期刊文献+
共找到18,589篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer 被引量:1
1
作者 Changfeng Feng Chunping Wang +2 位作者 Dongdong Zhang Renke Kou Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3993-4013,共21页
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman... Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection. 展开更多
关键词 UAV images TRANSFORMER dense small object detection
下载PDF
结合强化学习和DenseNet的远程监督关系抽取模型
2
作者 冯轩闻 袁新瑞 +1 位作者 孙霞 高厦 《计算机应用与软件》 北大核心 2024年第2期138-144,208,共8页
关系抽取是信息获取领域的重要任务之一。为了更好地解决数据集中的噪声问题和句子深层次语义表征,提出一种结合强化学习和密集连接卷积神经网络的远程监督关系抽取模型,模型分为句子选择器和关系分类器。在句子选择器中,基于强化学习... 关系抽取是信息获取领域的重要任务之一。为了更好地解决数据集中的噪声问题和句子深层次语义表征,提出一种结合强化学习和密集连接卷积神经网络的远程监督关系抽取模型,模型分为句子选择器和关系分类器。在句子选择器中,基于强化学习的方法能有效过滤噪声语句,提升输入数据质量;在关系分类器中,通过DenseNet深层网络中的特征复用,学习更丰富的语义特征。在NYT数据集上的实验结果表明句子选择器能够有效过滤噪声,该模型的关系抽取性能相比基线模型得到有效提高。 展开更多
关键词 关系抽取 远程监督 强化学习 卷积神经网络 密集连接
下载PDF
融合DenseNet和注意力机制的永磁定位方法 被引量:1
3
作者 郭鹏飞 戴厚德 +2 位作者 杨千慧 姚瀚晨 黄巧园 《传感器与微系统》 CSCD 北大核心 2024年第2期37-40,共4页
基于永磁体的定位技术为运动跟踪、机器人定位导航和医疗器械跟踪领域提供了一种无线、高精度、低成本的解决方案。为解决基于磁偶极子模型和LM(Levenberg-Marquardt)算法的定位方法过于依赖初始值、计算耗时受限的问题,利用基于磁偶极... 基于永磁体的定位技术为运动跟踪、机器人定位导航和医疗器械跟踪领域提供了一种无线、高精度、低成本的解决方案。为解决基于磁偶极子模型和LM(Levenberg-Marquardt)算法的定位方法过于依赖初始值、计算耗时受限的问题,利用基于磁偶极子模型先验知识的约束条件构造惩罚函数,提出一种融合密集卷积网络(DenseNet)和注意力机制(SE Block)的永磁定位方法。实验结果表明:在48~118 mm的高度范围内,本文方法定位精度可达(1.79±1.05)mm和1.12°±0.53°,平均计算耗时降低至1.6 ms,提升了永磁定位系统计算的速率和稳定性。 展开更多
关键词 磁定位 深度学习 密集卷积网络 注意力机制
下载PDF
A quantum blind signature scheme based on dense coding for non-entangled states
4
作者 邢柯 殷爱菡 薛勇奇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期220-228,共9页
In some schemes, quantum blind signatures require the use of difficult-to-prepare multiparticle entangled states. By considering the communication overhead, quantum operation complexity, verification efficiency and ot... In some schemes, quantum blind signatures require the use of difficult-to-prepare multiparticle entangled states. By considering the communication overhead, quantum operation complexity, verification efficiency and other relevant factors in practical situations, this article proposes a non-entangled quantum blind signature scheme based on dense encoding. The information owner utilizes dense encoding and hash functions to blind the information while reducing the use of quantum resources. After receiving particles, the signer encrypts the message using a one-way function and performs a Hadamard gate operation on the selected single photon to generate the signature. Then the verifier performs a Hadamard gate inverse operation on the signature and combines it with the encoding rules to restore the message and complete the verification.Compared with some typical quantum blind signature protocols, this protocol has strong blindness in privacy protection,and higher flexibility in scalability and application. The signer can adjust the signature operation according to the actual situation, which greatly simplifies the complexity of the