Computational simulations on structurally different detonation generator are carried out to study the phenomena,the mechanism and the gas dynamics characteristics of flame implosion and shock wave focusing.Two-dimensi...Computational simulations on structurally different detonation generator are carried out to study the phenomena,the mechanism and the gas dynamics characteristics of flame implosion and shock wave focusing.Two-dimensional axisymmetric and unsteady Navier-Stokes equations are numerically solved and detailed chemical reaction kinetics of hydrogen/air mixture is used.The simulation results show that the laminar flame generated by low energy spark in the jet flame burner is accelerated under the narrow channel,the jet flame impinging on the axis strengthens shock wave and the shock wave enhances flame acceleration.Under the function of multiple shock waves and flame,a number of hot spots appear between the wave and the surface.The spots enlarge rapidly,thus forming an over-drive detonation with high pressure,and then declining to stable detonation.Through calculation and analysis,the length of detonation initiation and stable detonation are obtained,thus providing the useful information for further experimental investigations.展开更多
The thin aluminum liners with an aspect ratio R/?r 1 have been imploded on the primary test stand(PTS) facility,where R is the outer radius of the liner and ?r is the thickness. The x-ray self-emission images present ...The thin aluminum liners with an aspect ratio R/?r 1 have been imploded on the primary test stand(PTS) facility,where R is the outer radius of the liner and ?r is the thickness. The x-ray self-emission images present azimuthally correlated perturbations in the liner implosions. The experiments show that at-10 ns before the stagnation, the wavelengths of perturbation are about 0.93 mm and 1.67 mm for the small-radius and large-radius liners, respectively. We have utilized the resistive magnetohydrodynamic code PLUTO to study the development of magneto-Rayleigh–Taylor(MRT) instabilities under experimental conditions. The calculated perturbation amplitudes are consistent with the experimental observations very well. We have found that both mode coupling and long implosion distance are responsible for the more developed instabilities in the large-radius liner implosions.展开更多
We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The a...We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The arrays are made up of(8-32)×5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9%(24×5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)×10 7 cm/s.展开更多
A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch imp...A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via /t → -i(w+ik⊥2pi2Ωi,), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k⊥2 pi2 is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber k】2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.展开更多
Implosion asymmetry is a crucial problem quenching ignition in the field of inertial confinement fusion.A forward-calculation method based on 1D and 2D hydrodynamic simulations has been developed to generate and study...Implosion asymmetry is a crucial problem quenching ignition in the field of inertial confinement fusion.A forward-calculation method based on 1D and 2D hydrodynamic simulations has been developed to generate and study the x-ray images of hot-spot self-emission,indicating asymmetry integrated over the entire drive pulse.It is shown that the x-ray imaging photon energy should be higher to avoid the influence of the remaining shell.The contour level(percentage of the maximum emission intensity)and spatial resolution should be as low as possible,optimally less than 20%and 3μm,for characterization of higher-mode signatures such as Ps-P12 by x-ray self-emission images.On the contrary,signatures of lower-mode such as P2 remain clear at all contour levels and spatial resolutions.These key results can help determine the optimal diagnostics,laser,and target parameters for implosion experiments.Recent typical hot-spot asymmetry measurements and applications on the Shenguang 100 kJ class laser facility are also reported.展开更多
The low-mode shell asymmetry and high-mode hot spot mixing appear to be the main reasons for the performance degradation of the National Ignition Facility(NIF)implosion experiments.The effects of the mode coupling bet...The low-mode shell asymmetry and high-mode hot spot mixing appear to be the main reasons for the performance degradation of the National Ignition Facility(NIF)implosion experiments.The effects of the mode coupling between low-mode P2 radiation flux asymmetry and intermediate-mode L=24 capsule roughness on the implosion performance of ignition capsule are investigated by two-dimensional radiation hydrodynamic simulations.It is shown that the amplitudes of new modes generated by the mode coupling are in good agreement with the second-order mode coupling equation during the acceleration phase.The later flow field not only shows large areal density P2 asymmetry in the main fuel,but also generates large-amplitude spikes and bubbles.In the deceleration phase,the increasing mode coupling generates more new modes,and the perturbation spectrum on the hot spot boundary is mainly from the strong mode interactions rather than the initial perturbation conditions.The combination of the low-mode and high-mode perturbations breaks up the capsule shell,resulting in a significant reduction of the hot spot temperature and implosion performance.展开更多
