The rapid development of emerging technologies,such as edge intelligence and digital twins,have added momentum towards the development of the Industrial Internet of Things(IIo T).However,the massive amount of data gen...The rapid development of emerging technologies,such as edge intelligence and digital twins,have added momentum towards the development of the Industrial Internet of Things(IIo T).However,the massive amount of data generated by the IIo T,coupled with heterogeneous computation capacity across IIo T devices,and users’data privacy concerns,have posed challenges towards achieving industrial edge intelligence(IEI).To achieve IEI,in this paper,we propose a semi-federated learning framework where a portion of the data with higher privacy is kept locally and a portion of the less private data can be potentially uploaded to the edge server.In addition,we leverage digital twins to overcome the problem of computation capacity heterogeneity of IIo T devices through the mapping of physical entities.We formulate a synchronization latency minimization problem which jointly optimizes edge association and the proportion of uploaded nonprivate data.As the joint problem is NP-hard and combinatorial and taking into account the reality of largescale device training,we develop a multi-agent hybrid action deep reinforcement learning(DRL)algorithm to find the optimal solution.Simulation results show that our proposed DRL algorithm can reduce latency and have a better convergence performance for semi-federated learning compared to benchmark algorithms.展开更多
Purpose–This paper analyzes the application of digital twin technology in the field of intelligent operation and maintenance of high-speed railway infrastructure from the perspective of top-level design.Design/method...Purpose–This paper analyzes the application of digital twin technology in the field of intelligent operation and maintenance of high-speed railway infrastructure from the perspective of top-level design.Design/methodology/approach–This paper provides a comprehensive overview of the definition,connotations,characteristics and key technologies of digital twin technology.It also conducts a thorough analysis of the current state of digital twin applications,with a particular focus on the overall requirements for intelligent operation and maintenance of high-speed railway infrastructure.Using the Jinan Yellow River Bridge on the Beijing–Shanghai high-speed railway as a case study,the paper details the construction process of the twin system from the perspectives of system architecture,theoretical definition,model construction and platform design.Findings–Digital twin technology can play an important role in the whole life cycle management,fault prediction and condition monitoring in the field of high-speed rail operation and maintenance.Digital twin technology is of great significance to improve the intelligent level of high-speed railway operation and management.Originality/value–This paper systematically summarizes the main components of digital twin railway.The general framework of the digital twin bridge is given,and its application in the field of intelligent operation and maintenance is prospected.展开更多
With the rapid development of information technology,digital intelligence empowerment has gradually become an important direction of educational innovation.This paper uses the case analysis method to explore in depth ...With the rapid development of information technology,digital intelligence empowerment has gradually become an important direction of educational innovation.This paper uses the case analysis method to explore in depth how digital intelligence empowerment and project-based teaching can promote the integration of primary school curricula.Taking the teaching of intelligent patrol cars as an example,this paper analyses the positive role of digital intelligence empowerment in improving teaching effectiveness and cultivating students’comprehensive ability.The research results show that digital intelligence empowerment not only enriches teaching resources but also optimizes the teaching process.Combined with project-based teaching methods,it can effectively improve students’interest in learning and performance.This study provides a useful reference and inspiration for the project-based teaching of curriculum integration in primary schools and has certain practical significance and theoretical value for promoting the process of educational informatization.展开更多
This paper discusses the optimization strategy of education and teaching quality assurance systems in applied colleges and universities under the background of digital intelligence.It first summarizes the relevant the...This paper discusses the optimization strategy of education and teaching quality assurance systems in applied colleges and universities under the background of digital intelligence.It first summarizes the relevant theories of digital intelligence transformation and analyzes the impact of digital intelligence transformation on higher education.Secondly,this paper puts forward the principles of constructing the quality assurance system of applied colleges,including strengthening the quality assurance consciousness,improving teachers’digital literacy,and implementing digital intelligence governance.From the practical perspective,this paper expounds on strategies such as optimizing educational teaching resource allocation,constructing a diversified evaluation system of teaching quality,strengthening the construction and training of teaching staff,and innovating teaching management methods.Specific optimization measures are put forward,such as improving policies,regulations,and system guarantees,strengthening cooperation between schools and enterprises,integrating industry,school,and research,building an educational information platform,and improving the monitoring and feedback mechanism of educational quality.展开更多
Digital Twin(DT)supports real time analysis and provides a reliable simulation platform in the Internet of Things(IoT).The creation and application of DT hinges on amounts of data,which poses pressure on the applicati...Digital Twin(DT)supports real time analysis and provides a reliable simulation platform in the Internet of Things(IoT).The creation and application of DT hinges on amounts of data,which poses pressure on the application of Artificial Intelligence(AI)for DT descriptions and intelligent decision-making.Federated Learning(FL)is a cutting-edge technology that enables geographically dispersed devices to collaboratively train a shared global model locally rather than relying on a data center to perform model training.Therefore,DT can benefit by combining with FL,successfully solving the"data island"problem in traditional AI.However,FL still faces serious challenges,such as enduring single-point failures,suffering from poison attacks,lacking effective incentive mechanisms.Before the successful deployment of DT,we should tackle the issues caused by FL.Researchers from industry and academia have recognized the potential of introducing Blockchain Technology(BT)into FL to overcome the challenges faced by FL,where BT acting as a distributed and immutable ledger,can store data in a secure,traceable,and trusted manner.However,to the best of our knowledge,a comprehensive literature review on this topic is still missing.In this paper,we review existing works about blockchain-enabled FL and visualize their prospects with DT.To this end,we first propose evaluation requirements with respect to security,faulttolerance,fairness,efficiency,cost-saving,profitability,and support for heterogeneity.Then,we classify existing literature according to the functionalities of BT in FL and analyze their advantages and disadvantages based on the proposed evaluation requirements.Finally,we discuss open problems in the existing literature and the future of DT supported by blockchain-enabled FL,based on which we further propose some directions for future research.展开更多
