期刊文献+
共找到200,248篇文章
< 1 2 250 >
每页显示 20 50 100
Web GIS-Based Temporal Analysis of Climatic Factors Impacting Heat Stroke in Karachi
1
作者 Ali Atif Mahnoor Rehman +3 位作者 Muhammad Butt Syed Mahmood Shahid Ghazi Rashid Mehmood 《Journal of Geographic Information System》 2024年第1期61-69,共9页
This study focuses on the impact of climate change, specifically the increasing threat of heatwaves, in Pakistan, with a particular emphasis on the city of Karachi. The Pakistan Meteorological Department (PMD) analyse... This study focuses on the impact of climate change, specifically the increasing threat of heatwaves, in Pakistan, with a particular emphasis on the city of Karachi. The Pakistan Meteorological Department (PMD) analysed a century of climatic data to reveal warming trends, attributing them to human-induced factors. The vulnerability of Pakistan to climate change is highlighted, given its warm climate and location in a region where temperature increases are expected to surpass global averages. The study examines the past three decades, noting a significant rise in the frequency of hot days, especially in Karachi, where heatwaves have become more prevalent. The aims and objectives of the study involve identifying temporal changes in temperature, rainfall, humidity, and wind speed from 1984 to 2014 in Karachi. The literature review emphasizes the health implications of heatwaves, citing increased mortality during such events globally. The study incorporates a comprehensive temporal analysis, addressing gaps in previous research by considering multiple climate indicators responsible for heatwaves. The methodology involves statistical analyses, including linear regression and Pearson correlation, applied to temperature data and urbanization parameters. Results indicate an increasing trend in heat index temperature, with heatwave vulnerability peaking in the last three decades. Heat Index Temperature Anomalies show a clear surge, emphasizing the need for new indices to control critical heat stress conditions. The study concludes that tropical climate variability, particularly heat index, is linked to extreme hot days, urging measures to reduce population vulnerability. The findings underscore the importance of policy strategies, such as integrated coastal zone management, to mitigate the adverse health effects of heatwaves in Karachi’s vulnerable population. 展开更多
关键词 IPCC heat Wave heat Index PMD
下载PDF
Determination of Latent Heats of Vaporization and Fusion
2
作者 Lahbib Abbas Lahcen Bih +3 位作者 Khalid Yamni Abderrahim Elyahyaouy Abdelmalik El Attaoui Zahra Ramzi 《Advances in Chemical Engineering and Science》 CAS 2024年第3期113-124,共12页
Water is the most abundant liquid on the surface of the earth. It is a liquid whose properties are quite surprising, both as a pure liquid and as a solvent. Water is a very cohesive liquid: its melting and vaporizatio... Water is the most abundant liquid on the surface of the earth. It is a liquid whose properties are quite surprising, both as a pure liquid and as a solvent. Water is a very cohesive liquid: its melting and vaporization temperatures are very high for a liquid that is neither ionic nor metallic, and whose molar mass is low. Thus, water remains liquid at atmospheric pressure up to 100C while similar molecules such as H2S, H2Se, H2Te for example would give a vaporization temperature close to 80C. This cohesion is in fact ensured by hydrogen bonds between water molecules. This type of bonds between neighboring molecules, hydrogen bonds, is quite often found in chemistry [1] [2]. Any change in the state of aggregation of a substance occurs with the absorption or release of a certain amount of latent heat of transformation. Latent heat of fusion, vaporization or sublimation is the ratio of the energy supplied as heat to the mass of the substance that is melted, vaporized or sublimated. As a result of the reversibility of the processes, the fusion heat is equal to the