signature. By simultaneously utilizing the secondary distribution and rearrangement of non-entangled quantum states, a non-entangled quantum state representation of three bits of classical information is achieved, reducing the use of a large amount of quantum resources and lowering implementation costs. This improves both signature verification efficiency and communication efficiency while, at the same time, this scheme meets the requirements of unforgeability, non-repudiation, and prevention of information leakage. 展开更多
关键词 quantum blind signature dense coding non-entanglement Hadamard gate
下载PDF
Vehicle Abnormal Behavior Detection Based on Dense Block and Soft Thresholding
5
作者 Yuanyao Lu Wei Chen +2 位作者 Zhanhe Yu Jingxuan Wang Chaochao Yang 《Computers, Materials & Continua》 SCIE EI 2024年第6期5051-5066,共16页
With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical chall... With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions.Current research on detecting abnormal traffic behaviors is still nascent,with significant room for improvement in recognition accuracy.To address this,this research has developed a new model for recognizing abnormal traffic behaviors.This model employs the R3D network as its core architecture,incorporating a dense block to facilitate feature reuse.This approach not only enhances performance with fewer parameters and reduced computational demands but also allows for the acquisition of new features while simplifying the overall network structure.Additionally,this research integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions,optimizing the relevance of features for the task at hand.For temporal analysis,a Bi-LSTM layer is utilized to extract and learn from time-based data nuances.This research conducted a series of comparative experiments using the UCF-Crime dataset,achieving a notable accuracy of 89.30%on our test set.Our results demonstrate that our model not only operates with fewer parameters but also achieves superior recognition accuracy compared to previous models. 展开更多
关键词 Vehicle abnormal behavior deep learning ResNet dense block soft thresholding
下载PDF
MSADCN:Multi-Scale Attentional Densely Connected Network for Automated Bone Age Assessment
6
作者 Yanjun Yu Lei Yu +2 位作者 Huiqi Wang Haodong Zheng Yi Deng 《Computers, Materials & Continua》 SCIE EI 2024年第2期2225-2243,共19页
Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate resul... Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods. 展开更多
关键词 Bone age assessment deep learning attentional densely connected network muti-scale
下载PDF
Attention-Based Residual Dense Shrinkage Network for ECG Denoising
7
作者 Dengyong Zhang Minzhi Yuan +3 位作者 Feng Li Lebing Zhang Yanqiang Sun Yiming Ling 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2809-2824,共16页
Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affec... Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affectsthe subsequent pathological analysis.Therefore,the effective removal of the noise from ECG signals has becomea top priority in cardiac diagnostic research.Aiming at the problem of incomplete signal shape retention andlow signal-to-noise ratio(SNR)after denoising,a novel ECG denoising network,named attention-based residualdense shrinkage network(ARDSN),is proposed in this paper.Firstly,the shallow ECG characteristics are extractedby a shallow feature extraction network(SFEN).Then,the residual dense shrinkage attention block(RDSAB)isused for adaptive noise suppression.Finally,feature fusion representation(FFR)is performed on the hierarchicalfeatures extracted by a series of RDSABs to reconstruct the de-noised ECG signal.Experiments on the MIT-BIHarrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resistthe interference of different sources of noise on the ECG signal. 展开更多
关键词 Electrocardiogram signal denoising signal-to-noise ratio attention-based residual dense shrinkage network MIT-BIH
下载PDF
Tomato detection method using domain adaptive learning for dense planting environments
8
作者 LI Yang HOU Wenhui +4 位作者 YANG Huihuang RAO Yuan WANG Tan JIN Xiu ZHU Jun 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期134-145,共12页
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ... This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits. 展开更多
关键词 PLANTS MODELS domain adaptive tomato detection illumination variation semi-supervised learning dense planting environments
下载PDF
The seismicity in the middle section of the Altyn Tagh Fault system revealed by a dense nodal seismic array
9
作者 Shi Yao Tao Xu +4 位作者 Yingquan Sang Lingling Ye Tingwei Yang Chenglong Wu Minghui Zhang 《Earthquake Research Advances》 CSCD 2024年第3期7-15,共9页
The left-lateral Altyn Tagh Fault(ATF) system is the northern boundary of the Qinghai-Xizang Plateau, separating the Tarim Basin and the Qaidam Basin. The middle section of ATF has not recorded any large earthquakes s... The left-lateral Altyn Tagh Fault(ATF) system is the northern boundary of the Qinghai-Xizang Plateau, separating the Tarim Basin and the Qaidam Basin. The middle section of ATF has not recorded any large earthquakes since1598 AD, so the potential seismic hazard is unclear. We develope an earthquake catalog using continuous waveform data recorded by the Tarim-Altyn-Qaidam dense nodal seismic array from September 17 to November23, 2021 in the middle section of ATF. With the machine learning-based picker, phase association, location, match and locate workflow, we detecte 233 earthquakes with M_L-1–3, far more than 6 earthquakes in the routine catalog. Combining with focal mechanism solutions and the local fault structure, we find that seismic events are clustered along the ATF with strike-slip focal mechanisms and on the southern secondary faults with thrusting focal mechanisms. This overall seismic activity in the middle section of the ATF might be due to the northeastward transpressional motion of the Qinghai-Xizang Plateau block at the western margin of the Qaidam Basin. 展开更多