The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to th...The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions.展开更多
With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generat...With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generative AI technology and its potential in personalized learning,interactive content creation and adaptive assessment in education were introduced firstly.Then,the application case of generative AI tools in teaching content creation,scenario-based teaching content development,visual teaching content development,complex concept deconstruction and analogy,student-led application practice and other aspects in the teaching of Building Decoration Materials was discussed.Through the teaching experiment and effect evaluation,the positive influence of generative AI technology on the improvement of students'learning effect and teaching efficiency was verified.Finally,some thoughts and inspirations on the combination of educational theory and generative AI technology,the integration of teaching design and generative AI technology,and the practice cases and effect evaluation were put forward,and the importance of teacher role transformation and personalized learning path design was emphasized to provide theoretical and practical support for the innovative development of higher education.展开更多
With the rapid development of big data and intelligent technology,opportunities and challenges coexist in continuing education work,and the integration of continuing education and intelligent education is imperative.T...With the rapid development of big data and intelligent technology,opportunities and challenges coexist in continuing education work,and the integration of continuing education and intelligent education is imperative.Therefore,China’s continuing education should strengthen the construction of the education system,make long-term plans,strengthen overall management in system construction,promote the transformation of continuing education models,and accelerate the modernization process of education.Based on this,this article analyzes and studies the path of intelligent development of continuing education in the digital era,explores its inevitability,analyzes the main characteristics of intelligent continuing education,explores the problems of intelligent development of continuing education,and proposes strategies for the intelligent development of continuing education.展开更多
The development of digital technology has brought about a substantial evolution in the multimedia field.The use of generative technologies to produce digital multimedia material is one of the newer developments in thi...The development of digital technology has brought about a substantial evolution in the multimedia field.The use of generative technologies to produce digital multimedia material is one of the newer developments in this field.The“Digital Generative Multimedia Tool Theory”(DGMTT)is therefore presented in this theoretical postulation by Timothy Ekeledirichukwu Onyejelem and Eric Msughter Aondover.It discusses and describes the principles behind the development and deployment of generative tools in multimedia creation.The DGMTT offers an all-encompassing structure for comprehending and evaluating the fundamentals and consequences of generative tools in the production of multimedia content.It provides information about the creation and use of these instruments,thereby promoting developments in the digital media industry.These tools create dynamic and interactive multimedia content by utilizing machine learning,artificial intelligence,and algorithms.This theory emphasizes how crucial it is to comprehend the fundamental ideas and principles of generative tools in order to use them efficiently when creating digital media content.A wide range of industries,including journalism,advertising,entertainment,education,and the arts,can benefit from the practical use of DGMTT.It gives artists the ability to use generative technologies to create unique and customized multimedia content for its viewers.展开更多
Since the age of digital intelligence,the government has introduced policies to actively promote the intelligent transformation of grassroots public cultural services.Based on the investigation and analysis of the dev...Since the age of digital intelligence,the government has introduced policies to actively promote the intelligent transformation of grassroots public cultural services.Based on the investigation and analysis of the development status quo of grassroots libraries in Henan Province,we put forward the path of high-quality development of grassroots libraries in Henan,namely,improving the mechanism and system,leading with digital intelligence technology,empowering by Yellow River culture(the heritage and values rooted in the history and traditions of the Yellow River region),and driven by users’demand.展开更多
Plants sequester carbon through photosynthesis and provide primary productivity for the ecosystem. However, they also simultaneously consume water through transpiration, leading to a carbon-water balance relationship....Plants sequester carbon through photosynthesis and provide primary productivity for the ecosystem. However, they also simultaneously consume water through transpiration, leading to a carbon-water balance relationship. Agricultural production can be regarded as a form of carbon sequestration behavior.From the perspective of the natural-social-economic complex ecosystem, excessive water usage in food production will aggravate regional water pressure for both domestic and industrial purposes. Hence, achieving a harmonious equilibrium between carbon and water resources during the food production process is a key scientific challenge for ensuring food security and sustainability. Digital intelligence(DI) and cyber-physical-social systems(CPSS) are emerging as the new research paradigms that are causing a substantial shift in the conventional thinking and methodologies across various scientific fields, including ecological science and sustainability studies. This paper outlines our recent efforts in using advanced technologies such as big data, artificial intelligence(AI), digital twins, metaverses, and parallel intelligence to model, analyze, and manage the intricate dynamics and equilibrium among plants, carbon, and water in arid and semiarid ecosystems. It introduces the concept of the carbon-water balance and explores its management at three levels: the individual