heat released in the reverse process: crystallization and solidification heat. And likewise the heat of vaporization is equal to the heat of condensation. This equality of heat is often used to determine experimentally either of these quantities. There are two main measurement methods: 1) Direct measurement using the calorimeter, 2) Indirect measure based on the use of the VantHoff relationship. The objective of this work is to measure the latent heat of water vaporization and verify the compatibility of the experimental values with the values given by the tables using the indirect method. 展开更多
关键词 Latent heat of Vaporization Latent heat of Fusion CALORIMETRY Relationship of Vant’Hoff
下载PDF
Impact of Dietary Lactobacillus plantarum Postbiotics on the Performance of Layer Hens under Heat Stress Conditions
3
作者 Mohamad Farran Bouchra El Masry +1 位作者 Zeinab Kaouk Houssam Shaib 《Open Journal of Veterinary Medicine》 CAS 2024年第3期39-55,共17页
This experiment was conducted to determine the performance of heat-stressed layers fed a diet containing the probiotic Lactobacillus plantarum RS5 or its products of fermentation (postbiotics). Twenty-week-old Isa Whi... This experiment was conducted to determine the performance of heat-stressed layers fed a diet containing the probiotic Lactobacillus plantarum RS5 or its products of fermentation (postbiotics). Twenty-week-old Isa White layers, were subdivided into six treatments of 32 individually caged birds. Half of the birds were reared under regular temperature conditions, while the other half was subjected to cyclic daily heat stress. Layers were offered one of three diets: 1) Control;2) Control + Lactobacillus plantarum RS5 probiotic;3) Control + Lactobacillus plantarum RS5 postbiotics. Birds were tested for performance and visceral organ development for 5 months. Heat stress negatively affected the birds’ feed intake, egg weight, shell weight percentage, Haugh unit, shell thickness, yolk color, body weight and spleen weight percentage. Postbiotics significantly increased egg production (p < 0.05) in comparison to the control and the probiotic fed group (94.8% vs 92.6% vs 93.1%, respectively). Birds under probiotic or postbiotic diet showed a significantly higher (p < 0.05) feed intake and egg weight, although the probiotic had a more pronounced and gradual effect. Specific gravity, yolk weight percentage and shell thickness didn’t show differences among dietary groups. The Haugh Unit was significantly higher (p < 0.05) in probiotic group which also showed a significantly lower yolk color index (p < 0.05). The different feed treatments did not impact the bird’s viscera weight percentage, except for the ileum that was significantly lower (p < 0.05) under postbiotic supplementation. Both probiotics and postbiotics could be used as a potential growth promoters and might alleviate heat stress impact in poultry industry. 展开更多
关键词 Lactobacillus plantarum LAYERS heat Stress Postbiotic PROBIOTICS PERFORMANCE
下载PDF
Numerical Investigation of Heat and Mass Transfer in Nanofluid-Filled Porous Medium
4
作者 Dalel Helel Noureddine Boukadida 《Advances in Nanoparticles》 CAS 2024年第3期29-44,共16页
In this work, we numerically study the laminar mixed convection of fluid flow in a vertical channel filled with porous media during the drying process. The porous medium, modeled as a vertical wall, consists of solid ... In this work, we numerically study the laminar mixed convection of fluid flow in a vertical channel filled with porous media during the drying process. The porous medium, modeled as a vertical wall, consists of solid and nanofluid phase (Water-Al2O3 or Water-Cu), as well as a gas phase. The established model is developed based on Whitaker’s theory and resolved by our numerical code using Fortran. Results principally show the influence of various physical parameters, such as nanoparticle volume fraction, ambient temperature, and saturation on heat and mass transfer on the drying process. This study brings the effect of the presence of nanofluids in porous media. It contributes not only to our fundamental understanding of drying processes but also provides practical insights that can guide the development of more efficient and sustainable drying technologies. . 展开更多
