Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression an...Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.展开更多
The coupling between heat and pressure is the kernel of inertia friction welding(IFW)and is still not fully understood.A novel 3D fully coupled finite element model based on a plastic friction pair was developed to si...The coupling between heat and pressure is the kernel of inertia friction welding(IFW)and is still not fully understood.A novel 3D fully coupled finite element model based on a plastic friction pair was developed to simulate the IFW process of a Ni-based superalloy and reveal the omnidirectional thermo-mechanical coupling mechanism of the friction interface.The numerical model successfully simulated the deceleration,deformation processes,and peak torsional moments in IFW and captured the evolution of temperature,contact pressure,and stress.The simulated results were validated through measured thermal history,optical macrography,and axial shortening.The results indicated that interfacial friction heat was the primary heat source,and plastic deformation energy only accounted for 4%of the total.The increase in initial rotational speed and friction pressure elevated the peak temperature,reaching a maximum of 1525.5K at an initial rotational speed of 2000 r/min and friction pressure of 400 MPa.The interface heat generation could form an axial temperature gradient exceeding 320K/mm.The radial inhomogeneities of heat generation and temperature were manifested in a concentric ring distribution with maximum heat flux and temperature ranging from 2/5 to 2/3 radius.The radial inhomogeneities were caused by increasing linear velocity along the radius and an opposite distribution of contact pressure,which could reach 1.7 times the set pressure at the center.The circumferential inhomogeneity of thermomechanical distribution during rotary friction welding was revealed for the first time,benefiting from the 3D model.The deflection and transformation of distribution in contact pressure and Mises stress were indicators of plastic deformation and transition of quasi-steady state welding.The critical Mises stress was 0.5 times the friction pressure in this study.The presented modeling provides a reliable insight into the thermo-mechanical coupling mechanism of IFW and lays a solid foundation for predicting the microstructures and mechanical properties of inertia friction welded joints.展开更多
Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to re...Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO_(2)/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO_(2)/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO_(2)/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance.展开更多
To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing m...To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions.展开更多
Climate change brings new challenges to the sustainable development of agriculture in the new era.Accurately grasping the patterns of climate change impacts on agricultural systems is crucial for ensuring agricultural...Climate change brings new challenges to the sustainable development of agriculture in the new era.Accurately grasping the patterns of climate change impacts on agricultural systems is crucial for ensuring agricultural sustainability and food security.Taking the Loess Plateau(LP),China as an example,this study used a coupling coordination degree model and spatial autocorrelation analysis to portray the spatial and temporal features of crop-cropland coupling relationship from 2000 to 2020 and explored the impact law of climate change through geographically and temporally weighted regression(GTWR).The results were as follows:1)the crop-cropland coupling coordination degree of the LP showed a gradual upward trend from 2000 to 2020,forming a spatial pattern with lower values in the central region and higher values in the surrounding areas.2)There was a positive correlation in the spatial distribution of cropcropland coupling coordination degree in the LP from 2000 to 2020,and the high value-low value(H-L)and low value-low value(L-L)agglomerations continued to expand eastward,while the spatial and temporal evolution of the high value-high value(H-H)and low value-high value(L-H)agglomerations was not obvious.3)The impacts of climatic elements on crop-cropland coupling coordination degree in the LP showed strong heterogeneity in time scales.The inhibitory impacts of summer days(SU)and frost days(FD)accounted for a higher proportion,while the annual average temperature(TEM)had both promoting and inhibiting impacts.The impacts proportion and intensity of extreme heavy precipitation day(R25),continuous drought days(CDD),and annual precipitation(PRE)all experienced significant changes.4)In space,the impacts of SU and FD on the crop-cropland coupling coordination degree varied with latitude and altitude.The adaptability of the LP to R25 gradually strengthened,and the extensions of CDD and increase of PRE led to the increasing inhibition beyond the eastern region of LP,and TEM showed a promoting impact in the Fenwei Plain.As an important grainproducing area in China,the LP should actively deal with the impacts of climate change on the crop-cropland coupling relationship,vigorously safeguard food security,and promote sustainable agricultural development.展开更多
This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker...This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine(CMA^(+))cation,which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations,compared to the rigid phenethyl methylamine(PEA^(+))analog.It demonstrates a significantly lower non-radiative recombination rate,even though the two types of bulky cations have similar chemical passivation effects on perovskite,which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation.The resulting PSCs achieve an exceptional power conversion efficiency(PCE)of 25.5%with a record-high opencircuit voltage(V_(OC))of 1.20 V for narrow bandgap perovskite(FAPbI_(3)).The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.展开更多
This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation i...This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent.展开更多
Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo...Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.展开更多
BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To e...BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs.展开更多
Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations o...Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed.展开更多
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h...Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.展开更多
In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct pi...In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm.展开更多
Plasma as the fourth state of matter has attracted great attention for material surface modification,which could induce changes in material microscopic factors,such as defects,phase transitions,crystallinity,and so on...Plasma as the fourth state of matter has attracted great attention for material surface modification,which could induce changes in material microscopic factors,such as defects,phase transitions,crystallinity,and so on.However,the interactions among those microscopic factors and regulation mechanism of macroscopic properties have rarely been investigated.Two-dimensional(2D)transition metal dichalcogenide with tunable structure and phase is one of the most promising electromagnetic wave(EMW)absorbers,which provides a favorable platform for systematically studying the dynamic coupling of its microscopic factors.Herein,we constructed a NaBH_(4) solution-assisted Ar plasma method to modify the 2H-MoS_(2)and 1T-WS_(2)for exploring the regulation mechanism of microscopic factors.For MoS_(2)and WS_(2),NaBH_(4) solution-assisted Ar plasma treatment behaves with different effects on dielectric responses,realizing dynamic coupling of material microscopic factors to collaboratively promote EM losses coupling.Consequently,the MS-D3-0.5(MoS_(2),3 kV voltage,0.5 mol L^(-1)NaBH_(4) solution)displays an optimum effective absorption bandwidth of 8.01 GHz,which is 319.4%more than that of MS-raw sample.This study not only reveals the novel mechanism of plasma induced dynamic coupling of microscopic factors for EMW dissipation,but also presents a new method of plasma-dominated surface modification to optimize the EMW absorption performance.展开更多
Electrochemical C-C and C-N coupling reactions with the conversion of abundant and inexpensive small molecules,such as CO_(2) and nitrogencontaining species,are considered a promising route for increasing the value of...Electrochemical C-C and C-N coupling reactions with the conversion of abundant and inexpensive small molecules,such as CO_(2) and nitrogencontaining species,are considered a promising route for increasing the value of CO_(2) reduction products.The development of high-performance catalysts is the key to the both electrocatalytic reactions.In this review,we present a systematic summary of the reaction systems for electrocatalytic CO_(2) reduction,along with the coupling mechanisms of C-C and C-N bonds over outstanding electrocatalytic materials recently developed.The key intermediate species and reaction pathways related to the coupling as well as the catalyst-structure relationship will be also discussed,aiming to provide insights and guidance for designing efficient CO_(2) reduction systems.展开更多
We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical la...We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical laws.The result of our efforts is a formula that captures the expansive panorama of the distribution of the strong coupling constant across the entire energy range.展开更多
In this study,Kagome superconductors,i.e.,CsV_(3)Sb_(5)single crystals and its Ta-doped variant,Cs(V_(0.86)Ta_(0.14))_(3)Sb_(5),were studied in detail via specific heat measurements.Results revealed that the charge de...In this study,Kagome superconductors,i.e.,CsV_(3)Sb_(5)single crystals and its Ta-doped variant,Cs(V_(0.86)Ta_(0.14))_(3)Sb_(5),were studied in detail via specific heat measurements.Results revealed that the charge density wave(CDW)was suppressed and the superconducting transition temperature(Tc)considerably increased from 2.8 to 4.6K upon Ta doping.The electronic specific heat of CsV_(3)Sb_(5)was fitted with a model comprising an s-wave gap and a highly anisotropic extended s-wave gap,where 2Δ/kBTc was smaller than the weak coupling limit of 3.5.Cs(V_(0.86)Ta_(0.14))_(3)Sb_(5) exhibited two isotropic s-wave gaps and yielded a larger gap of 2Δ/kBTc=5.04,indicating a significant enhancement in superconducting coupling.This evolution was attributed to the increased density of states near the Fermi level released by CDW gap suppression.These findings demonstrated that Ta doping enhanced superconducting coupling and variation of gap structure in CsV_(3)Sb_(5).展开更多
Ullmann coupling is a powerful and versatile C-C bond formation re-action widely used in the synthesis of various organic intermediates[1].Aryl chlorides are considered ideal substrates due to their low cost and easy ...Ullmann coupling is a powerful and versatile C-C bond formation re-action widely used in the synthesis of various organic intermediates[1].Aryl chlorides are considered ideal substrates due to their low cost and easy availability.However,the activation of aryl chlorides requires higher temperatures,as the dissociation energy of C-Cl bonds is high[2].展开更多
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically...Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.展开更多
The chimera states underlying many realistic dynamical processes have attracted ample attention in the area of dynamical systems.Here, we generalize the Kuramoto model with nonlocal coupling incorporating higher-order...The chimera states underlying many realistic dynamical processes have attracted ample attention in the area of dynamical systems.Here, we generalize the Kuramoto model with nonlocal coupling incorporating higher-order interactions encoded with simplicial complexes.Previous works have shown that higher-order interactions promote coherent states.However, we uncover the fact that the introduced higher-order couplings can significantly enhance the emergence of the incoherent state.Remarkably, we identify that the chimera states arise as a result of multi-attractors in dynamic states.Importantly, we review that the increasing higher-order interactions can significantly shape the emergent probability of chimera states.All the observed results can be well described in terms of the dimension reduction method.This study is a step forward in highlighting the importance of nonlocal higher-order couplings, which might provide control strategies for the occurrence of spatial-temporal patterns in networked systems.展开更多
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.