plant level, the community level, and the natural-social-economic complex ecosystem level. Additionally, we elucidate the significance of agricultural foundation models as fundamental technologies within this context. A case analysis of water usage shows that, given the limited availability of water resources in the context of the carbon-water balance, regional collaboration and optimized allocation have the potential to enhance the utilization efficiency of water resources in the river basin. A suggested approach is to consider the river basin as a unified entity and coordinate the relationship between the upstream, midstream and downstream areas. Furthermore, establishing mechanisms for water resource transfer and trade among different industries can be instrumental in maximizing the benefits derived from water resources.Finally, we envisage a future of agriculture characterized by the integration of digital, robotic and biological farming techniques.This vision aims to incorporate small tasks, big models, and deep intelligence into the regular ecological practices of intelligent agriculture.展开更多
The integration of digital twin(DT)and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park.However,the adverse impact of model poisoning attacks on DT model training cann...The integration of digital twin(DT)and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park.However,the adverse impact of model poisoning attacks on DT model training cannot be ignored.To address this issue,we firstly construct the models of DT model training and model poisoning attacks.An optimization problem is formulated to minimize the weighted sum of the DT loss function and DT model training delay.Then,the problem is transformed and solved by the proposed Multi-timescAle endogenouS securiTy-aware DQN-based rEsouRce management algorithm(MASTER)based on DT-assisted state information evaluation and attack detection.MASTER adopts multi-timescale deep Q-learning(DQN)networks to jointly schedule local training epochs and devices.It actively adjusts resource management strategies based on estimated attack probability to achieve endogenous security awareness.Simulation results demonstrate that MASTER has excellent performances in DT model training accuracy and delay.展开更多
Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With D...Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.展开更多
Purpose: Based on the dilemma faced by the digitization of Zhuang Brocade intangible cultural heritage in Guangxi and the analysis of the advantages of artificial intelligence art in the digitization and innovation of...Purpose: Based on the dilemma faced by the digitization of Zhuang Brocade intangible cultural heritage in Guangxi and the analysis of the advantages of artificial intelligence art in the digitization and innovation of intangible cultural heritage, this study explores the application path of the digital inheritance and dissemination of Zhuang Brocade in Guangxi by relying on the current theory and practice of artificial intelligence art, and provides reference significance for the inheritance and dissemination of intangible cultural heritage through artificial intelligence art. Method: Through in-depth analysis of the types, characteristics, and cultural connotations of Zhuang Brocade patterns in Guangxi, machine learning is performed using StyleGAN’s adversarial neural network, and digital art works are generated by applying Clip-style. The feasibility of developing digital resources for Zhuang Brocade intangible cultural heritage is explored through artistic practice, and an application process and implementation strategy for digital art innovation are proposed. Result: It is feasible to create NFT digital collections through artificial intelligence art to achieve the application scenarios of digital inheritance, innovation, cross-regional dissemination, and even industrialization of Zhuang Brocade in Guangxi. Conclusion: Artificial intelligence art creation can provide new opportunities for digital cultural dissemination and inheritance of Zhuang Brocade while reflecting its cultural connotations and characteristics, and ensure traceable development while ensuring intellectual property rights. It realizes the continuation and revival of the value of Zhuang Brocade in Guangxi, and provides a certain reference for the inheritance and development of other intangible cultural heritage in the current context of rapid media updates and iterations.展开更多
The impact that the digital transformation(DT)has on businesses,suppliers,and other third parties has increased significantly now.Digital transformation means improving traditional manufacturing processes with the hel...The impact that the digital transformation(DT)has on businesses,suppliers,and other third parties has increased significantly now.Digital transformation means improving traditional manufacturing processes with the help of digital technologies.The goal of digital transformation is to increase production efficiency and reduce costs,improve the quality of goods and services produced,and quickly adapt to changes in the global market.The state of industrial production is constantly changing due to the instability of global,economic and political decisions,so the adoption and expansion of digital solutions based on Industry 4.0,the Internet of things,machine learning,and other technologies of the future is accelerating.With the help of these technologies,companies are trying to change approaches and find new ways to solve problems.In this article the author analyzed the phenomenon of a complex system of knowledge management with tools as SMAC,AI,IoT and Edge computing in intelligent organizations as a part of intelligent economy.The arguments are illustrated with the results of own research conducted by the author in 2021-2022 in selected SMEs from the Polish Wielkopolska Province and their reference to the general development trends in this area.展开更多
Despite advances in intelligent medical care,difficulties remain.Due to its complicated governance,designing,planning,improving,and managing the cardiac system remains difficult.Oversight,including intelligent monitor...Despite advances in intelligent medical care,difficulties remain.Due to its complicated governance,designing,planning,improving,and managing the cardiac system remains difficult.Oversight,including intelligent monitoring,feedback systems,and management practises,is unsuccessful.Current platforms cannot deliver lifelong personal health management services.Insufficient accuracy in patient crisis warning programmes.No frequent,direct interaction between healthcare workers and patients is visible.Physical medical systems and intelligent information systems are not integrated.This study introduces the Advanced Cardiac Twin(ACT)model integrated with Artificial Neural Network(ANN)to handle real-time monitoring,decision-making,and crisis prediction.THINGSPEAK is used to create an IoT platform that accepts patient sensor data.Importing these data sets into MATLAB allows display and analysis.A myocardial ischemia research examined Health Condition Tracking’s(HCT’s)potential.In the case study,75%of the training sets(Xt),15%of the verified data,and 10%of the test data were used.Training set feature values(Xt)were given with the data.Training,Validation,and Testing accuracy rates were 99.9%,99.9%,and 99.9%,respectively.General research accuracy was 99.9%.The proposed HCT system and Artificial Neural Network(ANN)model gather historical and real-time data to manage and anticipate cardiac issues.展开更多
