In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of ...In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of the functions at a given feasible point. The linearized procedure for differentiable nonlinear programming problems can be naturally generalized to the quasi differential case. As in classical case so called constraint qualifications have to be imposed on the constraint functions to guarantee that for a given local minimizer of the original problem the nullvector is an optimal solution of the corresponding 'quasilinearized' problem. In this paper, constraint qualifications for inequality constrained quasi differentiable programming problems of type min {f(x)|g(x)≤0} are considered, where f and g are qusidifferentiable functions in the sense of Demyanov. Various constraint qualifications for this problem are presented and a new one is proposed. The relations among these conditions are investigated. Moreover, a Wolf dual problem for this problem is introduced, and the corresponding dual theorems are given.展开更多
This article proposes a few tangent cones,which are relative to the constraint qualifications of optimization problems.With the upper and lower directional derivatives of an objective function,the characteristics of c...This article proposes a few tangent cones,which are relative to the constraint qualifications of optimization problems.With the upper and lower directional derivatives of an objective function,the characteristics of cones on the constraint qualifications are presented.The interrelations among the constraint qualifications,a few cones involved, and level sets of upper and lower directional derivatives are derived.展开更多
The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to ...The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.展开更多
Efficiently modulating the velocity distribution and flow pattern of non-Newtonian fluids is a critical challenge in the context of dual shaft eccentric mixers for process intensification,posing a significant barrier ...Efficiently modulating the velocity distribution and flow pattern of non-Newtonian fluids is a critical challenge in the context of dual shaft eccentric mixers for process intensification,posing a significant barrier for the existing technologies.Accordingly,this work reports a convenient strategy that changes the kinetic energy to controllably regulate the flow patterns from radial flow to axial flow.Results showed that the desired velocity distribution and flow patterns could be effectively obtained by varying the number and structure of baffles to change kinetic energy,and a more uniform velocity distribution,which could not be reached normally in standard baffle dual shaft mixers,was easily obtained.Furthermore,a comparative analysis of velocity and shear rate distributions is employed to elucidate the mechanism behind the generation of flow patterns in various dual-shaft eccentric mixers.Importantly,there is little difference in the power number of the laminar flow at the same Reynolds number,meaning that the baffle type has no effect on the power consumption,while the power number of both unbaffle and U-shaped baffle mixing systems decreases compared with the standard baffle mixing system in the transition flow.Finally,at the same rotational condition,the dimensionless mixing time of the U-shaped baffle mixing system is 15.3%and 7.9%shorter than that of the standard baffle and the unbaffle mixing system,respectively,which shows the advantage of the U-shaped baffle in stirring rate.展开更多
Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cyc...Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.展开更多
Digital twins have emerged as a promising technology for maintenance applications,enabling organizations to simulate and monitor physical assets to improve their performance.In Operation and Maintenance(O&M),digit...Digital twins have emerged as a promising technology for maintenance applications,enabling organizations to simulate and monitor physical assets to improve their performance.In Operation and Maintenance(O&M),digital twin facilitates the diagnosis and prognosis of critical assets,forming the basis for smart maintenance planning and reducing downtime.However,there is a lack of standardized approaches for the qualifications of digital twins in maintenance,leading to low trustworthiness and limiting its application.This paper proposes a novel framework for the qualifications of digital twins in maintenance based on five pillars,namely fidelity,smartness,timeliness,integration,and standard compliance.We demonstrate the effectiveness of the framework through two case studies,showing how it can be implemented on digital twins for preventive maintenance and condition-based maintenance.Our proposed framework can help organizations across different industrial domains develop and implement digital twins in maintenance more effectively and efficiently,leading to significant benefits in terms of cost reduction,performance improvement,and sustainability.展开更多
Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSP...Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field.展开更多
Purpose:This study investigated the publication behaviour of 573 chief editors managing 432 Social Sciences journals in Turkey.Direct inquiries into editorial qualifications are rare,and this research aims to shed lig...Purpose:This study investigated the publication behaviour of 573 chief editors managing 432 Social Sciences journals in Turkey.Direct inquiries into editorial qualifications are rare,and this research aims to shed light on editors’scientific leadership capabilities.Design/methodology/approach:This study contrasts insider publication behaviour in national journals with international articles in journals indexed by the Web of Science(WOS)and Scopus.It argues that editors demonstrating a consistent ability to publish in competitive WOS and Scopus indexed journals signal high qualifications,while editors with persistent insider behaviour and strong local orientation signal low qualification.Scientific