基金financially supported by the National Natural Science Foundation of China(Nos.42272153 and 42472195)the Research Fund of PetroChina Tarim Oilfield Company(No.671023060003)the Research Fund of China National Petroleum Corporation Limited(No.2023ZZ16YJ04).
文摘Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3404904)。
文摘The coupling between heat and pressure is the kernel of inertia friction welding(IFW)and is still not fully understood.A novel 3D fully coupled finite element model based on a plastic friction pair was developed to simulate the IFW process of a Ni-based superalloy and reveal the omnidirectional thermo-mechanical coupling mechanism of the friction interface.The numerical model successfully simulated the deceleration,deformation processes,and peak torsional moments in IFW and captured the evolution of temperature,contact pressure,and stress.The simulated results were validated through measured thermal history,optical macrography,and axial shortening.The results indicated that interfacial friction heat was the primary heat source,and plastic deformation energy only accounted for 4%of the total.The increase in initial rotational speed and friction pressure elevated the peak temperature,reaching a maximum of 1525.5K at an initial rotational speed of 2000 r/min and friction pressure of 400 MPa.The interface heat generation could form an axial temperature gradient exceeding 320K/mm.The radial inhomogeneities of heat generation and temperature were manifested in a concentric ring distribution with maximum heat flux and temperature ranging from 2/5 to 2/3 radius.The radial inhomogeneities were caused by increasing linear velocity along the radius and an opposite distribution of contact pressure,which could reach 1.7 times the set pressure at the center.The circumferential inhomogeneity of thermomechanical distribution during rotary friction welding was revealed for the first time,benefiting from the 3D model.The deflection and transformation of distribution in contact pressure and Mises stress were indicators of plastic deformation and transition of quasi-steady state welding.The critical Mises stress was 0.5 times the friction pressure in this study.The presented modeling provides a reliable insight into the thermo-mechanical coupling mechanism of IFW and lays a solid foundation for predicting the microstructures and mechanical properties of inertia friction welded joints.
基金the support provided by the National Natural Science Foundation of China(Grant Nos.52278336 and 42302032)Guangdong Basic and Applied Research Foundation(Grant Nos.2023B1515020061).
文摘Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO_(2)/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO_(2)/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO_(2)/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance.
基金financially supported by the Innovation Fund Research Project of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK202201)。
文摘To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions.
基金Under the auspices of Major Program of National Natural Science Foundation of China(No.42293271)Alliance of International Science Organizations(No.ANSO-PA-2023-16)。
文摘Climate change brings new challenges to the sustainable development of agriculture in the new era.Accurately grasping the patterns of climate change impacts on agricultural systems is crucial for ensuring agricultural sustainability and food security.Taking the Loess Plateau(LP),China as an example,this study used a coupling coordination degree model and spatial autocorrelation analysis to portray the spatial and temporal features of crop-cropland coupling relationship from 2000 to 2020 and explored the impact law of climate change through geographically and temporally weighted regression(GTWR).The results were as follows:1)the crop-cropland coupling coordination degree of the LP showed a gradual upward trend from 2000 to 2020,forming a spatial pattern with lower values in the central region and higher values in the surrounding areas.2)There was a positive correlation in the spatial distribution of cropcropland coupling coordination degree in the LP from 2000 to 2020,and the high value-low value(H-L)and low value-low value(L-L)agglomerations continued to expand eastward,while the spatial and temporal evolution of the high value-high value(H-H)and low value-high value(L-H)agglomerations was not obvious.3)The impacts of climatic elements on crop-cropland coupling coordination degree in the LP showed strong heterogeneity in time scales.The inhibitory impacts of summer days(SU)and frost days(FD)accounted for a higher proportion,while the annual average temperature(TEM)had both promoting and inhibiting impacts.The impacts proportion and intensity of extreme heavy precipitation day(R25),continuous drought days(CDD),and annual precipitation(PRE)all experienced significant changes.4)In space,the impacts of SU and FD on the crop-cropland coupling coordination degree varied with latitude and altitude.The adaptability of the LP to R25 gradually strengthened,and the extensions of CDD and increase of PRE led to the increasing inhibition beyond the eastern region of LP,and TEM showed a promoting impact in the Fenwei Plain.As an important grainproducing area in China,the LP should actively deal with the impacts of climate change on the crop-cropland coupling relationship,vigorously safeguard food security,and promote sustainable agricultural development.
