A magnetically insulated transmission line (MITL) is used to transmit high power electric pulses in large pulse power systems. However, current loss is unavoidable, especially when the current density is up to 1 MA/...A magnetically insulated transmission line (MITL) is used to transmit high power electric pulses in large pulse power systems. However, current loss is unavoidable, especially when the current density is up to 1 MA/cm. In the paper, the current loss of an MITL made of stainless steel, which is usually used in large pulse power generators, is experimentally studied, and possible mechanisms to explain the current loss of the MITL are analyzed and discussed. From the experimental results, the relationship between loss current density and input current density follows approximately a power law. The loss is also related to the configuration of the MITL.展开更多
The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques...The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques are encumbered with sophisticated transformations, which weaken the techniques. Power loss minimization is crucial to the efficient design and operation of power transmission lines. Minimization of losses is one way to meet steady grid supply, especially at peak demand. Thus, this paper has presented a gradient technique to obtain optimal variables and values from the power loss model, which efficiently minimizes power losses by modifying the traditional power loss model that combines Ohm and Corona losses. Optimality tests showed that the unmodified model does not support the minimization of power losses on transmission lines as the Hessian matrix portrayed the maximization of power losses. However, the modified model is consistent with the gradient method of optimization, which yielded optimum variables and values from the power loss model developed in this study. The unmodified (modified) models for Bujagali-Kawanda 220 kV and Masaka West-Mbarara North 132 kV transmission lines in Uganda showed maximum power losses of 0.406 (0.391) and 0.452 (0.446) kW/km/phase respectively. These results indicate that the modified model is superior to the unmodified model in minimizing power losses in the transmission lines and should be implemented for the efficient design and operation of power transmission lines within and outside Uganda for the same transmission voltages.展开更多
Coaxial-disk transitions can generate non-uniform magnetic fields and abrupt impedance variations in magnetically insulated transmission lines(MITLs),resulting in disturbed electron flow and non-negligible current los...Coaxial-disk transitions can generate non-uniform magnetic fields and abrupt impedance variations in magnetically insulated transmission lines(MITLs),resulting in disturbed electron flow and non-negligible current loss.In this paper,3 D particle-in-cell simulations are conducted with UNPIC-3 d to investigate the current loss mechanism and the influence of the input parameters of the coaxial-disk transition on current loss in an MITL system.The results reveal that the magnetic field non-uniformity causes major current loss in the MITL after the coaxialdisk transition,and the non-uniformity decreases with the distance away from the transition.The uniformity of the magnetic field is improved when increasing the number of feed lines of a linear transformer driver-based accelerator with coaxial-disk transitions.The number of input feed lines should be no less than four in the azimuthal distribution to obtain acceptable uniformity of the magnetic field.To make the ratio of the current loss to the total current of the accelerator less than 2%at peak anode current,the ratio of the current in each feed line to the total current should be no less than 8%.展开更多
In the present paper, to build model of two-line queuing system with losses GI/G/2/0, the approach introduced by V.S. Korolyuk and A.F. Turbin, is used. It is based on application of the theory of semi-Markov processe...In the present paper, to build model of two-line queuing system with losses GI/G/2/0, the approach introduced by V.S. Korolyuk and A.F. Turbin, is used. It is based on application of the theory of semi-Markov processes with arbitrary phase space of states. This approach allows us to omit some restrictions. The stationary characteristics of the system have been defined, assuming that the incoming flow of requests and their service times have distributions of general form. The particular cases of the system were considered. The used approach can be useful for modeling systems of various purposes.展开更多