leadership capability is measured by first-authored publications.Correlation and various regression tests are conducted to identify significant determinants of publication behaviour.Findings:International publications are rare and concentrated on a few individuals,while insider publications are endemic and constitute nearly 40%of all national articles.Editors publish 3.2 insider papers and 8.1 national papers for every SSCI article.62%(58%)of the editors have no SSCI(Scopus)article,53%(63%)do not have a single lead-authored WOS(Scopus)article,and 89%publish at least one insider paper.Only a minority consistently publish in international journals;a fifth of the editors have three or more SSCI publications,and a quarter have three or more Scopus articles.Editors with foreign Ph.D.degrees are the most qualified and internationally oriented,whereas non-mobile editors are the most underqualified and underperform other editors by every measure.Illustrating the overall lack of qualification,nearly half of the professor editors and the majority of the WOS and Scopus indexed journal editors have no record of SSCI or Scopus publications.Research limitations:This research relies on local settings that encourage national publications at the expense of international journals.Findings should be evaluated in light of this setting and bearing in mind that narrow localities are more prone to peer favouritism.Practical implications:Incompetent and nepotistic editors pose an imminent threat to Turkish national literature.A lasting solution would likely include the dismissal and replacement of unqualified editors,as well as delisting and closure of dozens of journals that operate in questionable ways and serve little scientific purpose.Originality/value:To my knowledge,this is the first study to document the publication behaviour of national journal chief editors.展开更多
Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations th...Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations through the development of a potent MM-targeting chemotherapy strategy,which capitalized on the high binding affinity of alendronate for hydroxyapatite in the bone matrix and the homologous targeting of myeloma cell membranes,termed T-PB@M.The results from our investigations highlight the considerable bone affinity of T-PB@M,both in vitro and in vivo.Additionally,this material demonstrated a capability for drug release triggered by low pH conditions.Moreover,T-PB@M induced the generation of reactive oxygen species and triggered cell apoptosis through the poly(ADP-ribose)polymerase 1(PARP1)-Caspase-3-B-cell lymphoma-2(Bcl-2)pathway in MM cells.Notably,T-PB@M preferentially targeted bone-involved sites,thereby circumventing systemic toxic side effects and leading to prolonged survival of MM orthotopic mice.Therefore,this designed target-MM nanocarrier presents a promising and potentially effective platform for the precise treatment of MM.展开更多
We consider dual Toeplitz operators on the orthogonal complements of the FockSobolev spaces of all nonnegative real orders.First,for symbols in a certain class containing all bounded functions,we study the problem of ...We consider dual Toeplitz operators on the orthogonal complements of the FockSobolev spaces of all nonnegative real orders.First,for symbols in a certain class containing all bounded functions,we study the problem of when an operator which is finite sums of the dual Toeplitz products is compact or zero.Next,for bounded symbols,we construct a symbol map and exhibit a short exact sequence associated with the C^(*)-algebra generated by all dual Toeplitz operators with bounded symbols.展开更多
Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-bas...Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-based QDs.However,enormous attention has been paid to how to narrow their broadband spectra,ignoring the application advantages of the broadband emission.In this work,the AIGS QDs with controllable broad green-red dual-emission are first reported,which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals.Resultantly,the AIGS QDs exhibit broad dual-emission at green-and red-band evidenced by photoluminescence(PL)spectra,and the PL relative intensity and peak position can be finely adjusted.Furthermore,the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra.Accordingly,the AIGS QDs(the size consists of 17 nm and 3.7 nm)with 530 nm and 630 nm emission could successfully be synthesized at 220°C.By combining the blue light-emitting diode(LED)chips and dual-emission AIGS QDs,the constructed white light-emitting devices(WLEDs)exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage(CIE)chromaticity coordinates of(0.33,0.31),a correlated color temperature(CCT)of 5425 K,color rendering index(CRI)of 90,and luminous efficacy of radiation(LER)of 129 lm/W,which indicates that the AIGS QDs have huge potential for lighting applications.展开更多
Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challen...Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challenges:The uncontrollable Zn dendrites,notorious parasitic side reactions,and sluggish Zn^(2+) ion transfer.To address these issues,we design a sustainable dual crosslinked cellulose hydrogel electrolyte,which has excellent mechanical strength to inhibit dendrite formation,high Zn^(2+) ions binding capacity to suppress side reaction,and abundant porous structure to facilitate Zn^(2+) ions migration.Consequently,the Zn||Zn cell with the hydrogel electrolyte can cycle stably for more than 400 h under a high current density of 10 mA cm^(−2).Moreover,the hydrogel electrolyte also enables the Zn||polyaniline cell to achieve high-rate and long-term cycling performance(>2000 cycles at 2000 mA g^(−1)).Remarkably,the hydrogel electrolyte is easily accessible and biodegradable,making the ARZBs attractive in terms of scalability and sustainability.展开更多