基金supported by the National Natural Science Foundation of China(U21A20331,81903743,22005322,22279151,and 22275004)National Science Fund for Distinguished Young Scholars(21925506).
文摘This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine(CMA^(+))cation,which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations,compared to the rigid phenethyl methylamine(PEA^(+))analog.It demonstrates a significantly lower non-radiative recombination rate,even though the two types of bulky cations have similar chemical passivation effects on perovskite,which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation.The resulting PSCs achieve an exceptional power conversion efficiency(PCE)of 25.5%with a record-high opencircuit voltage(V_(OC))of 1.20 V for narrow bandgap perovskite(FAPbI_(3)).The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.
基金National Key Research and Development Program of China(2021YFC2902103)National Natural Science Foundation of China(51934001)Fundamental Research Funds for the Central Universities(2023JCCXLJ02).
文摘This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent.
基金supported by the Australian Research Council (DP200101353)。
文摘Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.
基金Supported by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation,No.GZC20231088President Foundation of The Third Affiliated Hospital of Southern Medical University,China,No.YP202210.
文摘BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs.
基金financially supported by the National Natural Science Foundation of China(Nos.52130404 and 52304121)the Fundamental Research Funds for the Central Universities(No.FRF-TP-22-112A1)+4 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021A 1515110161)the ANID(Chile)through Fondecyt project 1210610the Centro de Modelamiento Matemático(BASAL funds for Centers of Excellence FB210005)the CRHIAM project ANID/FONDAP/15130015 and ANID/FONDAP/1523A0001the Anillo project ANID/ACT210030。
文摘Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed.
基金the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003).
文摘Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings.
基金the Japan Society for the Promotion of Science,KAKENHI Grant Nos.20H04199 and 23H00475.
文摘In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm.
基金support was provided by the National Science Foundation of China(Grants nos.51872238,52074227 and 21806129)the Fundamental Research Funds for the Central Universities(Nos.3102018zy045 and 3102019AX11)the Natural Science Basic Research Plan in Shaanxi Province of China(Nos.2017JQ5116 and 2020JM-118).
文摘Plasma as the fourth state of matter has attracted great attention for material surface modification,which could induce changes in material microscopic factors,such as defects,phase transitions,crystallinity,and so on.However,the interactions among those microscopic factors and regulation mechanism of macroscopic properties have rarely been investigated.Two-dimensional(2D)transition metal dichalcogenide with tunable structure and phase is one of the most promising electromagnetic wave(EMW)absorbers,which provides a favorable platform for systematically studying the dynamic coupling of its microscopic factors.Herein,we constructed a NaBH_(4) solution-assisted Ar plasma method to modify the 2H-MoS_(2)and 1T-WS_(2)for exploring the regulation mechanism of microscopic factors.For MoS_(2)and WS_(2),NaBH_(4) solution-assisted Ar plasma treatment behaves with different effects on dielectric responses,realizing dynamic coupling of material microscopic factors to collaboratively promote EM losses coupling.Consequently,the MS-D3-0.5(MoS_(2),3 kV voltage,0.5 mol L^(-1)NaBH_(4) solution)displays an optimum effective absorption bandwidth of 8.01 GHz,which is 319.4%more than that of MS-raw sample.This study not only reveals the novel mechanism of plasma induced dynamic coupling of microscopic factors for EMW dissipation,but also presents a new method of plasma-dominated surface modification to optimize the EMW absorption performance.
基金support from the Tangshan Talent Funding Project(Grant No.A202202007)National Natural Science Foundation of China(Grant Nos.22102136 and 21703065)+2 种基金Natural Science Foundation of Hebei Province(Grant Nos.B2018209267 and E2022209039)Natural Science Foundation of Hubei Province(Grant No.2022CFB1001)Department of Education of Hubei Province(Grant No.Q20221701).