An improved method for calculating the corona power loss and the ground-level electric field on HVAC transmission lines induced by corona is proposed.Based on a charge simulation method combined with a method of succe...An improved method for calculating the corona power loss and the ground-level electric field on HVAC transmission lines induced by corona is proposed.Based on a charge simulation method combined with a method of successive images,the proposed method has the number and location of the simulated charges not arbitrary.When the surface electric field of a conductor exceeds the onset value,charges are emitted from corona into the space around,and the space ions and the surface charges on each sub-conductor are simulated by using the images of the other sub-conductors.The displacements of the space ions are calculated at every time step during corona periods in both the positive and the negative half cycles.Several examples are calculated by using the proposed method,and the calculated electric field at the ground level and the corona power loss agree well with previous measurements.The results show that simulating 12 charges in each conductor during 600 time steps in one cycle takes less time while guarantees the accuracy.The corona discharge from a 220 kV transmission line enhances slightly(less than 2%) the electric field at the ground level,but this effect is little from a 500 kV line.The improved method is a good compromise between the time cost and the accuracy of calculation.展开更多
Background and Objective It has been proven that copy number gain/or loss (copy number variation CNV) in uences gene expression and result in phenotypic variation by
The proton distribution in inner radiation belt is often affected by strong geomagnetic storm disturbance.Based on the data of the sun-synchronous CSES satellite,which carries with several high energy particle payload...The proton distribution in inner radiation belt is often affected by strong geomagnetic storm disturbance.Based on the data of the sun-synchronous CSES satellite,which carries with several high energy particle payloads and was launched in February 2018,we analyzed the extensive proton variations in the inner radiation belt in a wide energy range of 2 MeV-220 MeV during 2018 major geomagnetic storm.The result indicates that the loss mechanism of protons was energy dependence which is consistent with some previous studies.For protons at low energy 2 MeV-20 MeV,the fluxes were decreased during main phase of the storm and did not come back quickly during the recovery phase,which is likely to be caused by Coulomb collision due to neutral atmosphere density variation.At higher energy 30 MeV-100 MeV,it was confirmed that the magnetic field line curvature scattering plays a significant role in the proton loss phenomenon during this storm.At highest energies>100 MeV,the fluxes of protons kept a stable level and did not exhibit a significant loss during this storm.展开更多
Line-of-sight (LOS) link planning condition has been observed to have effects on the atmospheric factor which cause crucial signal loss. The main objective of the planning was to improve a set of a link using point to...Line-of-sight (LOS) link planning condition has been observed to have effects on the atmospheric factor which cause crucial signal loss. The main objective of the planning was to improve a set of a link using point to point condition to assist the performance in emerging its strategy for handling the fixed WLAN service. The purpose of this paper is to provide a quick description of various propagation loss mechanisms on Link Budget Tool (LBT). LBT is customized to create point to point link for local area network (LAN) through radio frequency range operating between 2.400 GHz and 5.800 GHz. This software is able to define the effect of signal loss and expected performances according to the distances between link propagation conditions based on a number of system parameters.展开更多
Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to ...Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to quantify the efficiencies of voltage-transport, energy- transport and power-transport for a transmission-line impedance transformer as functions of ψ (the ratio of the output impedance to the input impedance of the transformer) and Г (the ratio of the pulse width to the one-way transit time of the transformer) under a large scale of m (the coefficient of the generalized exponential impedance profile). Simulation results suggest that with the increase in Г, from 0 to ∞, the power transport efficiency first increases and then decreases. The maximum power transport efficiency can reach 90% or even higher for an exponential impedance profile (m = 1). With a consideration of dissipative loss in the dielectric and electrodes of the transformer, two representative designs of the water-insulated transformer are investigated for the next generation of petawatt-class z-pinch drivers. It is found that the dissipative losses in the electrodes are negligibly small, below 0.1%, but the dissipative loss in the water dielectric is about 1% to 4%.展开更多
