期刊文献+
共找到420,458篇文章
< 1 2 250 >
每页显示 20 50 100
RL and AHP-Based Multi-Timescale Multi-Clock Source Time Synchronization for Distribution Power Internet of Things
1
作者 Jiangang Lu Ruifeng Zhao +2 位作者 Zhiwen Yu Yue Dai Kaiwen Zeng 《Computers, Materials & Continua》 SCIE EI 2024年第3期4453-4469,共17页
Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reli... Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales,and the coupling of synchronization latency jitter and pulse phase difference.In this paper,the multi-timescale MTS model is conducted,and the reinforcement learning(RL)and analytic hierarchy process(AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of synchronization latency jitter standard deviation and average pulse phase difference.Specifically,the multi-clock source selection is optimized based on Softmax in the large timescale,and the clock source weight calculation is optimized based on lower confidence bound-assisted AHP in the small timescale.Simulation shows that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse phase difference. 展开更多
关键词 Multi-clock source time synchronization(TS) power internet of Things reinforcement learning analytic hierarchy process
下载PDF
Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things
2
作者 Mengmeng Zhao Haipeng Peng +1 位作者 Lixiang Li Yeqing Ren 《Computers, Materials & Continua》 SCIE EI 2024年第8期2815-2837,共23页
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A... In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods. 展开更多
关键词 Multivariate time series anomaly detection spatial-temporal network TRANSFORMER
下载PDF
A Double-Timescale Reinforcement Learning Based Cloud-Edge Collaborative Framework for Decomposable Intelligent Services in Industrial Internet of Things
3
作者 Zhang Qiuyang Wang Ying Wang Xue 《China Communications》 SCIE CSCD 2024年第10期181-199,共19页
With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we p... With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%. 展开更多
关键词 computing service edge intelligence industrial internet of things(IIoT) reinforcement learning(RL)
下载PDF
Storage time affects the level and diagnostic efficacy of plasma biomarkers for neurodegenerative diseases
4
作者 Lifang Zhao Mingkai Zhang +4 位作者 Qimeng Li Xuemin Wang Jie Lu Ying Han Yanning Cai 《Neural Regeneration Research》 SCIE CAS 2025年第8期2373-2381,共9页
Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is k... Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is known about the long-term stability of these biomarker proteins in plasma samples stored at-80°C.We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort.Plasma samples from 229 cognitively unimpaired individuals,encompassing healthy controls and those experiencing subjective cognitive decline,as well as 99 patients with cognitive impairment,comprising those with mild cognitive impairment and dementia,were acquired from the Sino Longitudinal Study on Cognitive Decline project.These samples were stored at-80°C for up to 6 years before being used in this study.Our results showed that plasma levels of Aβ42,Aβ40,neurofilament light chain,and glial fibrillary acidic protein were not significantly correlated with sample storage time.However,the level of total tau showed a negative correlation with sample storage time.Notably,in individuals without cognitive impairment,plasma levels of total protein and tau phosphorylated protein threonine 181(p-tau181)also showed a negative correlation with sample storage time.This was not observed in individuals with cognitive impairment.Consequently,we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time.Therefore,caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases,such as Alzheimer's disease.Furthermore,in cohort studies,it is important to consider the impact of storage time on the overall results. 展开更多
关键词 Alzheimer’s disease amyloid-β diagnostic ability glial fibrillary acidic protein NEURODEGENERATION neurofilament light chain plasma biomarkers single molecule array storage time tau
下载PDF
Bursting-like motion induced by time-varying delay in an internet congestion control model 被引量:3