关键词 Altyn Tagh Fault Machine learning SEISMICITY dense seismic array
下载PDF
基于MTF可视化和改进DenseNet神经网络的电能质量扰动识别算法
10
作者 时帅 陈子文 +3 位作者 黄冬梅 贺琪 孙园 胡伟 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期102-111,共10页
针对传统电能质量扰动(power quality disturbances,PQDs)分类器人工选取特征过程复杂、精细化程度不足的问题,提出一种基于马尔科夫迁移场(Markov translate filed,MTF)可视化和改进密集卷积网络(dense convolu-tional networks,DenseN... 针对传统电能质量扰动(power quality disturbances,PQDs)分类器人工选取特征过程复杂、精细化程度不足的问题,提出一种基于马尔科夫迁移场(Markov translate filed,MTF)可视化和改进密集卷积网络(dense convolu-tional networks,DenseNet)的PQDs识别新方法。首先将一维PQD信号经MTF映射为二维图像,接着将图像输入到具有新型通道注意力机制的改进DenseNet中,最后训练网络自行从海量样本中提取特征,实现PQDs信号的正确识别。算例结果表明:在无噪声和信噪比为20、30 dB情况下,所提改进DenseNet能有效克服传统方法中主观性强、抗噪性能差等特征缺点,可以更好地提取复合PQD特征信息,对复合PQD识别率高。 展开更多
关键词 电能质量扰动 马尔科夫迁移场 可视化 密集卷积网络 通道注意力机制 分类识别
下载PDF
基于改进DenseNet模型的滚动轴承故障诊断
11
作者 雷伟 廖光忠 裴浪 《计算机技术与发展》 2024年第3期207-213,共7页
滚动轴承是机械设备的关键部件,为了检测滚动轴承设备的正常运转并且提高识别轴承故障的准确率,提出一种优化变分模态分解(VMD)结合改进密集神经网络(DenseNet)的故障诊断模型方法。首先,使用多种群差分进化(MPDE)算法以局部极小包络熵... 滚动轴承是机械设备的关键部件,为了检测滚动轴承设备的正常运转并且提高识别轴承故障的准确率,提出一种优化变分模态分解(VMD)结合改进密集神经网络(DenseNet)的故障诊断模型方法。首先,使用多种群差分进化(MPDE)算法以局部极小包络熵为优化搜索的目标函数,对VMD方法中的相关参数进行优化搜索以获取最佳参数组合;然后,使用最佳参数组合优化的VMD方法分解处理原始滚动轴承的故障信号,并得到若干本征模态分量信号(IMFs);最后,通过引入通道注意力模块(MECANet)的改进密集神经网络模型对分解得到的IMF分量信号进行深层故障特征提取与识别,最终完成滚动轴承的故障诊断。实验结果表明:提出的优化VMD结合改进DenseNet模型对滚动轴承故障识别的准确率达到了99.23%,并且对比一些其他常见故障诊断模型的准确率有明显的提升,而且与先进的故障诊断模型对比其准确率存在较小差距,验证了此模型在滚动轴承故障诊断方面的有效性。 展开更多
关键词 滚动轴承 变分模态分解 多种群差分进化 密集神经网络 MECANet 故障诊断
下载PDF
基于DenseNet与PointNet融合算法的三维点云分割
12
作者 吴烈权 周志峰 +1 位作者 时云 任朴林 《应用光学》 CAS 北大核心 2024年第5期982-991,共10页
点云分割对于智能驾驶、物体检测和识别、逆向工程等任务非常重要。PointNet是一种能够直接处理点云数据的方法,近年来在点云分割任务中得到广泛应用,但其分割精度较低,而PointNet++的计算成本又较高。针对以上问题,提出一种融合DenseNe... 点云分割对于智能驾驶、物体检测和识别、逆向工程等任务非常重要。PointNet是一种能够直接处理点云数据的方法,近年来在点云分割任务中得到广泛应用,但其分割精度较低,而PointNet++的计算成本又较高。针对以上问题,提出一种融合DenseNet和PointNet的算法,用于点云分割,并引入三分支混合注意力机制,以提高PointNet在提取局部特征方面的能力。基于密集连接卷积网络(DenseNet)思想,提出用DenseNet-STN和DenseNet-MLP结构来替代PointNet中的空间变换网络(STN)和多层感知机(MLP);同时,使用Add连接代替密集块(DenseBlock)中的Concat连接,以提高对点特征间相关性的准确性,同时不显著增加模型复杂度。DenseNet-PointNet能够提高复杂分类问题的泛化能力,实现对复杂函数更好的逼近,从而提高点云分割的准确率。有效性和消融实验结果表明,本文算法具有良好的性能。点云分割实验结果表明,DenseNet-PointNet在大多数类别中的交并比(IoU)都高于PointNet的IoU,并在部分类别中也高于PointNet++,参数量是PointNet++的47.6%,浮点运算量(FLOPs)是PointNet++的49.1%。实验结果验证了DenseNet-PointNet的可行性和有效性。 展开更多
关键词 点云分割 密集连接卷积网络 PointNet denseNet-PointNet
下载PDF
采用DenseNet模型的AD自动分类方法
13
作者 陈玉思 陈培坤 叶宇光 《宁德师范学院学报(自然科学版)》 2024年第1期65-72,共8页
为研究深度学习算法对阿尔茨海默病分类的准确性,提出密集卷积神经网络方法,对阿尔茨海默病进行分类.利用预处理后的数据训练密集卷积神经网络结构,并分类阿尔茨海默病和认知正常者.测试结果表明,文中方法获得的分类准确率为98.91%,分... 为研究深度学习算法对阿尔茨海默病分类的准确性,提出密集卷积神经网络方法,对阿尔茨海默病进行分类.利用预处理后的数据训练密集卷积神经网络结构,并分类阿尔茨海默病和认知正常者.测试结果表明,文中方法获得的分类准确率为98.91%,分类阿尔茨海默病和轻度认知障碍的准确率为94.54%,准确率较其他算法有一定提升,为阿尔茨海默病的精准分类提供了一种有效的解决方案. 展开更多
关键词 阿尔茨海默病 脑部磁共振成像图像 深度学习 密集的网络
下载PDF
基于ASPP-SCBAM-DenseUnet的高分遥感影像水体提取研究
14
作者 谢育珽 刘萍 +4 位作者 申文明 高宇 郝戍峰 韩昕 李宇昂 《航天返回与遥感》 CSCD 北大核心 2024年第3期92-106,共15页