The analysis of the loss of distributed photovoltaic power generation systems involves the interests of energy users,energy-saving service companies,and power grid companies,so it has always been the focus of the indu...The analysis of the loss of distributed photovoltaic power generation systems involves the interests of energy users,energy-saving service companies,and power grid companies,so it has always been the focus of the industry and society in some manner or another.However,the related analysis for an actual case that considers different cooperative corporations’benefits is lacking in the presently available literature.This paper takes the distributed rooftop photovoltaic power generation project in an industrial park as the object,studies the analysis and calculation methods of line loss and transformer loss,analyzes the change of transformer loss under different temperatures and different load rates,and compares the data and trend of electricity consumption and power generation in industrial parks before and after the photovoltaic operation.This paper explores and practices the analysis method of the operating loss of distributed photovoltaic power generation and provides an essential reference for the benefit analysis and investment cost estimation of distributed photovoltaic power generation systems in industrial parks.The analyzed results reveal that the change loss is stable after the photovoltaic is connected,and there is no additional transformer loss.And before and after the photovoltaic system installation,there was no significant change in the total monthly data difference between the total meter and the sub-meter.展开更多
Most of the existing roughness estimation methods for water tunnels are related to either unlined or concrete/steel-lined tunnels. With the improvement in shotcrete technology, advancement in tunneling equipment and c...Most of the existing roughness estimation methods for water tunnels are related to either unlined or concrete/steel-lined tunnels. With the improvement in shotcrete technology, advancement in tunneling equipment and cost and time effectiveness, future water tunnels built for hydropower projects will consist of rock support with the extensive use of shotcrete lining in combination with systematic bolting and concrete lining in the tunnel invert. However, very little research has been performed to find out tunnel surface roughness for shotcrete-lined tunnels with invert concrete, which is important in calculating overall head loss along the waterway system to achieve an optimum and economic hydropower plant design. Hence, the main aim of this article is to review prevailing methods available to calculate tunnel wall roughness, and to use existing methods of head loss calculation to back-calculate roughness of the shotcrete-lined tunnels with invert concrete by exploiting measured head loss and actual cross-sectional profiles of two headrace tunnels from Nepal. Furthermore, the article aims to establish a link between the Manning coefficient and the physical roughness of the shotcrete-lined tunnel with invert concrete and to establish a link between over-break thickness and physical roughness. Attempts are also made to find a correlation between over-break thickness and rock mass quality described by Q-system and discussions are conducted on the potential cost savings that can be made if concrete lining is replaced by shotcrete lining with invert concrete.展开更多
On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings...On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.展开更多
基金supported by National Natural Science Foundation of China(No.10905047)
文摘A magnetically insulated transmission line (MITL) is used to transmit high power electric pulses in large pulse power systems. However, current loss is unavoidable, especially when the current density is up to 1 MA/cm. In the paper, the current loss of an MITL made of stainless steel, which is usually used in large pulse power generators, is experimentally studied, and possible mechanisms to explain the current loss of the MITL are analyzed and discussed. From the experimental results, the relationship between loss current density and input current density follows approximately a power law. The loss is also related to the configuration of the MITL.
文摘The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques are encumbered with sophisticated transformations, which weaken the techniques. Power loss minimization is crucial to the efficient design and operation of power transmission lines. Minimization of losses is one way to meet steady grid supply, especially at peak demand. Thus, this paper has presented a gradient technique to obtain optimal variables and values from the power loss model, which efficiently minimizes power losses by modifying the traditional power loss model that combines Ohm and Corona losses. Optimality tests showed that the unmodified model does not support the minimization of power losses on transmission lines as the Hessian matrix portrayed the maximization of power losses. However, the modified model is consistent with the gradient method of optimization, which yielded optimum variables and values from the power loss model developed in this study. The unmodified (modified) models for Bujagali-Kawanda 220 kV and Masaka West-Mbarara North 132 kV transmission lines in Uganda showed maximum power losses of 0.406 (0.391) and 0.452 (0.446) kW/km/phase respectively. These results indicate that the modified model is superior to the unmodified model in minimizing power losses in the transmission lines and should be implemented for the efficient design and operation of power transmission lines within and outside Uganda for the same transmission voltages.