Purpose: The purpose of this study is to introduce a new concept and term into the scientometric discourse and research—scientometric implosion—and test the idea on the example of the Armenian journals. The article ...Purpose: The purpose of this study is to introduce a new concept and term into the scientometric discourse and research—scientometric implosion—and test the idea on the example of the Armenian journals. The article argues that the existence of a compressed scientific area in the country makes pressure on the journals and after some time this pressure makes one or several journals explode—break the limited national scientific area and move to the international arena. As soon as one of the local journals breaks through this compressed space and appears at an international level, further explosion happens, which makes the other journals follow the same path.Design/methodology/approach: Our research is based on three international scientific databases—WoS, Scopus, and RISC CC, from where we have retrieved information about the Armenian journals indexed there and citations received by those journals and one national database—the Armenian Science Citation Index. Armenian Journal Impact Factor(ArmJIF) was calculated for the local Armenian journals based on the general impact factor formula. Journals were classified according to Gl?nzel and Schubert(2003). Findings: Our results show that the science policy developed by the scientific authorities of Armenia and the introduction of ArmJIF have made the Armenian journals comply with international standards and resulted in some local journals to break the national scientific territory and be indexed in international scientific databases of RISC, Scopus, and WoS. Apart from complying with technical requirements, the journals start publishing articles also in foreign languages. Although nearly half of the local journals are in the fields of social sciences and humanities, only one journal from that field is indexed in international scientific databases. Research limitation: One of the limitations of the study is that it was performed on the example of only one state and the second one is that more time passage is needed to firmly evaluate the results. However, the introduction of the concept can inspire other similar case study. Practical implications: The new term and relevant model offered in the article can practically be used for the development of national journals.Originality/value: The article proposes a new term and a concept in scientometrics.展开更多
-By using gas-liquid two-phase flow theory, a modified mathematical model based on the computational fluid dynamics method SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) is introduced to investigate implo...-By using gas-liquid two-phase flow theory, a modified mathematical model based on the computational fluid dynamics method SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) is introduced to investigate implosion phenomena in high pressure chambers systematically. A theoretical simulation-prediction method, which is independent of experimental data, is developed in the paper and great improvement has been made on the topic. In the paper, various implosion situations have been simulated and predicted. Effects of a series of factors influencing implosion results and methods of reducing implosion danger have been analysed. The analysis results are of importance to underwater engineering practice.展开更多
The neutron Doppler broadening in inertial confinement fusion has been acquired from the time of flight for the neutron, from which the fuel ion temperature can be derived. An ultrafast-quenched plastic scintillation ...The neutron Doppler broadening in inertial confinement fusion has been acquired from the time of flight for the neutron, from which the fuel ion temperature can be derived. An ultrafast-quenched plastic scintillation detector was used to measure the time of flight for the neutron at a low-imploded DT neutron yield (5×107-1×108) in the experiment performed on the Shenguang Ⅱ laser facility. The typical temperatures of ablating targets for indirect drive were around 2.8 keV and the uncertainties were ±30 % - ±40%. The detection efficiency of the detector for DT neutrons was calibrated at a K-400 accelerator. The time response function of the detection system was calibrated by imploded neutrons from a DT-filled capsule, which can be regarded as a S function pulsed neutron source due to its much narrower pulse width than that of the measured neutron time-of-flight spectrum.展开更多