针对遥感影像水体提取研究存在细小水体和水体边缘等细节信息关注不足的情况,以及水体连通性较差的问题,文章提出基于改进的空洞空间金字塔池化和随机双注意力机制的密集连接U型网络(ASPP-SCBAM-DenseUnet)。文章首先利用Dense Block块... 针对遥感影像水体提取研究存在细小水体和水体边缘等细节信息关注不足的情况,以及水体连通性较差的问题,文章提出基于改进的空洞空间金字塔池化和随机双注意力机制的密集连接U型网络(ASPP-SCBAM-DenseUnet)。文章首先利用Dense Block块组成Unet的编码器和解码器部分,并引入SCBAM注意力机制,减少噪声干扰,提高水体边界分割的准确性;其次,添加ASPP_SCBAM模块,设置不同的空洞率、扩大感受野,结合小型水体的浅层和深层特征,补偿采样过程造成的特征损失;最后,通过结合Dice系数和像素级二元交叉熵的联合损失函数来训练网络,有效地处理因小水体造成的不平衡数据集,这样不仅确保了分割的精度,还能够产生更加平滑和连续的分割边界,从而防止模型出现过拟合或者过度细化的现象。实验结果表明,ASPP-SCBAM-DenseUnet网络模型提取水体的像素准确率、召回率和F1分数分别为94.19%、94.29%和95.15%,加权交并比和均交并比分别为89.02%、88.63%,明显优于Unet、Linknet等语义分割网络,同时,减少了水体误分类和遗漏,优化了水体边缘细节,提高了对细小水体的识别和水体连通性。 展开更多
关键词 密集连接块 注意力机制 语义分割 卫星遥感影像 水体提取
下载PDF
基于DenseNet卷积神经网络的短期风电预测方法
15
作者 殷林飞 蒙雨洁 《综合智慧能源》 CAS 2024年第7期12-20,共9页
风能作为一种清洁、可再生的能源,在能源转型中扮演着至关重要的角色,准确预测风电出力对电力系统的安全高效运行非常重要,然而风速的波动性和随机性,对风电预测带来了挑战。为了提高风电预测的准确性,提出了一种基于DenseNet卷积神经... 风能作为一种清洁、可再生的能源,在能源转型中扮演着至关重要的角色,准确预测风电出力对电力系统的安全高效运行非常重要,然而风速的波动性和随机性,对风电预测带来了挑战。为了提高风电预测的准确性,提出了一种基于DenseNet卷积神经网络的短期风电预测模型。该模型通过精简DenseNet201网络得到了拥有出色的密集连接结构和适当深度、宽度的DenseNet160网络,不仅能缓解训练过程中梯度消失现象,还能通过密集连接将浅层的信息反映到深层,实现深度监督。基于巴西纳塔尔地区378 d的风力数据集,采用DenseNet160网络以及27种算法对未来一天的风力发电情况进行预测。结果表明:DenseNet160网络的平均绝对误差、均方误差以及平均绝对百分误差比其他算法分别降低了至少10.89%,4.98%,8.68%;同时,与使用相同数据集的混合经济模型相比,DenseNet160网络的MAE值小了25.56%。说明该模型能精准地拟合风力发电数据,获得可靠的风力预测结果。 展开更多
关键词 风电预测 可再生能源 denseNet 卷积神经网络 密集连接 梯度消失
下载PDF
基于DSC-DenseNet的流程工业系统故障监测
16
作者 汪凯 亚森江·加入拉 《机床与液压》 北大核心 2024年第7期226-230,共5页
田纳西-伊士曼过程数据高纬度、高耦合,存在数据特征难以提取的问题。为进一步提高流程工业系统中故障监测的识别率,现将一维稠密卷积网络(1D-DenseNet)与深度可分离卷积(DSC)结合,利用DenseNet的高效特征提取能力,并结合DSC减少计算参... 田纳西-伊士曼过程数据高纬度、高耦合,存在数据特征难以提取的问题。为进一步提高流程工业系统中故障监测的识别率,现将一维稠密卷积网络(1D-DenseNet)与深度可分离卷积(DSC)结合,利用DenseNet的高效特征提取能力,并结合DSC减少计算参数、提高诊断效率,以提供基于DSC-DenseNet的故障监测方式。先将数据进行归一化整理,并加入随机种子避免过拟合,随后将处理后的结果作为DSC-DenseNet的输入进行特征提取,然后将输出结果传入全连接层进行故障分类;最后在TEP数据集上进行准确率测试。结果证明:基于DSC-DenseNet的方法能有效分辨故障类型,故障分类准确率达到98.8%。并证明DSC-DenseNet比传统DenseNet有更好的故障识别效果。 展开更多
关键词 稠密连接网络 深度可分离卷积 故障诊断 田纳西伊士曼过程
下载PDF
基于多目标乌鸦搜索算法优化DenseNet图像分类算法研究
17
作者 胡容俊 王正红 《黑龙江科学》 2024年第16期109-112,共4页
图像分类是计算机视觉领域中的关键任务,其目标是将输入的图像分配到预定义的类别中,核心思想是通过学习从图像的局部特征中提取高级抽象表示,使模型能够有效识别并区分不同类别的图像。图像分类已应用于诸多领域,包括医学影像识别、自... 图像分类是计算机视觉领域中的关键任务,其目标是将输入的图像分配到预定义的类别中,核心思想是通过学习从图像的局部特征中提取高级抽象表示,使模型能够有效识别并区分不同类别的图像。图像分类已应用于诸多领域,包括医学影像识别、自动驾驶、安全监控等。但图像分类也存在一些问题,如小样本问题、类别不平衡及对抗攻击等。近年来,随着深度学习的迅速发展,卷积神经网络(CNN)在图像分类任务中取得了显著的效果。设计了一种启发式算法,引入多目标乌鸦搜索算法,解决多目标优化问题,通过实验,与其他先进算法进行比较,验证了优化后的DenseNet在图像分类任务上性能有所提升,可优化卷积神经网络模型在图像分类中的应用。 展开更多
关键词 多目标乌鸦搜索算法 密集卷积网络 特征提取 深度学习 图像分类
下载PDF
经皮扩张式铰刀髓芯减压联合PRO-DENSE可再生骨植骨治疗股骨头坏死的疗效及安全性分析
18
作者 郝志鹏 吴涛 +1 位作者 李晓华 刘永强 《临床误诊误治》 CAS 2024年第6期36-41,共6页