文摘Electrochemical C-C and C-N coupling reactions with the conversion of abundant and inexpensive small molecules,such as CO_(2) and nitrogencontaining species,are considered a promising route for increasing the value of CO_(2) reduction products.The development of high-performance catalysts is the key to the both electrocatalytic reactions.In this review,we present a systematic summary of the reaction systems for electrocatalytic CO_(2) reduction,along with the coupling mechanisms of C-C and C-N bonds over outstanding electrocatalytic materials recently developed.The key intermediate species and reaction pathways related to the coupling as well as the catalyst-structure relationship will be also discussed,aiming to provide insights and guidance for designing efficient CO_(2) reduction systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.12065014,12047501,12247101,and 12335001)the Natural Science Foundation of Gansu Province(Grant No.22JR5RA266)+5 种基金the West Light Foundation of Chinese Academy of Sciences(Grant No.21JR7RA201)supported by the China National Funds for Distinguished Young Scientists(Grant No.11825503)the National Key Research and Development Program of China(Grant No.2020YFA0406400)the 111 Project(Grant No.B20063)the fundamental Research Funds for the Central Universitiesthe Project for Top-Notch Innovative Talents of Gansu province。
文摘We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical laws.The result of our efforts is a formula that captures the expansive panorama of the distribution of the strong coupling constant across the entire energy range.
基金National Key R&D Program of China(Grant Nos.2022YFA1403201,2022YFA1403400,and 2020YFA0308800)National Natural Science Foundation of China(Grant Nos.11927809,12061131001,11974171,92065109,and 12204231)Fundamental Research Funds for the Central Universities(Grant No.020414380208).
文摘In this study,Kagome superconductors,i.e.,CsV_(3)Sb_(5)single crystals and its Ta-doped variant,Cs(V_(0.86)Ta_(0.14))_(3)Sb_(5),were studied in detail via specific heat measurements.Results revealed that the charge density wave(CDW)was suppressed and the superconducting transition temperature(Tc)considerably increased from 2.8 to 4.6K upon Ta doping.The electronic specific heat of CsV_(3)Sb_(5)was fitted with a model comprising an s-wave gap and a highly anisotropic extended s-wave gap,where 2Δ/kBTc was smaller than the weak coupling limit of 3.5.Cs(V_(0.86)Ta_(0.14))_(3)Sb_(5) exhibited two isotropic s-wave gaps and yielded a larger gap of 2Δ/kBTc=5.04,indicating a significant enhancement in superconducting coupling.This evolution was attributed to the increased density of states near the Fermi level released by CDW gap suppression.These findings demonstrated that Ta doping enhanced superconducting coupling and variation of gap structure in CsV_(3)Sb_(5).
基金supported by the National Key Research and Deve lopment Program of China(2020YFA0211004)the National Natural Science Foundation of China(22376143,22176128,22236005)+4 种基金Innovation Program of ShanghaiMunicipal Education Commission(2023ZKZD50)Program of Shanghai Academic Research Leader(21XD1422800)Shanghai Government(22dz1205400,23520711100),Chinese Education Ministry Key Laboratory and International Joint Laboratory on Resource Chemistry,and Shanghai Eastern Scholar Programthe'111 Innovation and Talent Recruitment Base on Photochemical and Energy Materials'(No.D18020)Shanghai Engineering Research Center of Green Energy Chemical Engineering(18DZ2254200)and Shanghai Frontiers Science Center of Biomimetic Catalysis.
文摘Ullmann coupling is a powerful and versatile C-C bond formation re-action widely used in the synthesis of various organic intermediates[1].Aryl chlorides are considered ideal substrates due to their low cost and easy availability.However,the activation of aryl chlorides requires higher temperatures,as the dissociation energy of C-Cl bonds is high[2].
文摘Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.
基金Project supported by the National Natural Science Foundation of China (Grants Nos.12375031 and 11905068)the Natural Science Foundation of Fujian Province, China (Grant No.2023J01113)the Scientific Research Funds of Huaqiao University (Grant No.ZQN-810)。
文摘The chimera states underlying many realistic dynamical processes have attracted ample attention in the area of dynamical systems.Here, we generalize the Kuramoto model with nonlocal coupling incorporating higher-order interactions encoded with simplicial complexes.Previous works have shown that higher-order interactions promote coherent states.However, we uncover the fact that the introduced higher-order couplings can significantly enhance the emergence of the incoherent state.Remarkably, we identify that the chimera states arise as a result of multi-attractors in dynamic states.Importantly, we review that the increasing higher-order interactions can significantly shape the emergent probability of chimera states.All the observed results can be well described in terms of the dimension reduction method.This study is a step forward in highlighting the importance of nonlocal higher-order couplings, which might provide control strategies for the occurrence of spatial-temporal patterns in networked systems.