关键词 Mixed Convection heat Transfer NANOFLUID DRYING Porous Media
下载PDF
Mathematical Modelling and Design of Helical Coil Heat Exchanger for Production of Hot Air for Fluidized Bed Dryer
5
作者 Iniubong James Uwa Uwem Ekwere Inyang Innocent Oseribho Oboh 《Advances in Chemical Engineering and Science》 CAS 2024年第3期125-136,共12页
In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil h... In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers. 展开更多
关键词 Helical Coil heat Exchanger Fluidized Bed Dryer heat Transfer Output Air Temperature
下载PDF
Increasing the Efficiency and Level of Environmental Safety of Pro-Environmental City Heat Supply Technologies by Low Power Nuclear Plants
6
作者 Vladimir Kravchenko Igor Kozlov +3 位作者 Volodymyr Vashchenko Iryna Korduba Andrew Overchenko Serhii Tsybytovskyi 《World Journal of Nuclear Science and Technology》 CAS 2024年第2期107-117,共11页
In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ... In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers. 展开更多
关键词 Low-Capacity Nuclear Power Plants Environmental Friendliness of the Thermal Power Generation Mode heat Generation Condensation Mode heat Supply
下载PDF
Variational Approach to Heat Conduction Modeling
7
作者 Slavko Đurić Ivan Aranđelović Milan Milotić 《Journal of Applied Mathematics and Physics》 2024年第1期234-248,共15页
It is known that Fourier’s heat equation, which is parabolic, implies an infinite velocity propagation, or, in other words, that the mechanism of heat conduction is established instantaneously under all conditions. T... It is known that Fourier’s heat equation, which is parabolic, implies an infinite velocity propagation, or, in other words, that the mechanism of heat conduction is established instantaneously under all conditions. This is unacceptable on physical grounds in spite of the fact that Fourier’s law agrees well with experiment. However, discrepancies are likely to occur when extremely short distances or extremely short time intervals are considered, as they must in some modern problems of aero-thermodynamics. Cattaneo and independently Vernotte proved that such process can be described by Heaviside’s telegraph equation. This paper shows that this fact can be derived using calculus of variations, by application of the Euler-Lagrange equation. So, we proved that the equation of heat conduction with finite velocity propagation of the thermal disturbance can be obtained as a solution to one variational problem. 展开更多
关键词 Telegraph Equation heat Equation heat Conduction Calculus of Variations
下载PDF
Variational Approach to 2D and 3D Heat Conduction Modeling
8
作者 Slavko Đurić Ivan Aranđelović Milan Milotić 《Journal of Applied Mathematics and Physics》 2024年第4期1383-1400,共18页
The paper proposes an approximate solution to the classical (parabolic) multidimensional 2D and 3D heat conduction equation for a 5 × 5 cm aluminium plate and a 5 × 5 × 5 cm aluminum cube. An approximat... The paper proposes an approximate solution to the classical (parabolic) multidimensional 2D and 3D heat conduction equation for a 5 × 5 cm aluminium plate and a 5 × 5 × 5 cm aluminum cube. An approximate solution of the generalized (hyperbolic) 2D and 3D equation for the considered plate and cube is also proposed. Approximate solutions were obtained by applying calculus of variations and Euler-Lagrange equations. In order to verify the correctness of the proposed approximate solutions, they were compared with the exact solutions of parabolic and hyperbolic equations. The paper also presents the research on the influence of time parameters τ as well as the relaxation times τ ∗ to the variation of the profile of the temperature field for the considered aluminum plate and cube. 展开更多