This paper generalizes the single-shell Kidder's self-similar solution to the double-shell one with a discontinuity in density across the interface. An isentropic implosion model is constructed to study the Rayleigh-...This paper generalizes the single-shell Kidder's self-similar solution to the double-shell one with a discontinuity in density across the interface. An isentropic implosion model is constructed to study the Rayleigh-Taylor instability for the implosion compression. A Godunov-type method in the Lagrangian coordinates is used to compute the one-dimensional Euler equation with the initial and boundary conditions for the double-shell Kidder's self-similar solution in spherical geometry. Numerical results are obtained to validate the double-shell implosion model. By programming and using the linear perturbation codes, a linear stability analysis on the Rayleigh-Taylor instability for the double-shell isentropic implosion model is performed. It is found that, when the initial perturbation is concentrated much closer to the interface of the two shells, or when the spherical wave number becomes much smaller, the modal radius of the interface grows much faster, i.e., more unstable. In addition, from the spatial point of view for the compressibility effect on the perturbation evolution, the compressibility of the outer shell has a destabilization effect on the Rayleigh-Taylor instability, while the compressibility of the inner shell has a stabilization effect.展开更多
Chimney implosion is the strategic planning of explosives and accessories materials and timings of its detonation so that chimney collapses on itself, minimising the physical damage to its immediate surroundings. Buil...Chimney implosion is the strategic planning of explosives and accessories materials and timings of its detonation so that chimney collapses on itself, minimising the physical damage to its immediate surroundings. Built in 1885, the brick chimney at kankanee colliery, Sijua area, BCCL (Bharat Collieries Company Limited) was demolished by felling method using the commercial explosives by adopting single-folding and toppling method. The chimney was 31.5 m in height and suffered structural weaknesses due to progressive deterioration over age, weathering and non maintenance. The chimney was posing potential threat to the safety of the nearby dwellings and surface structures, viz. main mechanical ventilator of Kankanee colliery, 11 KV electrical substation supplying power to Sijua area, BCCL, high tension cable line and busy Katras-Sijua-Dhanbad Dobari Road all failing within a radius of 30 m. About 75.22 kg of commercial explosive, 100 m of detonating fuse along with 0 and 25 ms delay detonators were used for controlled demolition of chimney. The chimney got demolished by vertically cascading on its own base without causing any damage to the nearby dwellings and surface structures.展开更多
文摘Computational simulations on structurally different detonation generator are carried out to study the phenomena,the mechanism and the gas dynamics characteristics of flame implosion and shock wave focusing.Two-dimensional axisymmetric and unsteady Navier-Stokes equations are numerically solved and detailed chemical reaction kinetics of hydrogen/air mixture is used.The simulation results show that the laminar flame generated by low energy spark in the jet flame burner is accelerated under the narrow channel,the jet flame impinging on the axis strengthens shock wave and the shock wave enhances flame acceleration.Under the function of multiple shock waves and flame,a number of hot spots appear between the wave and the surface.The spots enlarge rapidly,thus forming an over-drive detonation with high pressure,and then declining to stable detonation.Through calculation and analysis,the length of detonation initiation and stable detonation are obtained,thus providing the useful information for further experimental investigations.
基金supported by the National Natural Science Foundation of China(Grant Nos.11605013,11775032,11805019,and 11705013)
文摘The thin aluminum liners with an aspect ratio R/?r 1 have been imploded on the primary test stand(PTS) facility,where R is the outer radius of the liner and ?r is the thickness. The x-ray self-emission images present azimuthally correlated perturbations in the liner implosions. The experiments show that at-10 ns before the stagnation, the wavelengths of perturbation are about 0.93 mm and 1.67 mm for the small-radius and large-radius liners, respectively. We have utilized the resistive magnetohydrodynamic code PLUTO to study the development of magneto-Rayleigh–Taylor(MRT) instabilities under experimental conditions. The calculated perturbation amplitudes are consistent with the experimental observations very well. We have found that both mode coupling and long implosion distance are responsible for the more developed instabilities in the large-radius liner implosions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10635050)
文摘We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The arrays are made up of(8-32)×5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9%(24×5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)×10 7 cm/s.