Digital forensics aims to uncover evidence of cybercrimes within compromised systems.These cybercrimes are often perpetrated through the deployment of malware,which inevitably leaves discernible traces within the comp...Digital forensics aims to uncover evidence of cybercrimes within compromised systems.These cybercrimes are often perpetrated through the deployment of malware,which inevitably leaves discernible traces within the compromised systems.Forensic analysts are tasked with extracting and subsequently analyzing data,termed as artifacts,from these systems to gather evidence.Therefore,forensic analysts must sift through extensive datasets to isolate pertinent evidence.However,manually identifying suspicious traces among numerous artifacts is time-consuming and labor-intensive.Previous studies addressed such inefficiencies by integrating artificial intelligence(AI)technologies into digital forensics.Despite the efforts in previous studies,artifacts were analyzed without considering the nature of the data within them and failed to prove their efficiency through specific evaluations.In this study,we propose a system to prioritize suspicious artifacts from compromised systems infected with malware to facilitate efficient digital forensics.Our system introduces a double-checking method that recognizes the nature of data within target artifacts and employs algorithms ideal for anomaly detection.The key ideas of this method are:(1)prioritize suspicious artifacts and filter remaining artifacts using autoencoder and(2)further prioritize suspicious artifacts and filter remaining artifacts using logarithmic entropy.Our evaluation demonstrates that our system can identify malicious artifacts with high accuracy and that its double-checking method is more efficient than alternative approaches.Our system can significantly reduce the time required for forensic analysis and serve as a reference for future studies.展开更多
As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing ...As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.展开更多
In order to improve the consistency between the recommended retrieval results and user needs,improve the recommendation efficiency,and reduce the average absolute deviation of resource retrieval,a design method of int...In order to improve the consistency between the recommended retrieval results and user needs,improve the recommendation efficiency,and reduce the average absolute deviation of resource retrieval,a design method of intelligent recommendation retrieval model for Fujian intangible cultural heritage digital archive resources based on knowledge atlas is proposed.The TG-LDA(Tag-granularity LDA)model is proposed on the basis of the standard LDA(Linear Discriminant Analysis)model.The model is used to mine archive resource topics.The Pearson correlation coefficient is used to measure the relevance between topics.Based on the measurement results,the FastText deep learning model is used to achieve archive resource classification.According to the classification results,TF-IDF(term frequency–inverse document frequency)algorithm is used to calculate the weight of resource retrieval keywords to achieve resource retrieval,and a recommendation model of intangible cultural heritage digital archives resources is built through the knowledge map to achieve comprehensive and personalized recommendation of resources.The experimental results show that the recommendation and retrieval results of the proposed method are more in line with users’needs,can provide users with personalized digital archive resources,and the average absolute deviation of resource retrieval is low,the recommendation efficiency is high,and the utilization effect of archive resources is effectively improved.展开更多
The construction of demonstration digital archives is a key project for the innovative development of the archival industry vigorously promoted by the National Archives Administration. Taking the construction of the S...The construction of demonstration digital archives is a key project for the innovative development of the archival industry vigorously promoted by the National Archives Administration. Taking the construction of the Smart Archives in Dongcheng District, Beijing as an example, this paper deeply explores the work objectives, functional requirements, and technical means of creating a demonstration digital archive. One is scientific planning, which is building the basic framework of digital archives. Proposed the infrastructure of “three major supports, five major platforms, and three major guarantees”. The second is to highlight key points and improve the basic functions of digital archives. Including hardware construction, software configuration, digitization of library archives, electronic archive management, sharing and utilization of digital archive information, and formulation of management systems for digital archives. The third is to strive for practical results and deepen the construction of smart libraries. This includes vigorously promoting the construction of smart archive centers, establishing a comprehensive management platform for smart libraries, and introducing new-generation information technology to achieve the integration of smart libraries in order to explore some mature experiences and methods that can be referenced for the creation of demonstration digital archives.展开更多
基金supported in part by the National Nature Science Foundation of China under Grant 62001168in part by the Foundation and Application Research Grant of Guangzhou under Grant 202102020515。
文摘The rapid development of emerging technologies,such as edge intelligence and digital twins,have added momentum towards the development of the Industrial Internet of Things(IIo T).However,the massive amount of data generated by the IIo T,coupled with heterogeneous computation capacity across IIo T devices,and users’data privacy concerns,have posed challenges towards achieving industrial edge intelligence(IEI).To achieve IEI,in this paper,we propose a semi-federated learning framework where a portion of the data with higher privacy is kept locally and a portion of the less private data can be potentially uploaded to the edge server.In addition,we leverage digital twins to overcome the problem of computation capacity heterogeneity of IIo T devices through the mapping of physical entities.We formulate a synchronization latency minimization problem which jointly optimizes edge association and the proportion of uploaded nonprivate data.As the joint problem is NP-hard and combinatorial and taking into account the reality of largescale device training,we develop a multi-agent hybrid action deep reinforcement learning(DRL)algorithm to find the optimal solution.Simulation results show that our proposed DRL algorithm can reduce latency and have a better convergence performance for semi-federated learning compared to benchmark algorithms.