Layer-type LiNi0.9Mn0.1O2is promising to be the primary cathode material for lithium-ion batteries(LIBs)due to its excellent electrochemical performance.Unfortunately,the cathode with high nickel content suffers from ...Layer-type LiNi0.9Mn0.1O2is promising to be the primary cathode material for lithium-ion batteries(LIBs)due to its excellent electrochemical performance.Unfortunately,the cathode with high nickel content suffers from severely detrimental structural transformation that causes rapid capacity attenuation.Herein,site-specific dual-doping with Fe and Mg ions is proposed to enhance the structural stability of LiNi0.9Mn0.1O2.The Fe3+dopants are inserted into transition metal sites(3b)and can favorably provide additional redox potential to compensate for charge and enhance the reversibility of anionic redox.The Mg ions are doped into the Li sites(3a)and serve as O_(2)^(-)-Mg^(2+)-O_(2)^(-)pillar to reinforce the electrostatic cohesion between the two adjacent transition-metal layers,which further suppress the cracking and the generation of harmful phase transitions,ultimately improving the cyclability.The theoretical calculations,including Bader charge and crystal orbital Hamilton populations(COHP)analyses,confirm that the doped Fe and Mg can form stable bonds with oxygen and the electrostatic repulsion of O_(2)^(-)-O_(2)^(-)can be effectively suppressed,which effectively mitigates oxygen anion loss at the high delithiation state.This dual-site doping strategy offers new avenues for understanding and regulating the crystalline oxygen redox and demonstrates significant potential for designing high-performance cobalt-free nickel-rich cathodes.展开更多
BACKGROUND The efficacy of Vonoprazan-amoxicillin dual therapy(VAT)in the treatment of Helicobacter pylori(H.pylori)is controversial.AIM To evaluate the efficacy of VAT in the Chinese population.METHODS This prospecti...BACKGROUND The efficacy of Vonoprazan-amoxicillin dual therapy(VAT)in the treatment of Helicobacter pylori(H.pylori)is controversial.AIM To evaluate the efficacy of VAT in the Chinese population.METHODS This prospective,multicenter,randomized,open-label,and two-stage study was conducted at 23 centers in Fujian,China(May 2021-April 2022).H.pylori-infected patients were randomized to bismuth quadruple therapy(BQT),BQT-Vonoprazan(BQT-V),seven-day VAT(VAT-7),ten-day VAT(VAT-10),and fourteen-day VAT(VAT-14)groups.The primary endpoint was the H.pylori eradication rate.The secondary endpoint was the frequency of adverse events.This study was registered with the Chinese Clinical Trial Registry,ChiCTR2100045778.RESULTS In the first stage,VAT-7 and BQT-V groups were selected for early termination because less than 23 among 28 cases were eradicated.In the second stage,the eradication rates for BQT,VAT-10,and VA-14 were 80.2%[95%confidence interval(95%CI):71.4%-86.8%],93.2%(86.6%-96.7%),92.2%(85.3%-96.0%)in the intention-to-treat(ITT)analysis,and 80.9%(95%CI:71.7%-87.5%),94.0%(87.5%-97.2%),and 93.9%(87.4%-97.2%)in the per-protocol analysis.The ITT analysis showed a higher eradication rate in the VAT-10 and VAT-14 groups than in the BQT group(P=0.022 and P=0.046,respectively).The incidence of adverse events in the VAT-10 and VAT-14 groups was lower than in the BQT group(25.27%and 13.73%vs 37.62%,respectively;P<0.001).CONCLUSION VAT with a duration of 10 or 14 days achieves a higher eradication rate than the BQT,with a more tolerable safety profile in H.pylori-infected patients in Fujian.Huang XP et al.VAT for H.pylori eradication.展开更多
Unmanned Aerial Vehicle(UAV)ad hoc network has achieved significant growth for its flexibility,extensibility,and high deployability in recent years.The application of clustering scheme for UAV ad hoc network is impera...Unmanned Aerial Vehicle(UAV)ad hoc network has achieved significant growth for its flexibility,extensibility,and high deployability in recent years.The application of clustering scheme for UAV ad hoc network is imperative to enhance the performance of throughput and energy efficiency.In conventional clustering scheme,a single cluster head(CH)is always assigned in each cluster.However,this method has some weaknesses such as overload and premature death of CH when the number of UAVs increased.In order to solve this problem,we propose a dual-cluster-head based medium access control(DCHMAC)scheme for large-scale UAV networks.In DCHMAC,two CHs are elected to manage resource allocation and data forwarding cooperatively.Specifically,two CHs work on different channels.One of CH is used for intra-cluster communication and the other one is for inter-cluster communication.A Markov chain model is developed to analyse the throughput of the network.Simulation result shows that compared with FM-MAC(flying ad hoc networks multi-channel MAC,FM-MAC),DCHMAC improves the throughput by approximately 20%~50%and prolongs the network lifetime by approximately 40%.展开更多
Visceral leishmaniasis(VL)is a neglected tropical disease,and this review has summarized the current treatment scenario and its prospects.It also highlights alternative approaches used by research groups in India and ...Visceral leishmaniasis(VL)is a neglected tropical disease,and this review has summarized the current treatment scenario and its prospects.It also highlights alternative approaches used by research groups in India and around the world to develop cutting-edge and potent anti-leishmanial treatments.Even though numerous medications could be utilized to treat VL,the limitations of current treatments including their toxicity,cost,route of administration,and duration of doses,have contributed to the emergence of resistance.Combination therapy might be a better option due to its shorter duration,easier route of administration,and ability to extend the lifespan of individual drugs.However,there is a risk of not delivering both the drugs to the target site together,which can be overcome by the liposomal entrapment of those drugs and at a time knock an opportunity to reduce the dosage of amphotericin B if the combination drug provides a synergistic effect with it.Therefore,this review presents a novel strategy to fight against VL by introducing dual drug-loaded liposomes.展开更多