关键词 Classical Equation of heat Conduction Generalized Equation of heat Conduction Calculus of Variations Approximate Solution
下载PDF
Impact of Cattaneo-Christov Heat Flux in the Nanofluid Flow over an Inclined Permeable Surface with Irreversibility Analysis
9
作者 Muhammad Ramzan Hina Gul 《Journal of Applied Mathematics and Physics》 2024年第4期1582-1595,共14页
This study discusses the magnetohydrodynamic nanofluid flow over an inclined permeable surface influenced by mixed convection, and Cattaeo-Christov heat flux. The heat transfer analysis is performed in the presence of... This study discusses the magnetohydrodynamic nanofluid flow over an inclined permeable surface influenced by mixed convection, and Cattaeo-Christov heat flux. The heat transfer analysis is performed in the presence of a heat source/sink and thermal stratification. To gauge the energy loss during the process, an irreversibility analysis is also performed. A numerical solution to the envisaged problem is obtained using the bvp4c package of MATLAB. Graphs are drawn to assess the consequences of the arising parameters against the associated profiles. The results show that an augmentation in the magnetic field and nanomaterial volume fraction results in an enhancement in the temperature profile. A strong magnetic field can significantly reduce the fluid velocity. The behavior of the Skin friction coefficient against the different estimates of emerging parameters is discussed. . 展开更多
关键词 Nanofluid Flow Cattaneo-Christov heat Flux Permeable Surface Mixed Convection heat Source/Sink Thermal Stratification
下载PDF
Prediction of Low Heating Value of Sugar Cane Bagasse as a Fuel for Industrial Boilers in the High Relative Humidity Region: Case of Cameroon
10
作者 Pierre Kana-Donfack Maxell Tientcheu-Nsiewe +1 位作者 Denis Tcheukam-Toko César Kapseu 《Open Journal of Applied Sciences》 2024年第6期1604-1624,共21页
Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised o... Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised on the applicability of these equations in different parts of the globe. This study was initiated to tackle these problems and also check the most suited mathematical models for the Law Heating Value of Cameroonian bagasse. Data and bagasse samples were collected at the Cameroonian sugarcane factory. The effects of cane variety, age of harvesting, source, moisture content, and sucrose on the LHV of Cameroon bagasse have been tested. It was shown that humidity does not change within a variety, but changes from the dry season to the rainy season;the sugar in the rainy season is significantly different from that collected in the dry season. Samples of the same variety have identical LHV. LHV in the dry season is significantly different from LHV in the rainy season. According to the fact that this study was done for cane with different ages of harvesting, the maturity of Cameroonian sugarcane does not affect LHV of bagasse. Tree selected models are much superior tool for the prediction of the LHV for bagasse in Cameroon compared to others. The standard deviation of these validated models is around 200 kJ/kg compared to the experimental. Thus, the models determined in foreign countries, are not necessarily applicable in predicting the LHV of bagasse in other countries with the same accuracy as that in their native country. There was linear relationship between humidity, ash and sugar content in the bagasse. It is possible to build models based on data from physical composition of bagasse using regression analysis. 展开更多
关键词 Sugarcane Bagasse Relative Humidity ASH Low heating Value
下载PDF
A Full Predictor-Corrector Finite Element Method for the One-Dimensional Heat Equation with Time-Dependent Singularities
11
作者 Jake L. Nkeck 《Journal of Applied Mathematics and Physics》 2024年第4期1364-1382,共19页
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ... The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method. 展开更多
