumulative thickness of 8‒24 m;(3)The saline aquifers of the Qian-5 member have a total technical control capacity of CO_(2) of 119.25×10^(6) t.With the largest scale and the highest technical control capacity(accounting for 61%of the total technical control capacity),the Jinjie-Yulin saline aquifer zone is an important prospect area for the geological storage of CO_(2) in the saline aquifers of the Qian-5 member in the study area.
基金the supports of the National Science Foundation of China (22008130, 22025801)the China Postdoctoral Science Foundation (2020M682124)+1 种基金the Qingdao Postdoctoral Researchers Applied Research Project Foundation (RZ2000001426)the Scientific Research Foundation for Youth Scholars from Qingdao University (DC1900014265) for this work
文摘The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emissions.Developing high-efficient,low-cost,energy-efficient and eco-friendly microfluidicbased microchemical engineering is of great significance.Such kind of“green microfluidics”can reduce carbon emissions from the source of raw materials and facilitate controllable and intensified microchemical engineering processes,which represents the new power for the transformation and upgrading of chemical engineering industry.Here,a brief review of green microfluidics for achieving carbon neutral microchemical engineering is presented,with specific discussions about the characteristics and feasibility of applying green microfluidics in realizing carbon neutrality.Development of green microfluidic systems are categorized and reviewed,including the construction of microfluidic devices by bio-based substrate materials and by low carbon fabrication methods,and the use of more biocompatible and nondestructive fluidic systems such as aqueous two-phase systems(ATPSs).Moreover,low carbon applications benefit from green microfluidics are summarized,ranging from separation and purification of biomolecules,high-throughput screening of chemicals and drugs,rapid and cost-effective detections,to synthesis of fine chemicals and novel materials.Finally,challenges and perspectives for further advancing green microfluidics in microchemical engineering for carbon neutrality are proposed and discussed.