The pathways to achieving carbon neutrality at the city level are diverse due to varying energy supply and demand conditions.Shanghai faces obstacles such as limited land resources,high costs of renewable energy techn...The pathways to achieving carbon neutrality at the city level are diverse due to varying energy supply and demand conditions.Shanghai faces obstacles such as limited land resources,high costs of renewable energy technologies,and instability of renewable energy.These challenges hinder the city’s efforts to achieve carbon peak and carbon neutrality(dual carbon).Therefore,Shanghai must identify and optimize its development path for renewable energy under the dual carbon goal.We employed the Low Emissions Analysis Platform Shanghai(LEAP-SH)model to simulate the impact of policies,such as industrial upgrading,energy efficiency improvement,energy structure optimization,increased technical innovation on energy,and ecological restoration,on the carbon emission pathways from 2022 to 2060 using five different scenarios.Our results indicate that Shanghai has the potential to achieve carbon neutrality in 2059 by promoting carbon reduction,pollution control,and green expansion.Moreover,we determined that the manufacturing industry;power generation industry;and transportation,storage,and mail services are the three major sectors for emission reduction under the dual carbon goal.Furthermore,the capacity and output of coal-fired power plants will be gradually replaced by offshore wind power in the dual carbon pathway.Finally,this study proposes countermeasures and suggestions for Shanghai to attain the dual carbon goal and high-quality development.展开更多
Objective The detection of RNA single nucleotide polymorphism(SNP)is of great importance due to their association with protein expression related to various diseases and drug responses.At present,splintR ligase-assist...Objective The detection of RNA single nucleotide polymorphism(SNP)is of great importance due to their association with protein expression related to various diseases and drug responses.At present,splintR ligase-assisted methods are important approaches for RNA direct detection,but its specificity will be limited when the fidelity of ligases is not ideal.The aim of this study was to create a method to improve the specificity of splintR ligase for RNA detection.Methods In this study,a dualcompetitive-padlock-probe(DCPLP)assay without the need for additional enzymes or reactions is proposed to improve specificity of splintR ligase ligation.To verify the method,we employed dual competitive padlock probe-mediated rolling circle amplification(DCPLP-RCA)to genotype the CYP2C9 gene.Results The specificity was well improved through the competition and strand displacement of dual padlock probe,with an 83.26%reduction in nonspecific signal.By detecting synthetic RNA samples,the method demonstrated a dynamic detection range of 10 pmol/L-1 nmol/L.Furthermore,clinical samples were applied to the method to evaluate its performance,and the genotyping results were consistent with those obtained using the qPCR method.Conclusion This study has successfully established a highly specific direct RNA SNP detection method,and provided a novel avenue for accurate identification of various types of RNAs.展开更多
Dual ion storage hybrid supercapacitors(HsCs)are considered as a promising device to overcome the limited energy density of existing supercapacitors while preserving high power and long cyclability.However,the develop...Dual ion storage hybrid supercapacitors(HsCs)are considered as a promising device to overcome the limited energy density of existing supercapacitors while preserving high power and long cyclability.However,the development of high-capacity anion-storing materials,which can be paired with fast charg-ing capacitive electrodes,lags behind cation-storing counterparts.Herein,we demonstrate the surface faradaic OH-storage mechanism of anion storing perovskite oxide composites and their application in high-performance dual ion HsCs.The oxygen vacancy and nanoparticle size of the reduced LaMnO_(3)(r-LaMnO_(3))were controlled,while r-LaMnO_(3) was chemically coupled with ozonated carbon nanotubes(oCNTs)for the improved anion storing capacity and cycle performance.As taken by in-situ and ex-situ spectroscopic and computational analyses,OH-ions are inserted into the oxygen vacancies coordi-nating with octahedral Mn with the increase in the oxidation state of Mn during the charging process or vice versa.Configuring OH-storing r-LaMnO_(3)/oCNT composite with Na*storing MXene,the as-fabricated aqueous dual ion HSCs achieved the cycle performance of 73.3%over 10,000 cycles,delivering the max-imum energy and power densities of 47.5 w h kg^(-1) and 8 kw kg^(-1),respectively,far exceeding those of previously reported aqueous anion and dual ion storage cells.This research establishes a foundation for the unique anion storage mechanism of the defect engineered perovskite oxides and the advancement of dual ion hybrid energy storage devices with high energy and power densities.展开更多
文摘In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of the functions at a given feasible point. The linearized procedure for differentiable nonlinear programming problems can be naturally generalized to the quasi differential case. As in classical case so called constraint qualifications have to be imposed on the constraint functions to guarantee that for a given local minimizer of the original problem the nullvector is an optimal solution of the corresponding 'quasilinearized' problem. In this paper, constraint qualifications for inequality constrained quasi differentiable programming problems of type min {f(x)|g(x)≤0} are considered, where f and g are qusidifferentiable functions in the sense of Demyanov. Various constraint qualifications for this problem are presented and a new one is proposed. The relations among these conditions are investigated. Moreover, a Wolf dual problem for this problem is introduced, and the corresponding dual theorems are given.