关键词 SINGULARITIES Finite Element Methods heat Equation Predictor-Corrector Algorithm
下载PDF
Heat and Mass Transfer for a Nanofluid Flow in Fluidized Bed Dryer in Presence of Induced Magnetic Field
12
作者 Kiptum J. Purity Mathew N. Kinyanjui Edward R. Onyango 《Journal of Applied Mathematics and Physics》 2024年第4期1401-1425,共25页
This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow i... This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow in a Fluidized bed dryer was developed using the nonlinear partial differential equations. Due to their non-linearity, the equations were solved numerically by use of the finite difference method. The effects of physical flow parameters on velocity, temperature, concentration and magnetic induction profiles were studied and results were presented graphically. From the mathematical analysis, it was deduced that addition of silver nanoparticles into the fluid flow enhanced velocity and temperature profiles. This led to improved heat transfer in the fluidized bed dryer, hence amplifying the tea drying process. Furthermore, it was noted that induced magnetic field tends to decrease the fluid velocity, which results in uniform distribution of heat leading to efficient heat transfer between the tea particles and the fluid, thus improving the drying process. The research findings provide information to industries on ways to optimize thermal performance of fluidized bed dryers. 展开更多
关键词 heat Transfer Induced Magnetic Field NANOFLUID Fluidized Bed Dryer
下载PDF
Sterilization Effect of Cooking Process for Guilin Rice Noodles Based on Heat Conduction Model
13
作者 Wenyu Wu Fanglei Zou +1 位作者 Xiaojun Sun Liang Du 《Journal of Modern Physics》 2024年第8期1300-1312,共13页
Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effec... Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans. 展开更多
关键词 Guilin Rice Noodles heat Conduction Model Temperature Distribution Function Effective Sterilization
下载PDF
Finite-Time Thermodynamic Simulation of Circulating Direct Condensation Heat Recovery on Chillers
14
作者 Zhixin Yang Feihu Chen +1 位作者 Liping Wang Guangcai Gong 《Journal of Power and Energy Engineering》 2024年第1期1-14,共14页
A time series model is used in this paper to describe the progress of circulating direct condensation heat recovery of the compound condensing process (CCP) which is made of two water cooling condensing processes in s... A time series model is used in this paper to describe the progress of circulating direct condensation heat recovery of the compound condensing process (CCP) which is made of two water cooling condensing processes in series for a centrifugal chiller in the paper. A finite-time thermodynamics method is used to set up the time series simulation model. As a result, an upper bound of recoverable condensation heat for the compound condensing process is obtained which is in good agreement with experimental result. And the result is valuable and useful to optimization design of condensing heat recovery. 展开更多
关键词 Condensation heat Recovery Compound Condensing Process Time Series Finite-Time Thermodynamics
下载PDF
Geospatial Analysis of Urban Heat Island Effects and Tree Equity
15
作者 Jillian Gorrell Sharon R. Jean-Philippe +3 位作者 Paul D. Ries Jennifer K. Richards Neelam C. Poudyal Rochelle Butler 《Open Journal of Forestry》 2024年第1期1-18,共18页