基金supported by National Natural Science Foundation of China(Nos.U1530133 and 52007152)the Special Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(No.SKLIPR2005)the Youth Innovation Team of Shaanxi Universities。
文摘Coaxial-disk transitions can generate non-uniform magnetic fields and abrupt impedance variations in magnetically insulated transmission lines(MITLs),resulting in disturbed electron flow and non-negligible current loss.In this paper,3 D particle-in-cell simulations are conducted with UNPIC-3 d to investigate the current loss mechanism and the influence of the input parameters of the coaxial-disk transition on current loss in an MITL system.The results reveal that the magnetic field non-uniformity causes major current loss in the MITL after the coaxialdisk transition,and the non-uniformity decreases with the distance away from the transition.The uniformity of the magnetic field is improved when increasing the number of feed lines of a linear transformer driver-based accelerator with coaxial-disk transitions.The number of input feed lines should be no less than four in the azimuthal distribution to obtain acceptable uniformity of the magnetic field.To make the ratio of the current loss to the total current of the accelerator less than 2%at peak anode current,the ratio of the current in each feed line to the total current should be no less than 8%.
文摘In the present paper, to build model of two-line queuing system with losses GI/G/2/0, the approach introduced by V.S. Korolyuk and A.F. Turbin, is used. It is based on application of the theory of semi-Markov processes with arbitrary phase space of states. This approach allows us to omit some restrictions. The stationary characteristics of the system have been defined, assuming that the incoming flow of requests and their service times have distributions of general form. The particular cases of the system were considered. The used approach can be useful for modeling systems of various purposes.
基金supported by National Basic Research Program of China(973 Program)(2011CB209404)
文摘An improved method for calculating the corona power loss and the ground-level electric field on HVAC transmission lines induced by corona is proposed.Based on a charge simulation method combined with a method of successive images,the proposed method has the number and location of the simulated charges not arbitrary.When the surface electric field of a conductor exceeds the onset value,charges are emitted from corona into the space around,and the space ions and the surface charges on each sub-conductor are simulated by using the images of the other sub-conductors.The displacements of the space ions are calculated at every time step during corona periods in both the positive and the negative half cycles.Several examples are calculated by using the proposed method,and the calculated electric field at the ground level and the corona power loss agree well with previous measurements.The results show that simulating 12 charges in each conductor during 600 time steps in one cycle takes less time while guarantees the accuracy.The corona discharge from a 220 kV transmission line enhances slightly(less than 2%) the electric field at the ground level,but this effect is little from a 500 kV line.The improved method is a good compromise between the time cost and the accuracy of calculation.
基金supported by a grant from the key project of the National Natural Science Foundation of China (to Qinghua ZHOU)(No. 30430300)National Natural Science Foundation of China (to Qinghua ZHOU)(No. 30670922)INTERNATION Scienc and Techniquie COOPRATION PROGRAM OF CHINA (ISCP) (to Qinghua ZHOU)(No.2006DFB32330)
文摘Background and Objective It has been proven that copy number gain/or loss (copy number variation CNV) in uences gene expression and result in phenotypic variation by
基金Project supported by the Research Fund from the National Institute of Natural Hazards,Ministry of Emergency Management of China(Grant No.2021-JBKY-11)the National Natural Science Foundation of China(Grant Nos.41904149 and 12173038)the Stable Support Projects of Basic Scientific Research Institutes(Grant No.A132001W07)。
文摘The proton distribution in inner radiation belt is often affected by strong geomagnetic storm disturbance.Based on the data of the sun-synchronous CSES satellite,which carries with several high energy particle payloads and was launched in February 2018,we analyzed the extensive proton variations in the inner radiation belt in a wide energy range of 2 MeV-220 MeV during 2018 major geomagnetic storm.The result indicates that the loss mechanism of protons was energy dependence which is consistent with some previous studies.For protons at low energy 2 MeV-20 MeV,the fluxes were decreased during main phase of the storm and did not come back quickly during the recovery phase,which is likely to be caused by Coulomb collision due to neutral atmosphere density variation.At higher energy 30 MeV-100 MeV,it was confirmed that the magnetic field line curvature scattering plays a significant role in the proton loss phenomenon during this storm.At highest energies>100 MeV,the fluxes of protons kept a stable level and did not exhibit a significant loss during this storm.