5
作者 Shu Zhang Jian Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第4期1169-1179,共11页
Time delay is an problem of intemet congestion important parameter in the control. According to some researches, time delay is not always constant and can be viewed as a periodic function of time for some cases. In th... Time delay is an problem of intemet congestion important parameter in the control. According to some researches, time delay is not always constant and can be viewed as a periodic function of time for some cases. In this work, an internet congestion control model is consid- ered to study the time-varying delay induced bursting-like motion, which consists of a rapid oscillation burst and quies- cent steady state. Then, for the system with periodic delay of small amplitude and low frequency, the method of multiple scales is employed to obtain the amplitude of the oscillation. Based on the expression of the asymptotic solution, it can be found that the relative length of the steady state increases with amplitude of the variation of time delay and decreases with frequency of the variation of time delay. Finally, an effective method to control the bursting-like motion is pro- posed by introducing a periodic gain parameter with appropriate amplitude. Theoretical results are in agreement with that from numerical method. 展开更多
关键词 internet congestion control. time-varying delay Bursting-like motion Method of multiple scales
下载PDF
4种植物源性成分多重real-time PCR检测方法的建立及其在食用淀粉中的应用 被引量:3
6
作者 范维 高晓月 +4 位作者 董雨馨 刘虹宇 李贺楠 赵文涛 郭文萍 《食品科学》 EI CAS CSCD 北大核心 2024年第1期210-216,共7页
建立一种可同时快速检测红薯、木薯、马铃薯、玉米源性成分的多重实时聚合酶链式反应(real-time polymerase chain reaction,real-time PCR)方法。分别以红薯g3pdh基因、木薯g3pdh基因、马铃薯UGPase基因、玉米zSSIIb基因为靶基因设计... 建立一种可同时快速检测红薯、木薯、马铃薯、玉米源性成分的多重实时聚合酶链式反应(real-time polymerase chain reaction,real-time PCR)方法。分别以红薯g3pdh基因、木薯g3pdh基因、马铃薯UGPase基因、玉米zSSIIb基因为靶基因设计特异性引物和TaqMan探针,以18S rRNA基因为内参基因,建立多重real-time PCR方法,开展方法学验证,并对不同掺入比例模拟样品和实际淀粉样品进行检测。结果显示,该方法具有高通量、特异性强、灵敏度高等优点。与15种非目标源性均无交叉反应;对目标DNA的检测灵敏度可达到3×10^(-3) ng/μL,且具有良好的线性关系和扩增效率;对淀粉样品的检出限可达0.1%,对50份实际样品进行检测,结果与参比方法一致,说明建立的多重real-time PCR法可用于食用淀粉种类掺假鉴别检测。 展开更多
关键词 多重实时聚合酶链式反应 食用淀粉 木薯 红薯 马铃薯 玉米
下载PDF
Bifurcation and stability of an improved time-delayed fluid flow model in internet congestion control 被引量:4
7
作者 刘玉良 朱杰 罗晓曙 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第9期3772-3776,共5页
Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue lengt... Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue length is investigated in detail. The main advantage of the new model is that its stability domain is larger even without an extra controller. By linear stability analysis and numerical simulation, tbe effectiveness and feasibility of the novel model in internet congestion control are verified. 展开更多
关键词 fluid flow model congestion control time delay Hopf bifurcation
下载PDF
Data Transfer Over the Internet for Real Time Applications 被引量:3
8
作者 Roger Knott 《International Journal of Automation and computing》 EI 2006年第4期414-424,共11页
Efficient real time data exchange over the Internet plays a crucial role in the successful application of web-based systems. In this paper, a data transfer mechanism over the Internet is proposed for real time web bas... Efficient real time data exchange over the Internet plays a crucial role in the successful application of web-based systems. In this paper, a data transfer mechanism over the Internet is proposed for real time web based applications. The mechanism incorporates the eXtensible Markup Language (XML) and Hierarchical Data Format (HDF) to provide a flexible and efficient data format. Heterogeneous transfer data is classified into light and heavy data, which are stored using XML and HDF respectively; the HDF data format is then mapped to Java Document Object Model (JDOM) objects in XML in the Java environment. These JDOM data objects are sent across computer networks with the support of the Java Remote Method Invocation (RMI) data transfer infrastructure. Client's defined data priority levels are implemented in RMI, which guides a server to transfer data objects at different priorities. A remote monitoring system for an industrial reactor process simulator is used as a case study to illustrate the proposed data transfer mechanism. 展开更多