目的探究经皮扩张式铰刀髓芯减压联合PRO-DENSE可再生骨植骨术在股骨头坏死(ONFH)治疗中的应用价值。方法回顾性选取2020年1月1日—2022年1月1日100例ONFH,根据手术方法分为2组各50例。对照组行髓芯减压自体骨植骨术,观察组行经皮扩张... 目的探究经皮扩张式铰刀髓芯减压联合PRO-DENSE可再生骨植骨术在股骨头坏死(ONFH)治疗中的应用价值。方法回顾性选取2020年1月1日—2022年1月1日100例ONFH,根据手术方法分为2组各50例。对照组行髓芯减压自体骨植骨术,观察组行经皮扩张式铰刀髓芯减压联合PRO-DENSE可再生骨植骨术。比较2组手术观察指标、手术疗效、并发症发生情况,以及手术前后神经源性炎症指标[神经生长因子(NGF)、前列腺素E_(2)(PGE_(2))]、血清生化指标[缺氧诱导因子-1α(HIF-1α)、血管内皮生长因子A(VEGF-A)、Ⅰ型前胶原氨基酸前肽(PⅠNP)、骨钙素(BGP)]、视觉模拟量表(VAS)评分、Harris髋关节功能评分。结果观察组术中出血量(24.25±4.78)mL少于对照组(50.29±8.94)mL,住院时间(12.50±2.24)d短于对照组(15.12±3.37)d(P<0.01)。观察组术后1、3及7 d血清NGF、PGE_(2)低于对照组(P<0.05)。观察组术后1、3及6个月血清HIF-1α、VEGF-A、BGP及Harris髋关节功能评分较对照组高,血清PⅠNP及VAS评分较对照组低(P<0.05)。2组手术优良率、并发症总发生率比较,差异无统计学意义(P>0.05)。结论经皮扩张式铰刀髓芯减压联合PRO-DENSE可再生骨植骨术是ONFH患者安全可靠的治疗方式,能降低炎性因子水平,促进术后早期恢复,加速骨代谢,促进髋关节功能恢复,减轻患者疼痛。 展开更多
关键词 股骨头坏死 髓芯减压 自体骨植骨 扩张式铰刀 PRO-dense可再生骨植骨 神经生长因子 疼痛 血管内皮生长因子A
下载PDF
Analysis on the Cause of Dense Fog in Jining on November 10,2005 被引量:2
19
作者 郭红艳 李永果 马丽 《Meteorological and Environmental Research》 CAS 2010年第5期32-33,47,共3页
Through analyzing the situation of atmospheric circulation and the variation of meteorological element at the time of dense fog happened on November 10,2005 in Jining,the results indicated that there were abundant wat... Through analyzing the situation of atmospheric circulation and the variation of meteorological element at the time of dense fog happened on November 10,2005 in Jining,the results indicated that there were abundant water vapor,weaker pressure field and wind field,weaker cold air in high altitude,stable stratification in underlying bed and ground was located in the bottom of cold high pressure,all those conditions were beneficial to the generation of dense fog in Jining. 展开更多
关键词 dense fog CAUSE ANALYSIS Jining China
下载PDF
Design of dense gap-graded friction course mixture 被引量:2
20
作者 吴旷怀 张肖宁 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期101-105,共5页
The design procedure of a dense gap-graded friction course(DGGFC) with coarse aggregate void filling method is presented. Testing results show that a DGGFC mixture possesses a dense stone-matrix structure, good stab... The design procedure of a dense gap-graded friction course(DGGFC) with coarse aggregate void filling method is presented. Testing results show that a DGGFC mixture possesses a dense stone-matrix structure, good stability and almost the same texture depth as stone matrix asphalt (SMA). It also has a coarse and even surface after paving and has no separation during construction. It is durable and impermeable. It balances and improves the inherent inconsistency of asphalt mixture between the large texture depth for skid resistance and the impermeability for durability. The actual application in the Nanning-Liuzhou Expressway also shows that the performance of the DGGFC is as excellent as that of SMA, while the DGGFC mixture is cheaper than SMA. The DGGFC mixture is good for wearing course of pavement. Further research on DGGFC can be helpful for improving the surface skid resistance, prolonging the life-span period and reducing the construction costs of asphalt pavement. 展开更多
关键词 dense gap-graded friction course (DGGFC) coarse aggregate void filling method dense stonematrix structure pavement performance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部