On the production and understanding of the idioms, cognitive linguists put forward totally different opinions from the traditional linguistic theory. One enduring belief about the arbitrariness of English idioms is th...On the production and understanding of the idioms, cognitive linguists put forward totally different opinions from the traditional linguistic theory. One enduring belief about the arbitrariness of English idioms is that they are non-componential, because their idiomatic meanings are not deducible from the meaning of their individual parts. According to"conceptual metaphor"theory, which are proposed by cognitive linguists Lakoff and Johnson: Metaphor is a mapping that from one more familiar, more easily understanding source domain to a less familiar, more difficult target domain. The paper studies on the idiomaticity and the motivation of the idioms based on the"conceptual metaphor"theory from the perspective of cognitive linguistics.展开更多
In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method ...In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.展开更多
Time domain averaging(TDA) is essentially a comb filter,it cannot extract the specified harmonics which may be caused by some faults,such as gear eccentric.Meanwhile,TDA always suffers from period cutting error(PCE) t...Time domain averaging(TDA) is essentially a comb filter,it cannot extract the specified harmonics which may be caused by some faults,such as gear eccentric.Meanwhile,TDA always suffers from period cutting error(PCE) to different extent.Several improved TDA methods have been proposed,however they cannot completely eliminate the waveform reconstruction error caused by PCE.In order to overcome the shortcomings of conventional methods,a flexible time domain averaging(FTDA) technique is established,which adapts to the analyzed signal through adjusting each harmonic of the comb filter.In this technique,the explicit form of FTDA is first constructed by frequency domain sampling.Subsequently,chirp Z-transform(CZT) is employed in the algorithm of FTDA,which can improve the calculating efficiency significantly.Since the signal is reconstructed in the continuous time domain,there is no PCE in the FTDA.To validate the effectiveness of FTDA in the signal de-noising,interpolation and harmonic reconstruction,a simulated multi-components periodic signal that corrupted by noise is processed by FTDA.The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively.Moreover,it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones.Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear,respectively.It is shown that the FTDA can identify the direction and severity of the eccentricity gear,and further enhances the amplitudes of impulses by 35%.The proposed technique not only solves the problem of PCE,but also provides a useful tool for the fault symptom extraction of rotating machinery.展开更多
The simulation composability is one of important development directions in simulation domain. The key issue is the semantic composability. Currently there is no feasible approach to realize the effective semantic repr...The simulation composability is one of important development directions in simulation domain. The key issue is the semantic composability. Currently there is no feasible approach to realize the effective semantic representation and composition of simulation components. Based on domain knowledge and Web Ontology Language (OWL), this paper proposes a composable simulation framework, which includes conceptual model semantics, model components semantics, model framework semantics, and simulation scenario semantics. Additionally, all the semantics are utilized in the model components development process, the simulation system development process, and the simulation system execution process respectively. The consistency checking among those semantics is also proposed. The detailed mapping processes between different semantic models can help to build the domain ontology driven composable simulation system.展开更多
Graphene is a new promising candidate for application in radio-frequency (RF) electronics due to its excellent elec- tronic properties such as ultrahigh carrier mobility, large threshold current density, and high sa...Graphene is a new promising candidate for application in radio-frequency (RF) electronics due to its excellent elec- tronic properties such as ultrahigh carrier mobility, large threshold current density, and high saturation velocity. Recently, much progress has been made in the graphene-based RF field-effect transistors (RF-FETs). Here we present for the first time the high-performance top-gated RF transistors using millimeter-scale single graphene domain on a SiO2/Si substrate through a conventional microfabrication process. A maximum cut-off frequency of 178 GHz and a peak maximum os- cillation frequency of 35 GHz are achieved in the graphene-domain-based FET with a gate length of 50 nm and 150 nm, respectively. This work shows that the millimeter-scale single graphene domain has great potential applications in RF devices and circuits.展开更多
文摘On the production and understanding of the idioms, cognitive linguists put forward totally different opinions from the traditional linguistic theory. One enduring belief about the arbitrariness of English idioms is that they are non-componential, because their idiomatic meanings are not deducible from the meaning of their individual parts. According to"conceptual metaphor"theory, which are proposed by cognitive linguists Lakoff and Johnson: Metaphor is a mapping that from one more familiar, more easily understanding source domain to a less familiar, more difficult target domain. The paper studies on the idiomaticity and the motivation of the idioms based on the"conceptual metaphor"theory from the perspective of cognitive linguistics.
基金National Key Technologies R&D Program (2006BA103A16)Fundamental Research Project of COSTIND (K1203020507, B2120061326)
文摘In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.
基金supported by National Natural Science Foundation of China(Grant Nos.5112502251005173)+1 种基金PhD Programs Foundation of Ministry of Education of China(Grant No.20110201110025)the Fundamental Research Funds for the Central Universities of China
文摘Time domain averaging(TDA) is essentially a comb filter,it cannot extract the specified harmonics which may be caused by some faults,such as gear eccentric.Meanwhile,TDA always suffers from period cutting error(PCE) to different extent.Several improved TDA methods have been proposed,however they cannot completely eliminate the waveform reconstruction error caused by PCE.In order to overcome the shortcomings of conventional methods,a flexible time domain averaging(FTDA) technique is established,which adapts to the analyzed signal through adjusting each harmonic of the comb filter.In this technique,the explicit form of FTDA is first constructed by frequency domain sampling.Subsequently,chirp Z-transform(CZT) is employed in the algorithm of FTDA,which can improve the calculating efficiency significantly.Since the signal is reconstructed in the continuous time domain,there is no PCE in the FTDA.To validate the effectiveness of FTDA in the signal de-noising,interpolation and harmonic reconstruction,a simulated multi-components periodic signal that corrupted by noise is processed by FTDA.The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively.Moreover,it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones.Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear,respectively.It is shown that the FTDA can identify the direction and severity of the eccentricity gear,and further enhances the amplitudes of impulses by 35%.The proposed technique not only solves the problem of PCE,but also provides a useful tool for the fault symptom extraction of rotating machinery.
文摘The simulation composability is one of important development directions in simulation domain. The key issue is the semantic composability. Currently there is no feasible approach to realize the effective semantic representation and composition of simulation components. Based on domain knowledge and Web Ontology Language (OWL), this paper proposes a composable simulation framework, which includes conceptual model semantics, model components semantics, model framework semantics, and simulation scenario semantics. Additionally, all the semantics are utilized in the model components development process, the simulation system development process, and the simulation system execution process respectively. The consistency checking among those semantics is also proposed. The detailed mapping processes between different semantic models can help to build the domain ontology driven composable simulation system.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00600,2011CBA00601,and 2013CBA01604)the National Natural Science Foundation of China(Grant No.60625403)the National Science and Technology Major Project of China(Grant No.2011ZX02707)
文摘Graphene is a new promising candidate for application in radio-frequency (RF) electronics due to its excellent elec- tronic properties such as ultrahigh carrier mobility, large threshold current density, and high saturation velocity. Recently, much progress has been made in the graphene-based RF field-effect transistors (RF-FETs). Here we present for the first time the high-performance top-gated RF transistors using millimeter-scale single graphene domain on a SiO2/Si substrate through a conventional microfabrication process. A maximum cut-off frequency of 178 GHz and a peak maximum os- cillation frequency of 35 GHz are achieved in the graphene-domain-based FET with a gate length of 50 nm and 150 nm, respectively. This work shows that the millimeter-scale single graphene domain has great potential applications in RF devices and circuits.