目的探讨益气活血化浊解毒方调控KAT3B/STING轴介导的小胶质细胞极化对缺血性脑卒中大鼠神经功能的影响。方法复制缺血性脑卒中大鼠模型。将复制成功的60只大鼠分为缺血性脑卒中组、益气活血化浊解毒方低剂量组(低剂量组)、益气活血化...目的探讨益气活血化浊解毒方调控KAT3B/STING轴介导的小胶质细胞极化对缺血性脑卒中大鼠神经功能的影响。方法复制缺血性脑卒中大鼠模型。将复制成功的60只大鼠分为缺血性脑卒中组、益气活血化浊解毒方低剂量组(低剂量组)、益气活血化浊解毒方高剂量组(高剂量组)、益气活血化浊解毒方高剂量+2,5-己酮可可碱(DMXAA)组(高剂量+DMXAA组),每组15只。另取15只正常大鼠为Sham组。低剂量组大鼠灌胃0.2 mL 27.5 g/mL的益气活血化浊解毒方药液,高剂量组大鼠灌胃0.2 mL 55.0 g/mL的益气活血化浊解毒方药液,高剂量+DMXAA组大鼠灌胃0.2 mL 55.0 g/mL的益气活血化浊解毒方药液和25 mg/kg的DMXAA,Sham组和缺血性脑卒中组给予等体积生理盐水代替药物;除高剂量+DMXAA组外,其余组大鼠再给予等体积二甲基亚砜溶液灌胃,1 d/次,连续4周。Zea-Longa评分和网屏试验评分评估大鼠神经功能和神经行为学;检测大鼠脑组织含水量;TTC染色法检测大鼠脑梗死面积;酶联免疫吸附试验检测大鼠血清LDH和NGF水平和缺血侧皮层组织TNF-α、IL-6、IL-10水平;HE染色观察大鼠缺血侧皮层组织病理变化;Western blotting检测大鼠缺血侧皮层组织iNOS、Iba1、CD68、CD40、CD206、Arg-1、Cleaved caspase-3、KAT3B、STING蛋白表达。结果缺血性脑卒中组大鼠Zea-Longa评分和网屏试验评分、脑组织含水量、脑梗死面积百分比均高于Sham组(P<0.05),低剂量组和高剂量组大鼠Zea-Longa评分和网屏试验评分、脑组织含水量、脑梗死面积百分比均低于缺血性脑卒中组(P<0.05),高剂量+DMXAA组大鼠Zea-Longa评分和网屏试验评分、脑组织含水量、脑梗死面积百分比均高于高剂量组(P<0.05)。缺血性脑卒中组大鼠NGF和IL-10水平低于Sham组,LDH、TNF-α和IL-6水平高于Sham组(P<0.05);低剂量组和高剂量组大鼠NGF和IL-10水平高于缺血性脑卒中组,LDH、TNF-α和IL-6水平低于缺血性脑卒中组(P<0.05);高剂量+DMXAA组大鼠NGF和IL-10水平低于高剂量组,LDH、TNF-α和IL-6高于高剂量组(P<0.05)。与缺血性脑卒中组比较,低剂量组和高剂量组缺血侧皮层神经元形态有明显改善。缺血性脑卒中组大鼠缺血侧皮层组织中iNOS、Iba1、CD68和CD40蛋白相对表达量比Sham组高,CD206和Arg-1蛋白相对表达量比Sham组低(P<0.05);低剂量组和高剂量组大鼠缺血侧皮层组织中iNOS、Iba1、CD68和CD40蛋白相对表达量比缺血性脑卒中组低,CD206和Arg-1蛋白相对表达量比缺血性脑卒中组高(P<0.05);高剂量+DMXAA组大鼠缺血侧皮层组织中iNOS、Iba1、CD68和CD40蛋白相对表达量比高剂量组高,CD206和Arg-1蛋白相对表达量比高剂量组低(P<0.05)。结论益气活血化浊解毒方可调节缺血性脑卒中大鼠小胶质细胞极化,减轻神经炎症和神经损伤,改善神经功能,可能与抑制KAT3B/STING轴有关。展开更多
Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzhei...Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.展开更多
A recent study by Wang et al,published in the World Journal of Psychiatry,provided preventative and therapeutic strategies for the comorbidity of obesity and depression.The gut-brain axis,which acts as a two-way commu...A recent study by Wang et al,published in the World Journal of Psychiatry,provided preventative and therapeutic strategies for the comorbidity of obesity and depression.The gut-brain axis,which acts as a two-way communication system between the gastrointestinal tract and the central nervous system,plays a pivotal role in the pathogenesis of these conditions.Evidence suggests that metabolic byproducts,such as short-chain fatty acids,lipopolysaccharide and bile acids,which are generated by the gut microbiota,along with neurotransmitters and inflammatory mediators within the gut-brain axis,modulate the host's metabolic processes,neuronal regulation,and immune responses through diverse mechanisms.The interaction between obesity and depression via the gut-brain axis involves disruptions in the gut microbiota balance,inflammatory immune responses,and alterations in the neuroendocrine system.Modulating the gut-brain axis,for example,through a ketogenic diet,the use of probiotics,and the supplementation of antioxidants,offers new remedial approaches for obesity and depression.Future research that explores the mechanisms of the gut-brain axis is needed to provide more evidence for clinical treatment.展开更多