基金funded by the China State Railway Group Co.,Ltd.Science and technology research and development program project(K2023G085).
文摘Purpose–This paper analyzes the application of digital twin technology in the field of intelligent operation and maintenance of high-speed railway infrastructure from the perspective of top-level design.Design/methodology/approach–This paper provides a comprehensive overview of the definition,connotations,characteristics and key technologies of digital twin technology.It also conducts a thorough analysis of the current state of digital twin applications,with a particular focus on the overall requirements for intelligent operation and maintenance of high-speed railway infrastructure.Using the Jinan Yellow River Bridge on the Beijing–Shanghai high-speed railway as a case study,the paper details the construction process of the twin system from the perspectives of system architecture,theoretical definition,model construction and platform design.Findings–Digital twin technology can play an important role in the whole life cycle management,fault prediction and condition monitoring in the field of high-speed rail operation and maintenance.Digital twin technology is of great significance to improve the intelligent level of high-speed railway operation and management.Originality/value–This paper systematically summarizes the main components of digital twin railway.The general framework of the digital twin bridge is given,and its application in the field of intelligent operation and maintenance is prospected.
基金“14th Five-Year Plan”project of Nanning Ertang Primary School Education Science“Research on the Application of Mathematical Intelligence Teaching Resources in the Integrated Teaching of Middle-Aged Subjects in Primary Schools”(Project number:2023C001)。
文摘With the rapid development of information technology,digital intelligence empowerment has gradually become an important direction of educational innovation.This paper uses the case analysis method to explore in depth how digital intelligence empowerment and project-based teaching can promote the integration of primary school curricula.Taking the teaching of intelligent patrol cars as an example,this paper analyses the positive role of digital intelligence empowerment in improving teaching effectiveness and cultivating students’comprehensive ability.The research results show that digital intelligence empowerment not only enriches teaching resources but also optimizes the teaching process.Combined with project-based teaching methods,it can effectively improve students’interest in learning and performance.This study provides a useful reference and inspiration for the project-based teaching of curriculum integration in primary schools and has certain practical significance and theoretical value for promoting the process of educational informatization.
基金2023 Annual Funded Projects for Educational Scientific Research at Xuzhou University of Technology“Construction and Practice of the Quality Assurance System for Education and Teaching in Applied Undergraduate Colleges under the Background of Digitalization”(YGJ2345)。
文摘This paper discusses the optimization strategy of education and teaching quality assurance systems in applied colleges and universities under the background of digital intelligence.It first summarizes the relevant theories of digital intelligence transformation and analyzes the impact of digital intelligence transformation on higher education.Secondly,this paper puts forward the principles of constructing the quality assurance system of applied colleges,including strengthening the quality assurance consciousness,improving teachers’digital literacy,and implementing digital intelligence governance.From the practical perspective,this paper expounds on strategies such as optimizing educational teaching resource allocation,constructing a diversified evaluation system of teaching quality,strengthening the construction and training of teaching staff,and innovating teaching management methods.Specific optimization measures are put forward,such as improving policies,regulations,and system guarantees,strengthening cooperation between schools and enterprises,integrating industry,school,and research,building an educational information platform,and improving the monitoring and feedback mechanism of educational quality.
基金supported in part by the National Natural Science Foundation of China under Grant 62072351in part by the Academy of Finland under Grant 308087,Grant 335262,Grant 345072,and Grant 350464+1 种基金in part by the Open Project of Zhejiang Lab under Grant 2021PD0AB01in part by the 111 Project under Grant B16037.