In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest a... In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest access. Urban Heat Island Effects are measurable phenomenon that are being experienced by the world’s most urbanized areas, including increased summer high temperatures and lower evapotranspiration from having impervious surfaces instead of vegetation and trees. Tree canopy cover is our natural mitigation tool that absorbs sunlight for photosynthesis, protects humans from incoming radiation, and releases cooling moisture into the air. Unfortunately, urban areas typically have low levels of vegetation. Vulnerable urban communities are lower-income areas of inner cities with less access to heat protection like air conditioners. This study uses mean evapotranspiration levels to assess the variability of urban heat island effects across the state of Tennessee. Results show that increased developed land surface cover in Tennessee creates measurable changes in atmospheric evapotranspiration. As a result, the mean evapotranspiration levels in areas with less tree vegetation are significantly lower than the surrounding forested areas. Central areas of urban cities in Tennessee had lower mean evapotranspiration recordings than surrounding areas with less development. This work demonstrates the need for increased tree canopy coverage. 展开更多
关键词 Spatial Analysis Land Cover Urban heat Island Effect (UHIE) EVAPOTRANSPIRATION Tree Canopy Impervious Surface GIS Prediction Model GIS Machine Learning
下载PDF
More extreme-heat occurrences related to humidity in China 被引量:1
16
作者 Wenyue He Huopo Chen 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第5期42-48,共7页
极端日夜复合高温往往会造成更为严重的社会经济影响及健康风险,受到了广泛关注。本文基于ERA5逐小时资料,针对中国区域极端日夜复合湿热和高温事件的变化及其影响进行了比较分析.结果指出,中国区域夏季极端湿热和高温在空间分布上较为... 极端日夜复合高温往往会造成更为严重的社会经济影响及健康风险,受到了广泛关注。本文基于ERA5逐小时资料,针对中国区域极端日夜复合湿热和高温事件的变化及其影响进行了比较分析.结果指出,中国区域夏季极端湿热和高温在空间分布上较为一致,强度高值区主要分布在南方地区,但高频中心主要出现在北方地区.两类事件发生频次在全国范围内均呈明显增加趋势,尤其在西部和北部地区.进一步研究表明,在中国大部分地区,湿度异常在极端湿热事件变化中有着十分重要的作用,部分区域甚至超过温度异常的影响。随着极端湿热事件的增加其影响也在加剧,自1961年以来中国暴露于极端湿热事件的人口数量和城市面积增速明显大于高温事件. 展开更多
关键词 复合极端 湿度 暴露度 热压力
下载PDF
微量元素对超大线能量EH36船板热影响区粗晶区组织和性能的影响 被引量:1
17
作者 韩美 张熹 +4 位作者 马青军 魏玉顺 韦晨 王泽军 贾云海 《焊接学报》 EI CAS CSCD 北大核心 2024年第2期47-53,I0005,I0006,共9页
通过焊接热模拟研究了在超大线能量下焊接时Al元素、Mg元素和Ti元素含量对EH36高强船板钢热影响区粗晶区组织、性能的影响规律,采用Thermo-Calc热力学计算与SEM,EDS测试相结合的方法揭示了Al元素、Mg元素和Ti元素含量与母材中氧化物类... 通过焊接热模拟研究了在超大线能量下焊接时Al元素、Mg元素和Ti元素含量对EH36高强船板钢热影响区粗晶区组织、性能的影响规律,采用Thermo-Calc热力学计算与SEM,EDS测试相结合的方法揭示了Al元素、Mg元素和Ti元素含量与母材中氧化物类型、尺寸、数量及粗晶区相变的关系.结果表明,Al_(2)O_(3)无法诱导针状铁素体相变,当Al元素质量分数低于0.005%时,钢中可形成Mg元素、Ti元素或其复合氧化物,可促进粗晶区针状铁素体相变.Mg元素和Ti元素联合添加时,当Mg元素质量分数由0.0042%降低为0.0013%,氧化物类型由MgO转变为Mg_(2)TiO_(4),经统计20个视场内的氧化物数量由408个提高到503个,平均直径由1.37μm减小到1.10μm,显著提高了非均匀形核的比表面积,抑制了晶界铁素体的形成,使t8/5=300 s时粗晶区热模拟试样-20℃冲击吸收能量由43 J提升到127 J. 展开更多
关键词 微量元素 船板 超大线能量 热影响区粗晶区
下载PDF
华南陆缘火成岩区差异性地壳热结构及地热意义 被引量:1
18
作者 蔺文静 王贵玲 甘浩男 《地质学报》 EI CAS CSCD 北大核心 2024年第2期544-557,共14页
高产热花岗岩是重要的壳内热源之一,我国华南陆缘花岗岩体分布广泛,为该区浅表热量的生成及聚集提供了可能。本文在简述区内花岗岩资源分布的基础上,系统分析了区内主要花岗岩体的放射性生热特征,并结合区内近些年施工的地热勘探深钻,... 高产热花岗岩是重要的壳内热源之一,我国华南陆缘花岗岩体分布广泛,为该区浅表热量的生成及聚集提供了可能。本文在简述区内花岗岩资源分布的基础上,系统分析了区内主要花岗岩体的放射性生热特征,并结合区内近些年施工的地热勘探深钻,对重点地热勘查区的深部地温场分布、地热通量、地壳热结构等进行了对比分析,提出了华南陆缘浅表地热资源的聚热模式。分析认为,华南陆缘地区具有“幔源供热-壳内生热-断裂传热-盖层保热”的四元聚热模式,其中,花岗岩体的放射性生热率是影响区内浅部地温场的主要因素之一,粤北—赣南岩体的生热率明显高于漳州地区的花岗岩体,其近似“热壳冷幔”型或“温壳温幔”型岩石圈热结构与漳州“热幔冷壳”型岩石圈热结构有一定的差异;断裂构造及盖层条件对于地下热量聚集及散失具有明显的控制作用。研究成果对于深入理解华南陆缘地热资源的成因、控热因素,以及今后该地区地热资源勘探开发实践具有一定的理论与指导意义。 展开更多
关键词 高产热花岗岩 大地热流 地壳热结构 热源机制 华南陆缘
下载PDF
从“虚气留滞夹火”探讨应激敏化所致抑郁症辨治思路 被引量:1
19
作者 陈旭 曹竟 +4 位作者 贾茜麟 郗凌云 白杨 庞浩宇 洪霞 《中国中医药信息杂志》 CAS CSCD 2024年第1期11-14,共4页
中医学认为“虚气留滞夹火”是抑郁症的核心病机,具有“虚气”为本,本虚在脾、标虚在脑,“留滞”为标,气滞、痰凝、血瘀留滞脑络,“夹火”灼脑络,郁生火热、火生虚滞的病机特点和演变规律。本文基于现代医学对抑郁症“应激敏化”发病机... 中医学认为“虚气留滞夹火”是抑郁症的核心病机,具有“虚气”为本,本虚在脾、标虚在脑,“留滞”为标,气滞、痰凝、血瘀留滞脑络,“夹火”灼脑络,郁生火热、火生虚滞的病机特点和演变规律。本文基于现代医学对抑郁症“应激敏化”发病机制的认识,探讨其与中医学“虚气留滞夹火”核心病机的潜在关联,提出补虚、通滞、泻火是抑郁症的基本治法,通过抑制炎症反应,改善神经元及小胶质细胞的应激敏化状态,发挥中药复方多靶点及多维度的治疗特性。 展开更多
关键词 抑郁症 应激敏化 虚气留滞夹火 补虚通滞泻火
下载PDF
风力发电机叶片防除冰涂层(二):温升数值计算及防除冰性能 被引量:2
20
作者 胡琴 朱茂林 +2 位作者 舒立春 蒋兴良 徐兴 《电工技术学报》 EI CSCD 北大核心 2024年第1期246-256,共11页
针对电热超疏水涂层覆冰过程中表现出的三类不同冰层形貌,该文建立了电加热融冰数值计算模型,并对仿真计算结果进行了相应的试验验证,验证结果与仿真结果基本一致,该模型能有效模拟融冰过程和温度分布。临界融冰功率的计算结果表明,电... 针对电热超疏水涂层覆冰过程中表现出的三类不同冰层形貌,该文建立了电加热融冰数值计算模型,并对仿真计算结果进行了相应的试验验证,验证结果与仿真结果基本一致,该模型能有效模拟融冰过程和温度分布。临界融冰功率的计算结果表明,电热超疏水涂层融冰所需功率大于非超疏水电热涂层,尤其在乳突状冰层出现后,融冰功率将大幅增加。电热超疏水涂层防冰试验结果表明,在雨凇覆冰环境中,超疏水性能单独作用时,叶片在覆冰前期能延缓覆冰;电热性能与超疏水性能共同作用时,叶片无覆冰形成。电热超疏水涂层用于风力发电机防覆冰具有较好的效果,但用于覆冰后的融冰时将需要更多的能量。 展开更多
关键词 风力发电机 超疏水电热涂层 防除冰 数值模型 人工试验
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部