文摘目的探讨益气活血化浊解毒方调控KAT3B/STING轴介导的小胶质细胞极化对缺血性脑卒中大鼠神经功能的影响。方法复制缺血性脑卒中大鼠模型。将复制成功的60只大鼠分为缺血性脑卒中组、益气活血化浊解毒方低剂量组(低剂量组)、益气活血化浊解毒方高剂量组(高剂量组)、益气活血化浊解毒方高剂量+2,5-己酮可可碱(DMXAA)组(高剂量+DMXAA组),每组15只。另取15只正常大鼠为Sham组。低剂量组大鼠灌胃0.2 mL 27.5 g/mL的益气活血化浊解毒方药液,高剂量组大鼠灌胃0.2 mL 55.0 g/mL的益气活血化浊解毒方药液,高剂量+DMXAA组大鼠灌胃0.2 mL 55.0 g/mL的益气活血化浊解毒方药液和25 mg/kg的DMXAA,Sham组和缺血性脑卒中组给予等体积生理盐水代替药物;除高剂量+DMXAA组外,其余组大鼠再给予等体积二甲基亚砜溶液灌胃,1 d/次,连续4周。Zea-Longa评分和网屏试验评分评估大鼠神经功能和神经行为学;检测大鼠脑组织含水量;TTC染色法检测大鼠脑梗死面积;酶联免疫吸附试验检测大鼠血清LDH和NGF水平和缺血侧皮层组织TNF-α、IL-6、IL-10水平;HE染色观察大鼠缺血侧皮层组织病理变化;Western blotting检测大鼠缺血侧皮层组织iNOS、Iba1、CD68、CD40、CD206、Arg-1、Cleaved caspase-3、KAT3B、STING蛋白表达。结果缺血性脑卒中组大鼠Zea-Longa评分和网屏试验评分、脑组织含水量、脑梗死面积百分比均高于Sham组(P<0.05),低剂量组和高剂量组大鼠Zea-Longa评分和网屏试验评分、脑组织含水量、脑梗死面积百分比均低于缺血性脑卒中组(P<0.05),高剂量+DMXAA组大鼠Zea-Longa评分和网屏试验评分、脑组织含水量、脑梗死面积百分比均高于高剂量组(P<0.05)。缺血性脑卒中组大鼠NGF和IL-10水平低于Sham组,LDH、TNF-α和IL-6水平高于Sham组(P<0.05);低剂量组和高剂量组大鼠NGF和IL-10水平高于缺血性脑卒中组,LDH、TNF-α和IL-6水平低于缺血性脑卒中组(P<0.05);高剂量+DMXAA组大鼠NGF和IL-10水平低于高剂量组,LDH、TNF-α和IL-6高于高剂量组(P<0.05)。与缺血性脑卒中组比较,低剂量组和高剂量组缺血侧皮层神经元形态有明显改善。缺血性脑卒中组大鼠缺血侧皮层组织中iNOS、Iba1、CD68和CD40蛋白相对表达量比Sham组高,CD206和Arg-1蛋白相对表达量比Sham组低(P<0.05);低剂量组和高剂量组大鼠缺血侧皮层组织中iNOS、Iba1、CD68和CD40蛋白相对表达量比缺血性脑卒中组低,CD206和Arg-1蛋白相对表达量比缺血性脑卒中组高(P<0.05);高剂量+DMXAA组大鼠缺血侧皮层组织中iNOS、Iba1、CD68和CD40蛋白相对表达量比高剂量组高,CD206和Arg-1蛋白相对表达量比高剂量组低(P<0.05)。结论益气活血化浊解毒方可调节缺血性脑卒中大鼠小胶质细胞极化,减轻神经炎症和神经损伤,改善神经功能,可能与抑制KAT3B/STING轴有关。
基金financially supported by the National Natural Science Foundation of China,No.823 74552 (to WP)the Science and Technology Innovation Program of Hunan Province,No.2022RC1220 (to WP)+1 种基金the Natural Science Foundation of Hunan Province of China,Nos.2020JJ4803 (to WP),2022JJ40723 (to MY)the Scientific Research Launch Project for New Employees of the Second Xiangya Hospital of Central South University (to MY)
文摘Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.
文摘A recent study by Wang et al,published in the World Journal of Psychiatry,provided preventative and therapeutic strategies for the comorbidity of obesity and depression.The gut-brain axis,which acts as a two-way communication system between the gastrointestinal tract and the central nervous system,plays a pivotal role in the pathogenesis of these conditions.Evidence suggests that metabolic byproducts,such as short-chain fatty acids,lipopolysaccharide and bile acids,which are generated by the gut microbiota,along with neurotransmitters and inflammatory mediators within the gut-brain axis,modulate the host's metabolic processes,neuronal regulation,and immune responses through diverse mechanisms.The interaction between obesity and depression via the gut-brain axis involves disruptions in the gut microbiota balance,inflammatory immune responses,and alterations in the neuroendocrine system.Modulating the gut-brain axis,for example,through a ketogenic diet,the use of probiotics,and the supplementation of antioxidants,offers new remedial approaches for obesity and depression.Future research that explores the mechanisms of the gut-brain axis is needed to provide more evidence for clinical treatment.