文摘Digital Twin(DT)supports real time analysis and provides a reliable simulation platform in the Internet of Things(IoT).The creation and application of DT hinges on amounts of data,which poses pressure on the application of Artificial Intelligence(AI)for DT descriptions and intelligent decision-making.Federated Learning(FL)is a cutting-edge technology that enables geographically dispersed devices to collaboratively train a shared global model locally rather than relying on a data center to perform model training.Therefore,DT can benefit by combining with FL,successfully solving the"data island"problem in traditional AI.However,FL still faces serious challenges,such as enduring single-point failures,suffering from poison attacks,lacking effective incentive mechanisms.Before the successful deployment of DT,we should tackle the issues caused by FL.Researchers from industry and academia have recognized the potential of introducing Blockchain Technology(BT)into FL to overcome the challenges faced by FL,where BT acting as a distributed and immutable ledger,can store data in a secure,traceable,and trusted manner.However,to the best of our knowledge,a comprehensive literature review on this topic is still missing.In this paper,we review existing works about blockchain-enabled FL and visualize their prospects with DT.To this end,we first propose evaluation requirements with respect to security,faulttolerance,fairness,efficiency,cost-saving,profitability,and support for heterogeneity.Then,we classify existing literature according to the functionalities of BT in FL and analyze their advantages and disadvantages based on the proposed evaluation requirements.Finally,we discuss open problems in the existing literature and the future of DT supported by blockchain-enabled FL,based on which we further propose some directions for future research.
基金supported by the National Natural Science Foundation of China(No.61871283).
文摘The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions.
文摘With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generative AI technology and its potential in personalized learning,interactive content creation and adaptive assessment in education were introduced firstly.Then,the application case of generative AI tools in teaching content creation,scenario-based teaching content development,visual teaching content development,complex concept deconstruction and analogy,student-led application practice and other aspects in the teaching of Building Decoration Materials was discussed.Through the teaching experiment and effect evaluation,the positive influence of generative AI technology on the improvement of students'learning effect and teaching efficiency was verified.Finally,some thoughts and inspirations on the combination of educational theory and generative AI technology,the integration of teaching design and generative AI technology,and the practice cases and effect evaluation were put forward,and the importance of teacher role transformation and personalized learning path design was emphasized to provide theoretical and practical support for the innovative development of higher education.
文摘With the rapid development of big data and intelligent technology,opportunities and challenges coexist in continuing education work,and the integration of continuing education and intelligent education is imperative.Therefore,China’s continuing education should strengthen the construction of the education system,make long-term plans,strengthen overall management in system construction,promote the transformation of continuing education models,and accelerate the modernization process of education.Based on this,this article analyzes and studies the path of intelligent development of continuing education in the digital era,explores its inevitability,analyzes the main characteristics of intelligent continuing education,explores the problems of intelligent development of continuing education,and proposes strategies for the intelligent development of continuing education.
文摘The development of digital technology has brought about a substantial evolution in the multimedia field.The use of generative technologies to produce digital multimedia material is one of the newer developments in this field.The“Digital Generative Multimedia Tool Theory”(DGMTT)is therefore presented in this theoretical postulation by Timothy Ekeledirichukwu Onyejelem and Eric Msughter Aondover.It discusses and describes the principles behind the development and deployment of generative tools in multimedia creation.The DGMTT offers an all-encompassing structure for comprehending and evaluating the fundamentals and consequences of generative tools in the production of multimedia content.It provides information about the creation and use of these instruments,thereby promoting developments in the digital media industry.These tools create dynamic and interactive multimedia content by utilizing machine learning,artificial intelligence,and algorithms.This theory emphasizes how crucial it is to comprehend the fundamental ideas and principles of generative tools in order to use them efficiently when creating digital media content.A wide range of industries,including journalism,advertising,entertainment,education,and the arts,can benefit from the practical use of DGMTT.It gives artists the ability to use generative technologies to create unique and customized multimedia content for its viewers.
文摘Since the age of digital intelligence,the government has introduced policies to actively promote the intelligent transformation of grassroots public cultural services.Based on the investigation and analysis of the development status quo of grassroots libraries in Henan Province,we put forward the path of high-quality development of grassroots libraries in Henan,namely,improving the mechanism and system,leading with digital intelligence technology,empowering by Yellow River culture(the heritage and values rooted in the history and traditions of the Yellow River region),and driven by users’demand.
