The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA)....The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.展开更多
This study utilizes the enzyme-substrate complex theory to predict the clinical efficacy of COVID-19 treatments at the biological systems level, using molecular docking stability indicators. Experimental data from the...This study utilizes the enzyme-substrate complex theory to predict the clinical efficacy of COVID-19 treatments at the biological systems level, using molecular docking stability indicators. Experimental data from the Protein Data Bank and molecular structures generated by AlphaFold 3 were used to create macromolecular complex templates. Six templates were developed, including the holo nsp7-nsp8-nsp12 (RNA-dependent RNA polymerase) complex with dsRNA primers (holo-RdRp-RNA). The study evaluated several ligands—Favipiravir-RTP, Remdesivir, Abacavir, Ribavirin, and Oseltamivir—as potential viral RNA polymerase inhibitors. Notably, the first four of these ligands have been clinically employed in the treatment of COVID-19, allowing for comparative analysis. Molecular docking simulations were performed using AutoDock 4, and statistical differences were assessed through t-tests and Mann-Whitney U tests. A review of the literature on COVID-19 treatment outcomes and inhibitors targeting RNA polymerase enzymes was conducted, and the inhibitors were ranked according to their clinical efficacy: Remdesivir > Favipiravir-RTP > Oseltamivir. Docking results obtained from the second and third templates aligned with clinical observations. Furthermore, Abacavir demonstrated a predicted efficacy comparable to Favipiravir-RTP, while Ribavirin exhibited a predicted efficacy similar to that of Remdesivir. This research, focused on inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase, establishes a framework for screening AI-generated drug templates based on clinical outcomes. Additionally, it develops a drug screening platform based on molecular docking binding energy, enabling the evaluation of novel or repurposed drugs and potentially accelerating the drug development process.展开更多
In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem an...In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.展开更多
Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boun...Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boundary conditions are made dimensionless using a set of non-dimensional parameters. The governing equations are solved numerically using the finite difference method. Numerical results are obtained for various values of viscosity variation parameter, Prandtl number, magnetic parameter, and conjugate conduction parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and heat transfer rate along the surface.展开更多
The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fu...The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fully backlogged. Fuzzy optimal solution is obtained by considering hexagonal fuzzy numbers and for defuzzification Graded Mean Integration Representation Method. A numerical example is provided for the illustration of crisp and fuzzy, both models. To observe the effect of changes in parameters, sensitivity analysis is carried out.展开更多
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
文摘The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.
文摘This study utilizes the enzyme-substrate complex theory to predict the clinical efficacy of COVID-19 treatments at the biological systems level, using molecular docking stability indicators. Experimental data from the Protein Data Bank and molecular structures generated by AlphaFold 3 were used to create macromolecular complex templates. Six templates were developed, including the holo nsp7-nsp8-nsp12 (RNA-dependent RNA polymerase) complex with dsRNA primers (holo-RdRp-RNA). The study evaluated several ligands—Favipiravir-RTP, Remdesivir, Abacavir, Ribavirin, and Oseltamivir—as potential viral RNA polymerase inhibitors. Notably, the first four of these ligands have been clinically employed in the treatment of COVID-19, allowing for comparative analysis. Molecular docking simulations were performed using AutoDock 4, and statistical differences were assessed through t-tests and Mann-Whitney U tests. A review of the literature on COVID-19 treatment outcomes and inhibitors targeting RNA polymerase enzymes was conducted, and the inhibitors were ranked according to their clinical efficacy: Remdesivir > Favipiravir-RTP > Oseltamivir. Docking results obtained from the second and third templates aligned with clinical observations. Furthermore, Abacavir demonstrated a predicted efficacy comparable to Favipiravir-RTP, while Ribavirin exhibited a predicted efficacy similar to that of Remdesivir. This research, focused on inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase, establishes a framework for screening AI-generated drug templates based on clinical outcomes. Additionally, it develops a drug screening platform based on molecular docking binding energy, enabling the evaluation of novel or repurposed drugs and potentially accelerating the drug development process.
文摘In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.
文摘Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boundary conditions are made dimensionless using a set of non-dimensional parameters. The governing equations are solved numerically using the finite difference method. Numerical results are obtained for various values of viscosity variation parameter, Prandtl number, magnetic parameter, and conjugate conduction parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and heat transfer rate along the surface.
文摘The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fully backlogged. Fuzzy optimal solution is obtained by considering hexagonal fuzzy numbers and for defuzzification Graded Mean Integration Representation Method. A numerical example is provided for the illustration of crisp and fuzzy, both models. To observe the effect of changes in parameters, sensitivity analysis is carried out.
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.