基金the Natural Science Foundation ofFujian Province of China(S0650021,2006J0215)the National Natural Science Foundation of China(10771086)
文摘This article proposes a few tangent cones,which are relative to the constraint qualifications of optimization problems.With the upper and lower directional derivatives of an objective function,the characteristics of cones on the constraint qualifications are presented.The interrelations among the constraint qualifications,a few cones involved, and level sets of upper and lower directional derivatives are derived.
基金supported by the National Natural Science Foundation of China (Grant Nos.52072272,52171145 and 22109120)the Zhejiang Provincial Natural Science Foundation of China (LQ21B030002)+1 种基金the Zhejiang Provincial Special Support Program for High-level Talents (2019R52042)the Key programs for Science and Technology Innovation of Wenzhou (ZG2022037)。
文摘The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.
基金supported by the National Natural Science Foundation of China(22078030,52021004)Natural Science Foundation of Chongqing(2022NSCO-LZX0014)+1 种基金Fundamental Research Funds for the Central Universities(2022CDJQY-005,2023CDJXY-047)National Key Research and Development Project(2022YFC3901204)。
文摘Efficiently modulating the velocity distribution and flow pattern of non-Newtonian fluids is a critical challenge in the context of dual shaft eccentric mixers for process intensification,posing a significant barrier for the existing technologies.Accordingly,this work reports a convenient strategy that changes the kinetic energy to controllably regulate the flow patterns from radial flow to axial flow.Results showed that the desired velocity distribution and flow patterns could be effectively obtained by varying the number and structure of baffles to change kinetic energy,and a more uniform velocity distribution,which could not be reached normally in standard baffle dual shaft mixers,was easily obtained.Furthermore,a comparative analysis of velocity and shear rate distributions is employed to elucidate the mechanism behind the generation of flow patterns in various dual-shaft eccentric mixers.Importantly,there is little difference in the power number of the laminar flow at the same Reynolds number,meaning that the baffle type has no effect on the power consumption,while the power number of both unbaffle and U-shaped baffle mixing systems decreases compared with the standard baffle mixing system in the transition flow.Finally,at the same rotational condition,the dimensionless mixing time of the U-shaped baffle mixing system is 15.3%and 7.9%shorter than that of the standard baffle and the unbaffle mixing system,respectively,which shows the advantage of the U-shaped baffle in stirring rate.
基金fellowship support from the China Scholarship Council
文摘Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.
文摘Digital twins have emerged as a promising technology for maintenance applications,enabling organizations to simulate and monitor physical assets to improve their performance.In Operation and Maintenance(O&M),digital twin facilitates the diagnosis and prognosis of critical assets,forming the basis for smart maintenance planning and reducing downtime.However,there is a lack of standardized approaches for the qualifications of digital twins in maintenance,leading to low trustworthiness and limiting its application.This paper proposes a novel framework for the qualifications of digital twins in maintenance based on five pillars,namely fidelity,smartness,timeliness,integration,and standard compliance.We demonstrate the effectiveness of the framework through two case studies,showing how it can be implemented on digital twins for preventive maintenance and condition-based maintenance.Our proposed framework can help organizations across different industrial domains develop and implement digital twins in maintenance more effectively and efficiently,leading to significant benefits in terms of cost reduction,performance improvement,and sustainability.
基金supported by the Scientific and Innovative Action Plan of Shanghai(21N31900800)Shanghai Rising-Star Program(23QB1403500)+4 种基金the Shanghai Sailing Program(20YF1443000)Shanghai Science and Technology Commission,the Belt and Road Project(20310750500)Talent Project of SAAS(2023-2025)Runup Plan of SAAS(ZP22211)the SAAS Program for Excellent Research Team(2022(B-16))。
文摘Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field.