基金supported in part by the National Key Research and Development Program of China (2021ZD0113704)the National Natural Science Foundation of China (62076239, 42041005,62103411)+1 种基金the Science and Technology Development FundMacao SAR(0050/2020/A1)。
文摘Plants sequester carbon through photosynthesis and provide primary productivity for the ecosystem. However, they also simultaneously consume water through transpiration, leading to a carbon-water balance relationship. Agricultural production can be regarded as a form of carbon sequestration behavior.From the perspective of the natural-social-economic complex ecosystem, excessive water usage in food production will aggravate regional water pressure for both domestic and industrial purposes. Hence, achieving a harmonious equilibrium between carbon and water resources during the food production process is a key scientific challenge for ensuring food security and sustainability. Digital intelligence(DI) and cyber-physical-social systems(CPSS) are emerging as the new research paradigms that are causing a substantial shift in the conventional thinking and methodologies across various scientific fields, including ecological science and sustainability studies. This paper outlines our recent efforts in using advanced technologies such as big data, artificial intelligence(AI), digital twins, metaverses, and parallel intelligence to model, analyze, and manage the intricate dynamics and equilibrium among plants, carbon, and water in arid and semiarid ecosystems. It introduces the concept of the carbon-water balance and explores its management at three levels: the individual plant level, the community level, and the natural-social-economic complex ecosystem level. Additionally, we elucidate the significance of agricultural foundation models as fundamental technologies within this context. A case analysis of water usage shows that, given the limited availability of water resources in the context of the carbon-water balance, regional collaboration and optimized allocation have the potential to enhance the utilization efficiency of water resources in the river basin. A suggested approach is to consider the river basin as a unified entity and coordinate the relationship between the upstream, midstream and downstream areas. Furthermore, establishing mechanisms for water resource transfer and trade among different industries can be instrumental in maximizing the benefits derived from water resources.Finally, we envisage a future of agriculture characterized by the integration of digital, robotic and biological farming techniques.This vision aims to incorporate small tasks, big models, and deep intelligence into the regular ecological practices of intelligent agriculture.
基金supported by the Science and Technology Project of State Grid Corporation of China under Grant Number 52094021N010 (5400-202199534A-05-ZN)。
文摘The integration of digital twin(DT)and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park.However,the adverse impact of model poisoning attacks on DT model training cannot be ignored.To address this issue,we firstly construct the models of DT model training and model poisoning attacks.An optimization problem is formulated to minimize the weighted sum of the DT loss function and DT model training delay.Then,the problem is transformed and solved by the proposed Multi-timescAle endogenouS securiTy-aware DQN-based rEsouRce management algorithm(MASTER)based on DT-assisted state information evaluation and attack detection.MASTER adopts multi-timescale deep Q-learning(DQN)networks to jointly schedule local training epochs and devices.It actively adjusts resource management strategies based on estimated attack probability to achieve endogenous security awareness.Simulation results demonstrate that MASTER has excellent performances in DT model training accuracy and delay.
基金supported by National Key R&D Program of China under Grant 2021YFB3901302 and 2021YFB2900301the National Natural Science Foundation of China under Grant 62271037,62001519,62221001,and U21A20445+1 种基金the State Key Laboratory of Advanced Rail Autonomous Operation under Grant RCS2022ZZ004the Fundamental Research Funds for the Central Universities under Grant 2022JBQY004.
文摘Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.
文摘Purpose: Based on the dilemma faced by the digitization of Zhuang Brocade intangible cultural heritage in Guangxi and the analysis of the advantages of artificial intelligence art in the digitization and innovation of intangible cultural heritage, this study explores the application path of the digital inheritance and dissemination of Zhuang Brocade in Guangxi by relying on the current theory and practice of artificial intelligence art, and provides reference significance for the inheritance and dissemination of intangible cultural heritage through artificial intelligence art. Method: Through in-depth analysis of the types, characteristics, and cultural connotations of Zhuang Brocade patterns in Guangxi, machine learning is performed using StyleGAN’s adversarial neural network, and digital art works are generated by applying Clip-style. The feasibility of developing digital resources for Zhuang Brocade intangible cultural heritage is explored through artistic practice, and an application process and implementation strategy for digital art innovation are proposed. Result: It is feasible to create NFT digital collections through artificial intelligence art to achieve the application scenarios of digital inheritance, innovation, cross-regional dissemination, and even industrialization of Zhuang Brocade in Guangxi. Conclusion: Artificial intelligence art creation can provide new opportunities for digital cultural dissemination and inheritance of Zhuang Brocade while reflecting its cultural connotations and characteristics, and ensure traceable development while ensuring intellectual property rights. It realizes the continuation and revival of the value of Zhuang Brocade in Guangxi, and provides a certain reference for the inheritance and development of other intangible cultural heritage in the current context of rapid media updates and iterations.
文摘The impact that the digital transformation(DT)has on businesses,suppliers,and other third parties has increased significantly now.Digital transformation means improving traditional manufacturing processes with the help of digital technologies.The goal of digital transformation is to increase production efficiency and reduce costs,improve the quality of goods and services produced,and quickly adapt to changes in the global market.The state of industrial production is constantly changing due to the instability of global,economic and political decisions,so the adoption and expansion of digital solutions based on Industry 4.0,the Internet of things,machine learning,and other technologies of the future is accelerating.With the help of these technologies,companies are trying to change approaches and find new ways to solve problems.In this article the author analyzed the phenomenon of a complex system of knowledge management with tools as SMAC,AI,IoT and Edge computing in intelligent organizations as a part of intelligent economy.The arguments are illustrated with the results of own research conducted by the author in 2021-2022 in selected SMEs from the Polish Wielkopolska Province and their reference to the general development trends in this area.