基金This work was supported by the National Natural Science Foundation of China No.10035020.
文摘A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via /t → -i(w+ik⊥2pi2Ωi,), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k⊥2 pi2 is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber k】2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.
基金National Key R&D Program(No.2017YFA0403204)Laser Fusion Research Funds for Young Talents(No.RCFPD1-2017-1)。
文摘Implosion asymmetry is a crucial problem quenching ignition in the field of inertial confinement fusion.A forward-calculation method based on 1D and 2D hydrodynamic simulations has been developed to generate and study the x-ray images of hot-spot self-emission,indicating asymmetry integrated over the entire drive pulse.It is shown that the x-ray imaging photon energy should be higher to avoid the influence of the remaining shell.The contour level(percentage of the maximum emission intensity)and spatial resolution should be as low as possible,optimally less than 20%and 3μm,for characterization of higher-mode signatures such as Ps-P12 by x-ray self-emission images.On the contrary,signatures of lower-mode such as P2 remain clear at all contour levels and spatial resolutions.These key results can help determine the optimal diagnostics,laser,and target parameters for implosion experiments.Recent typical hot-spot asymmetry measurements and applications on the Shenguang 100 kJ class laser facility are also reported.
基金This work is supported by the National Natural Science Foundation of China under Grant Nos.11575034,11275031,11401033,and 91330205.
文摘The low-mode shell asymmetry and high-mode hot spot mixing appear to be the main reasons for the performance degradation of the National Ignition Facility(NIF)implosion experiments.The effects of the mode coupling between low-mode P2 radiation flux asymmetry and intermediate-mode L=24 capsule roughness on the implosion performance of ignition capsule are investigated by two-dimensional radiation hydrodynamic simulations.It is shown that the amplitudes of new modes generated by the mode coupling are in good agreement with the second-order mode coupling equation during the acceleration phase.The later flow field not only shows large areal density P2 asymmetry in the main fuel,but also generates large-amplitude spikes and bubbles.In the deceleration phase,the increasing mode coupling generates more new modes,and the perturbation spectrum on the hot spot boundary is mainly from the strong mode interactions rather than the initial perturbation conditions.The combination of the low-mode and high-mode perturbations breaks up the capsule shell,resulting in a significant reduction of the hot spot temperature and implosion performance.
文摘Purpose: The purpose of this study is to introduce a new concept and term into the scientometric discourse and research—scientometric implosion—and test the idea on the example of the Armenian journals. The article argues that the existence of a compressed scientific area in the country makes pressure on the journals and after some time this pressure makes one or several journals explode—break the limited national scientific area and move to the international arena. As soon as one of the local journals breaks through this compressed space and appears at an international level, further explosion happens, which makes the other journals follow the same path.Design/methodology/approach: Our research is based on three international scientific databases—WoS, Scopus, and RISC CC, from where we have retrieved information about the Armenian journals indexed there and citations received by those journals and one national database—the Armenian Science Citation Index. Armenian Journal Impact Factor(ArmJIF) was calculated for the local Armenian journals based on the general impact factor formula. Journals were classified according to Gl?nzel and Schubert(2003). Findings: Our results show that the science policy developed by the scientific authorities of Armenia and the introduction of ArmJIF have made the Armenian journals comply with international standards and resulted in some local journals to break the national scientific territory and be indexed in international scientific databases of RISC, Scopus, and WoS. Apart from complying with technical requirements, the journals start publishing articles also in foreign languages. Although nearly half of the local journals are in the fields of social sciences and humanities, only one journal from that field is indexed in international scientific databases. Research limitation: One of the limitations of the study is that it was performed on the example of only one state and the second one is that more time passage is needed to firmly evaluate the results. However, the introduction of the concept can inspire other similar case study. Practical implications: The new term and relevant model offered in the article can practically be used for the development of national journals.Originality/value: The article proposes a new term and a concept in scientometrics.