文摘Purpose:This study investigated the publication behaviour of 573 chief editors managing 432 Social Sciences journals in Turkey.Direct inquiries into editorial qualifications are rare,and this research aims to shed light on editors’scientific leadership capabilities.Design/methodology/approach:This study contrasts insider publication behaviour in national journals with international articles in journals indexed by the Web of Science(WOS)and Scopus.It argues that editors demonstrating a consistent ability to publish in competitive WOS and Scopus indexed journals signal high qualifications,while editors with persistent insider behaviour and strong local orientation signal low qualification.Scientific leadership capability is measured by first-authored publications.Correlation and various regression tests are conducted to identify significant determinants of publication behaviour.Findings:International publications are rare and concentrated on a few individuals,while insider publications are endemic and constitute nearly 40%of all national articles.Editors publish 3.2 insider papers and 8.1 national papers for every SSCI article.62%(58%)of the editors have no SSCI(Scopus)article,53%(63%)do not have a single lead-authored WOS(Scopus)article,and 89%publish at least one insider paper.Only a minority consistently publish in international journals;a fifth of the editors have three or more SSCI publications,and a quarter have three or more Scopus articles.Editors with foreign Ph.D.degrees are the most qualified and internationally oriented,whereas non-mobile editors are the most underqualified and underperform other editors by every measure.Illustrating the overall lack of qualification,nearly half of the professor editors and the majority of the WOS and Scopus indexed journal editors have no record of SSCI or Scopus publications.Research limitations:This research relies on local settings that encourage national publications at the expense of international journals.Findings should be evaluated in light of this setting and bearing in mind that narrow localities are more prone to peer favouritism.Practical implications:Incompetent and nepotistic editors pose an imminent threat to Turkish national literature.A lasting solution would likely include the dismissal and replacement of unqualified editors,as well as delisting and closure of dozens of journals that operate in questionable ways and serve little scientific purpose.Originality/value:To my knowledge,this is the first study to document the publication behaviour of national journal chief editors.
基金supported by the National Natural Science Foundation of China(52073145 and 82004081)the Jiangsu Talent Professor Program,Jiangsu Innovation Project of Graduate Student(KYCX23-2192)+1 种基金the National Natural Science Foundation of Nanjing University of Chinese Medicine(NZY82004081)the Special Grants of China Postdoctoral Science Foundation(2021T140792).
文摘Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations through the development of a potent MM-targeting chemotherapy strategy,which capitalized on the high binding affinity of alendronate for hydroxyapatite in the bone matrix and the homologous targeting of myeloma cell membranes,termed T-PB@M.The results from our investigations highlight the considerable bone affinity of T-PB@M,both in vitro and in vivo.Additionally,this material demonstrated a capability for drug release triggered by low pH conditions.Moreover,T-PB@M induced the generation of reactive oxygen species and triggered cell apoptosis through the poly(ADP-ribose)polymerase 1(PARP1)-Caspase-3-B-cell lymphoma-2(Bcl-2)pathway in MM cells.Notably,T-PB@M preferentially targeted bone-involved sites,thereby circumventing systemic toxic side effects and leading to prolonged survival of MM orthotopic mice.Therefore,this designed target-MM nanocarrier presents a promising and potentially effective platform for the precise treatment of MM.
基金supported by the NSFC(12271134,11771401)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1I1A3A01041943)。
文摘We consider dual Toeplitz operators on the orthogonal complements of the FockSobolev spaces of all nonnegative real orders.First,for symbols in a certain class containing all bounded functions,we study the problem of when an operator which is finite sums of the dual Toeplitz products is compact or zero.Next,for bounded symbols,we construct a symbol map and exhibit a short exact sequence associated with the C^(*)-algebra generated by all dual Toeplitz operators with bounded symbols.
基金supported by National Natural Science Foundation of China(Grant Nos.52272166,22205214,and 12204427).
文摘Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-based QDs.However,enormous attention has been paid to how to narrow their broadband spectra,ignoring the application advantages of the broadband emission.In this work,the AIGS QDs with controllable broad green-red dual-emission are first reported,which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals.Resultantly,the AIGS QDs exhibit broad dual-emission at green-and red-band evidenced by photoluminescence(PL)spectra,and the PL relative intensity and peak position can be finely adjusted.Furthermore,the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra.Accordingly,the AIGS QDs(the size consists of 17 nm and 3.7 nm)with 530 nm and 630 nm emission could successfully be synthesized at 220°C.By combining the blue light-emitting diode(LED)chips and dual-emission AIGS QDs,the constructed white light-emitting devices(WLEDs)exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage(CIE)chromaticity coordinates of(0.33,0.31),a correlated color temperature(CCT)of 5425 K,color rendering index(CRI)of 90,and luminous efficacy of radiation(LER)of 129 lm/W,which indicates that the AIGS QDs have huge potential for lighting applications.
基金This work was financially supported by the National Natural Science Foundation of China(52173106 and 22375154).
文摘Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challenges:The uncontrollable Zn dendrites,notorious parasitic side reactions,and sluggish Zn^(2+) ion transfer.To address these issues,we design a sustainable dual crosslinked cellulose hydrogel electrolyte,which has excellent mechanical strength to inhibit dendrite formation,high Zn^(2+) ions binding capacity to suppress side reaction,and abundant porous structure to facilitate Zn^(2+) ions migration.Consequently,the Zn||Zn cell with the hydrogel electrolyte can cycle stably for more than 400 h under a high current density of 10 mA cm^(−2).Moreover,the hydrogel electrolyte also enables the Zn||polyaniline cell to achieve high-rate and long-term cycling performance(>2000 cycles at 2000 mA g^(−1)).Remarkably,the hydrogel electrolyte is easily accessible and biodegradable,making the ARZBs attractive in terms of scalability and sustainability.