文摘Despite advances in intelligent medical care,difficulties remain.Due to its complicated governance,designing,planning,improving,and managing the cardiac system remains difficult.Oversight,including intelligent monitoring,feedback systems,and management practises,is unsuccessful.Current platforms cannot deliver lifelong personal health management services.Insufficient accuracy in patient crisis warning programmes.No frequent,direct interaction between healthcare workers and patients is visible.Physical medical systems and intelligent information systems are not integrated.This study introduces the Advanced Cardiac Twin(ACT)model integrated with Artificial Neural Network(ANN)to handle real-time monitoring,decision-making,and crisis prediction.THINGSPEAK is used to create an IoT platform that accepts patient sensor data.Importing these data sets into MATLAB allows display and analysis.A myocardial ischemia research examined Health Condition Tracking’s(HCT’s)potential.In the case study,75%of the training sets(Xt),15%of the verified data,and 10%of the test data were used.Training set feature values(Xt)were given with the data.Training,Validation,and Testing accuracy rates were 99.9%,99.9%,and 99.9%,respectively.General research accuracy was 99.9%.The proposed HCT system and Artificial Neural Network(ANN)model gather historical and real-time data to manage and anticipate cardiac issues.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2024-RS-2024-00437494)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘Digital forensics aims to uncover evidence of cybercrimes within compromised systems.These cybercrimes are often perpetrated through the deployment of malware,which inevitably leaves discernible traces within the compromised systems.Forensic analysts are tasked with extracting and subsequently analyzing data,termed as artifacts,from these systems to gather evidence.Therefore,forensic analysts must sift through extensive datasets to isolate pertinent evidence.However,manually identifying suspicious traces among numerous artifacts is time-consuming and labor-intensive.Previous studies addressed such inefficiencies by integrating artificial intelligence(AI)technologies into digital forensics.Despite the efforts in previous studies,artifacts were analyzed without considering the nature of the data within them and failed to prove their efficiency through specific evaluations.In this study,we propose a system to prioritize suspicious artifacts from compromised systems infected with malware to facilitate efficient digital forensics.Our system introduces a double-checking method that recognizes the nature of data within target artifacts and employs algorithms ideal for anomaly detection.The key ideas of this method are:(1)prioritize suspicious artifacts and filter remaining artifacts using autoencoder and(2)further prioritize suspicious artifacts and filter remaining artifacts using logarithmic entropy.Our evaluation demonstrates that our system can identify malicious artifacts with high accuracy and that its double-checking method is more efficient than alternative approaches.Our system can significantly reduce the time required for forensic analysis and serve as a reference for future studies.
基金supported by China National Heavy Duty Truck Group Co.,Ltd.(Grant No.YF03221048P)the Shanghai Municipal Bureau of Market Supervision and Administration(Grant No.2022-35)New Young TeachersResearch Start-Up Foundation of Shanghai Jiao Tong University(Grant No.22X010503668).
文摘As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.
文摘In order to improve the consistency between the recommended retrieval results and user needs,improve the recommendation efficiency,and reduce the average absolute deviation of resource retrieval,a design method of intelligent recommendation retrieval model for Fujian intangible cultural heritage digital archive resources based on knowledge atlas is proposed.The TG-LDA(Tag-granularity LDA)model is proposed on the basis of the standard LDA(Linear Discriminant Analysis)model.The model is used to mine archive resource topics.The Pearson correlation coefficient is used to measure the relevance between topics.Based on the measurement results,the FastText deep learning model is used to achieve archive resource classification.According to the classification results,TF-IDF(term frequency–inverse document frequency)algorithm is used to calculate the weight of resource retrieval keywords to achieve resource retrieval,and a recommendation model of intangible cultural heritage digital archives resources is built through the knowledge map to achieve comprehensive and personalized recommendation of resources.The experimental results show that the recommendation and retrieval results of the proposed method are more in line with users’needs,can provide users with personalized digital archive resources,and the average absolute deviation of resource retrieval is low,the recommendation efficiency is high,and the utilization effect of archive resources is effectively improved.
文摘The construction of demonstration digital archives is a key project for the innovative development of the archival industry vigorously promoted by the National Archives Administration. Taking the construction of the Smart Archives in Dongcheng District, Beijing as an example, this paper deeply explores the work objectives, functional requirements, and technical means of creating a demonstration digital archive. One is scientific planning, which is building the basic framework of digital archives. Proposed the infrastructure of “three major supports, five major platforms, and three major guarantees”. The second is to highlight key points and improve the basic functions of digital archives. Including hardware construction, software configuration, digitization of library archives, electronic archive management, sharing and utilization of digital archive information, and formulation of management systems for digital archives. The third is to strive for practical results and deepen the construction of smart libraries. This includes vigorously promoting the construction of smart archive centers, establishing a comprehensive management platform for smart libraries, and introducing new-generation information technology to achieve the integration of smart libraries in order to explore some mature experiences and methods that can be referenced for the creation of demonstration digital archives.