文摘Line-of-sight (LOS) link planning condition has been observed to have effects on the atmospheric factor which cause crucial signal loss. The main objective of the planning was to improve a set of a link using point to point condition to assist the performance in emerging its strategy for handling the fixed WLAN service. The purpose of this paper is to provide a quick description of various propagation loss mechanisms on Link Budget Tool (LBT). LBT is customized to create point to point link for local area network (LAN) through radio frequency range operating between 2.400 GHz and 5.800 GHz. This software is able to define the effect of signal loss and expected performances according to the distances between link propagation conditions based on a number of system parameters.
基金supported by National Natural Science Foundation of China(No.50637010)
文摘Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to quantify the efficiencies of voltage-transport, energy- transport and power-transport for a transmission-line impedance transformer as functions of ψ (the ratio of the output impedance to the input impedance of the transformer) and Г (the ratio of the pulse width to the one-way transit time of the transformer) under a large scale of m (the coefficient of the generalized exponential impedance profile). Simulation results suggest that with the increase in Г, from 0 to ∞, the power transport efficiency first increases and then decreases. The maximum power transport efficiency can reach 90% or even higher for an exponential impedance profile (m = 1). With a consideration of dissipative loss in the dielectric and electrodes of the transformer, two representative designs of the water-insulated transformer are investigated for the next generation of petawatt-class z-pinch drivers. It is found that the dissipative losses in the electrodes are negligibly small, below 0.1%, but the dissipative loss in the water dielectric is about 1% to 4%.
基金supported by the State Grid Corporation of China Science and Technology Project(5216AG21000 K).
文摘The analysis of the loss of distributed photovoltaic power generation systems involves the interests of energy users,energy-saving service companies,and power grid companies,so it has always been the focus of the industry and society in some manner or another.However,the related analysis for an actual case that considers different cooperative corporations’benefits is lacking in the presently available literature.This paper takes the distributed rooftop photovoltaic power generation project in an industrial park as the object,studies the analysis and calculation methods of line loss and transformer loss,analyzes the change of transformer loss under different temperatures and different load rates,and compares the data and trend of electricity consumption and power generation in industrial parks before and after the photovoltaic operation.This paper explores and practices the analysis method of the operating loss of distributed photovoltaic power generation and provides an essential reference for the benefit analysis and investment cost estimation of distributed photovoltaic power generation systems in industrial parks.The analyzed results reveal that the change loss is stable after the photovoltaic is connected,and there is no additional transformer loss.And before and after the photovoltaic system installation,there was no significant change in the total monthly data difference between the total meter and the sub-meter.
文摘Most of the existing roughness estimation methods for water tunnels are related to either unlined or concrete/steel-lined tunnels. With the improvement in shotcrete technology, advancement in tunneling equipment and cost and time effectiveness, future water tunnels built for hydropower projects will consist of rock support with the extensive use of shotcrete lining in combination with systematic bolting and concrete lining in the tunnel invert. However, very little research has been performed to find out tunnel surface roughness for shotcrete-lined tunnels with invert concrete, which is important in calculating overall head loss along the waterway system to achieve an optimum and economic hydropower plant design. Hence, the main aim of this article is to review prevailing methods available to calculate tunnel wall roughness, and to use existing methods of head loss calculation to back-calculate roughness of the shotcrete-lined tunnels with invert concrete by exploiting measured head loss and actual cross-sectional profiles of two headrace tunnels from Nepal. Furthermore, the article aims to establish a link between the Manning coefficient and the physical roughness of the shotcrete-lined tunnel with invert concrete and to establish a link between over-break thickness and physical roughness. Attempts are also made to find a correlation between over-break thickness and rock mass quality described by Q-system and discussions are conducted on the potential cost savings that can be made if concrete lining is replaced by shotcrete lining with invert concrete.
文摘On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.