基金the financial supports from the Key Research and Development Project in Shaanxi Province(2023-YBGY-446)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SX-TD003)。
文摘Layer-type LiNi0.9Mn0.1O2is promising to be the primary cathode material for lithium-ion batteries(LIBs)due to its excellent electrochemical performance.Unfortunately,the cathode with high nickel content suffers from severely detrimental structural transformation that causes rapid capacity attenuation.Herein,site-specific dual-doping with Fe and Mg ions is proposed to enhance the structural stability of LiNi0.9Mn0.1O2.The Fe3+dopants are inserted into transition metal sites(3b)and can favorably provide additional redox potential to compensate for charge and enhance the reversibility of anionic redox.The Mg ions are doped into the Li sites(3a)and serve as O_(2)^(-)-Mg^(2+)-O_(2)^(-)pillar to reinforce the electrostatic cohesion between the two adjacent transition-metal layers,which further suppress the cracking and the generation of harmful phase transitions,ultimately improving the cyclability.The theoretical calculations,including Bader charge and crystal orbital Hamilton populations(COHP)analyses,confirm that the doped Fe and Mg can form stable bonds with oxygen and the electrostatic repulsion of O_(2)^(-)-O_(2)^(-)can be effectively suppressed,which effectively mitigates oxygen anion loss at the high delithiation state.This dual-site doping strategy offers new avenues for understanding and regulating the crystalline oxygen redox and demonstrates significant potential for designing high-performance cobalt-free nickel-rich cathodes.
基金Supported by the Natural Science Foundation of Fujian Province,No.2020J011087 and No.2022J011025Medical Innovation Project of Fujian Provincial Health Commission,No.2020CXA006Zhuhai Science and Technology Project,No.20181117E030040.
文摘BACKGROUND The efficacy of Vonoprazan-amoxicillin dual therapy(VAT)in the treatment of Helicobacter pylori(H.pylori)is controversial.AIM To evaluate the efficacy of VAT in the Chinese population.METHODS This prospective,multicenter,randomized,open-label,and two-stage study was conducted at 23 centers in Fujian,China(May 2021-April 2022).H.pylori-infected patients were randomized to bismuth quadruple therapy(BQT),BQT-Vonoprazan(BQT-V),seven-day VAT(VAT-7),ten-day VAT(VAT-10),and fourteen-day VAT(VAT-14)groups.The primary endpoint was the H.pylori eradication rate.The secondary endpoint was the frequency of adverse events.This study was registered with the Chinese Clinical Trial Registry,ChiCTR2100045778.RESULTS In the first stage,VAT-7 and BQT-V groups were selected for early termination because less than 23 among 28 cases were eradicated.In the second stage,the eradication rates for BQT,VAT-10,and VA-14 were 80.2%[95%confidence interval(95%CI):71.4%-86.8%],93.2%(86.6%-96.7%),92.2%(85.3%-96.0%)in the intention-to-treat(ITT)analysis,and 80.9%(95%CI:71.7%-87.5%),94.0%(87.5%-97.2%),and 93.9%(87.4%-97.2%)in the per-protocol analysis.The ITT analysis showed a higher eradication rate in the VAT-10 and VAT-14 groups than in the BQT group(P=0.022 and P=0.046,respectively).The incidence of adverse events in the VAT-10 and VAT-14 groups was lower than in the BQT group(25.27%and 13.73%vs 37.62%,respectively;P<0.001).CONCLUSION VAT with a duration of 10 or 14 days achieves a higher eradication rate than the BQT,with a more tolerable safety profile in H.pylori-infected patients in Fujian.Huang XP et al.VAT for H.pylori eradication.
基金supported in part by the Beijing Natural Science Foundation under Grant L192031the National Key Research and Development Program under Grant 2020YFA0711303。
文摘Unmanned Aerial Vehicle(UAV)ad hoc network has achieved significant growth for its flexibility,extensibility,and high deployability in recent years.The application of clustering scheme for UAV ad hoc network is imperative to enhance the performance of throughput and energy efficiency.In conventional clustering scheme,a single cluster head(CH)is always assigned in each cluster.However,this method has some weaknesses such as overload and premature death of CH when the number of UAVs increased.In order to solve this problem,we propose a dual-cluster-head based medium access control(DCHMAC)scheme for large-scale UAV networks.In DCHMAC,two CHs are elected to manage resource allocation and data forwarding cooperatively.Specifically,two CHs work on different channels.One of CH is used for intra-cluster communication and the other one is for inter-cluster communication.A Markov chain model is developed to analyse the throughput of the network.Simulation result shows that compared with FM-MAC(flying ad hoc networks multi-channel MAC,FM-MAC),DCHMAC improves the throughput by approximately 20%~50%and prolongs the network lifetime by approximately 40%.
基金SKM gratefully acknowledges the support of Indian Council of Medical Research(ICMR),New Delhi,India(File No:6/9-7(308)/2023-ECD-II)RH acknowledges the SVMCM fellowship,West Bengal.