文摘-By using gas-liquid two-phase flow theory, a modified mathematical model based on the computational fluid dynamics method SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) is introduced to investigate implosion phenomena in high pressure chambers systematically. A theoretical simulation-prediction method, which is independent of experimental data, is developed in the paper and great improvement has been made on the topic. In the paper, various implosion situations have been simulated and predicted. Effects of a series of factors influencing implosion results and methods of reducing implosion danger have been analysed. The analysis results are of importance to underwater engineering practice.
基金The project supported by the National High Technology Development Program of China (No. 863-804-3)
文摘The neutron Doppler broadening in inertial confinement fusion has been acquired from the time of flight for the neutron, from which the fuel ion temperature can be derived. An ultrafast-quenched plastic scintillation detector was used to measure the time of flight for the neutron at a low-imploded DT neutron yield (5×107-1×108) in the experiment performed on the Shenguang Ⅱ laser facility. The typical temperatures of ablating targets for indirect drive were around 2.8 keV and the uncertainties were ±30 % - ±40%. The detection efficiency of the detector for DT neutrons was calibrated at a K-400 accelerator. The time response function of the detection system was calibrated by imploded neutrons from a DT-filled capsule, which can be regarded as a S function pulsed neutron source due to its much narrower pulse width than that of the measured neutron time-of-flight spectrum.
基金Project supported by the NSAF Joint Fund set up by the National Natural Science Foundation of China and the Chinese Academy of Engineering Physics (CAEP)(Nos. 10676005, 10676004, and10676120)the National Natural Science Foundation of China (No. 10702011)+1 种基金the Natural Science Foundation of CAEP (No. 2007B09001)the Scientific Research Foundation for Returned Overseas Chinese Scholars of Ministry of Education of China
文摘This paper generalizes the single-shell Kidder's self-similar solution to the double-shell one with a discontinuity in density across the interface. An isentropic implosion model is constructed to study the Rayleigh-Taylor instability for the implosion compression. A Godunov-type method in the Lagrangian coordinates is used to compute the one-dimensional Euler equation with the initial and boundary conditions for the double-shell Kidder's self-similar solution in spherical geometry. Numerical results are obtained to validate the double-shell implosion model. By programming and using the linear perturbation codes, a linear stability analysis on the Rayleigh-Taylor instability for the double-shell isentropic implosion model is performed. It is found that, when the initial perturbation is concentrated much closer to the interface of the two shells, or when the spherical wave number becomes much smaller, the modal radius of the interface grows much faster, i.e., more unstable. In addition, from the spatial point of view for the compressibility effect on the perturbation evolution, the compressibility of the outer shell has a destabilization effect on the Rayleigh-Taylor instability, while the compressibility of the inner shell has a stabilization effect.
文摘Chimney implosion is the strategic planning of explosives and accessories materials and timings of its detonation so that chimney collapses on itself, minimising the physical damage to its immediate surroundings. Built in 1885, the brick chimney at kankanee colliery, Sijua area, BCCL (Bharat Collieries Company Limited) was demolished by felling method using the commercial explosives by adopting single-folding and toppling method. The chimney was 31.5 m in height and suffered structural weaknesses due to progressive deterioration over age, weathering and non maintenance. The chimney was posing potential threat to the safety of the nearby dwellings and surface structures, viz. main mechanical ventilator of Kankanee colliery, 11 KV electrical substation supplying power to Sijua area, BCCL, high tension cable line and busy Katras-Sijua-Dhanbad Dobari Road all failing within a radius of 30 m. About 75.22 kg of commercial explosive, 100 m of detonating fuse along with 0 and 25 ms delay detonators were used for controlled demolition of chimney. The chimney got demolished by vertically cascading on its own base without causing any damage to the nearby dwellings and surface structures.