文摘Visceral leishmaniasis(VL)is a neglected tropical disease,and this review has summarized the current treatment scenario and its prospects.It also highlights alternative approaches used by research groups in India and around the world to develop cutting-edge and potent anti-leishmanial treatments.Even though numerous medications could be utilized to treat VL,the limitations of current treatments including their toxicity,cost,route of administration,and duration of doses,have contributed to the emergence of resistance.Combination therapy might be a better option due to its shorter duration,easier route of administration,and ability to extend the lifespan of individual drugs.However,there is a risk of not delivering both the drugs to the target site together,which can be overcome by the liposomal entrapment of those drugs and at a time knock an opportunity to reduce the dosage of amphotericin B if the combination drug provides a synergistic effect with it.Therefore,this review presents a novel strategy to fight against VL by introducing dual drug-loaded liposomes.
基金supported by the National Social Science Fund of China[Grant No.21FJYB058].
文摘The pathways to achieving carbon neutrality at the city level are diverse due to varying energy supply and demand conditions.Shanghai faces obstacles such as limited land resources,high costs of renewable energy technologies,and instability of renewable energy.These challenges hinder the city’s efforts to achieve carbon peak and carbon neutrality(dual carbon).Therefore,Shanghai must identify and optimize its development path for renewable energy under the dual carbon goal.We employed the Low Emissions Analysis Platform Shanghai(LEAP-SH)model to simulate the impact of policies,such as industrial upgrading,energy efficiency improvement,energy structure optimization,increased technical innovation on energy,and ecological restoration,on the carbon emission pathways from 2022 to 2060 using five different scenarios.Our results indicate that Shanghai has the potential to achieve carbon neutrality in 2059 by promoting carbon reduction,pollution control,and green expansion.Moreover,we determined that the manufacturing industry;power generation industry;and transportation,storage,and mail services are the three major sectors for emission reduction under the dual carbon goal.Furthermore,the capacity and output of coal-fired power plants will be gradually replaced by offshore wind power in the dual carbon pathway.Finally,this study proposes countermeasures and suggestions for Shanghai to attain the dual carbon goal and high-quality development.
文摘Objective The detection of RNA single nucleotide polymorphism(SNP)is of great importance due to their association with protein expression related to various diseases and drug responses.At present,splintR ligase-assisted methods are important approaches for RNA direct detection,but its specificity will be limited when the fidelity of ligases is not ideal.The aim of this study was to create a method to improve the specificity of splintR ligase for RNA detection.Methods In this study,a dualcompetitive-padlock-probe(DCPLP)assay without the need for additional enzymes or reactions is proposed to improve specificity of splintR ligase ligation.To verify the method,we employed dual competitive padlock probe-mediated rolling circle amplification(DCPLP-RCA)to genotype the CYP2C9 gene.Results The specificity was well improved through the competition and strand displacement of dual padlock probe,with an 83.26%reduction in nonspecific signal.By detecting synthetic RNA samples,the method demonstrated a dynamic detection range of 10 pmol/L-1 nmol/L.Furthermore,clinical samples were applied to the method to evaluate its performance,and the genotyping results were consistent with those obtained using the qPCR method.Conclusion This study has successfully established a highly specific direct RNA SNP detection method,and provided a novel avenue for accurate identification of various types of RNAs.
基金supported by the National Research Foundation of Korea grant funded by the Korea government(MSIT)(NRF-2020R1A3B2079803)the computational time provided by KISTI(KSC-2023-CRE-0166).
文摘Dual ion storage hybrid supercapacitors(HsCs)are considered as a promising device to overcome the limited energy density of existing supercapacitors while preserving high power and long cyclability.However,the development of high-capacity anion-storing materials,which can be paired with fast charg-ing capacitive electrodes,lags behind cation-storing counterparts.Herein,we demonstrate the surface faradaic OH-storage mechanism of anion storing perovskite oxide composites and their application in high-performance dual ion HsCs.The oxygen vacancy and nanoparticle size of the reduced LaMnO_(3)(r-LaMnO_(3))were controlled,while r-LaMnO_(3) was chemically coupled with ozonated carbon nanotubes(oCNTs)for the improved anion storing capacity and cycle performance.As taken by in-situ and ex-situ spectroscopic and computational analyses,OH-ions are inserted into the oxygen vacancies coordi-nating with octahedral Mn with the increase in the oxidation state of Mn during the charging process or vice versa.Configuring OH-storing r-LaMnO_(3)/oCNT composite with Na*storing MXene,the as-fabricated aqueous dual ion HSCs achieved the cycle performance of 73.3%over 10,000 cycles,delivering the max-imum energy and power densities of 47.5 w h kg^(-1) and 8 kw kg^(-1),respectively,far exceeding those of previously reported aqueous anion and dual ion storage cells.This research establishes a foundation for the unique anion storage mechanism of the defect engineered perovskite oxides and the advancement of dual ion hybrid energy storage devices with high energy and power densities.