关键词 eXtensible Markup Language (XML) Hierarchical Data Format (HDF) Remote Method Invocation (RMI) data transfer web based application and real time
下载PDF
ICON/MIGHTI与TIMED/SABER探测温度数据的对比
9
作者 牟宵 闫召爱 +4 位作者 程旋 陈志芳 杨钧烽 胡雄 潘蔚琳 《空间科学学报》 CAS CSCD 北大核心 2024年第5期794-805,共12页
ICON卫星为临近空间环境特性研究、建模和预报提供了新数据.通过对ICON/MIGHTI与TIMED/SABER在90~105 km高度探测温度数据的比较,计算两者的年平均温度偏差和均方根误差,同时分析月平均温度偏差在不同月份中随高度和纬度的分布情况,为MI... ICON卫星为临近空间环境特性研究、建模和预报提供了新数据.通过对ICON/MIGHTI与TIMED/SABER在90~105 km高度探测温度数据的比较,计算两者的年平均温度偏差和均方根误差,同时分析月平均温度偏差在不同月份中随高度和纬度的分布情况,为MIGHTI和SABER温度探测数据在临近空间大气建模和预报应用提供参考依据.结果表明,MIGHTI和SABER的温度垂直廓线变化趋势基本吻合,数值上有所差异.在12°S-42°N范围内,MIGHTI探测温度与SABER相比,在90~93 km时偏低,偏差最大值约2.5 K,在93~105 km偏高,偏差的绝对值最大约10 K.在不同季节,白天的温度偏差通常高于夜晚.SABER和MIGHTI的月平均温度偏差随季节和纬度的变化显著,夏季时的月平均温度偏差最大,且温度的均方根误差最大. 展开更多
关键词 大气温度 临近空间 数据比较 ICON/MIGHTI timeD/SABER
下载PDF
Partition-Time Masking:一种唇语识别数据增强方法
10
作者 胡宇 殷继彬 《计算机科学》 CSCD 北大核心 2024年第S02期473-478,共6页
提出了一种唇语识别数据增强方法Partition-Time Masking。该方法直接作用于输入数据,通过将输入划分为多个子序列再分别进行Mask操作最后再将各子序列按序拼接,使得模型能对部分帧缺失的输入具有更强的鲁棒性,从而增强泛化能力。实验... 提出了一种唇语识别数据增强方法Partition-Time Masking。该方法直接作用于输入数据,通过将输入划分为多个子序列再分别进行Mask操作最后再将各子序列按序拼接,使得模型能对部分帧缺失的输入具有更强的鲁棒性,从而增强泛化能力。实验前根据划分的子序列数目与掩码值来源不同而设计了5种增强策略,并与唇语识别研究中最重要的数据增强方法Time Masking进行了对比实验。实验在LRW数据集和LRW1000数据集上进行,实验结果表明Partition-Time Masking方法对模型性能提升的效果要优于Time Masking方法,其中子序列数目为3、掩码值选择各子序列平均帧时为最优策略,该策略使得目前最佳的唇语识别模型DC-TCN的性能从89.6%提高到90.0%。 展开更多
关键词 唇语识别 time Making 数据增强 视觉语音识别 DC-TCN
下载PDF
A Mixture Model Parameters Estimation Algorithm for Inter-Contact Times in Internet of Vehicles
11
作者 Cheng Gong Xinzhu Yang +1 位作者 Wei Huangfu Qinghua Lu 《Computers, Materials & Continua》 SCIE EI 2021年第11期2445-2457,共13页
Communication opportunities among vehicles are important for data transmission over the Internet of Vehicles(IoV).Mixture models are appropriate to describe complex spatial-temporal data.By calculating the expectation... Communication opportunities among vehicles are important for data transmission over the Internet of Vehicles(IoV).Mixture models are appropriate to describe complex spatial-temporal data.By calculating the expectation of hidden variables in vehicle communication,Expectation Maximization(EM)algorithm solves the maximum likelihood estimation of parameters,and then obtains the mixture model of vehicle communication opportunities.However,the EM algorithm requires multiple iterations and each iteration needs to process all the data.Thus its computational complexity is high.A parameter estimation algorithm with low computational complexity based on Bin Count(BC)and Differential Evolution(DE)(PEBCDE)is proposed.It overcomes the disadvantages of the EM algorithm in solving mixture models for big data.In order to reduce the computational complexity of the mixture models in the IoV,massive data are divided into relatively few time intervals and then counted.According to these few counted values,the parameters of the mixture model are obtained by using DE algorithm.Through modeling and analysis of simulation data and instance data,the PEBCDE algorithm is verified and discussed from two aspects,i.e.,accuracy and efficiency.The numerical solution of the probability distribution parameters is obtained,which further provides a more detailed statistical model for the distribution of the opportunity interval of the IoV. 展开更多
关键词 internet of vehicles opportunistic networks inter-contact times mixture model parameters estimation
下载PDF
TimeGAN-Informer长时机场能见度预测
12
作者 马愈昭 张宇航 王凌飞 《安全与环境学报》 CAS CSCD 北大核心 2024年第7期2517-2527,共11页
能见度的预测对机场的业务决策、保障飞机的安全起降具有重要的意义。针对现有能见度预测模型预测时间较短的问题,提出一种基于TimeGAN Informer(Time Generative Adversarial Network-Informer)的机场能见度预测方法。利用2018—2022... 能见度的预测对机场的业务决策、保障飞机的安全起降具有重要的意义。针对现有能见度预测模型预测时间较短的问题,提出一种基于TimeGAN Informer(Time Generative Adversarial Network-Informer)的机场能见度预测方法。利用2018—2022年气象和污染物数据,通过相关系数法和递归特征消除法提取出能见度的主要影响因素,使用TimeGAN时间序列生成对抗网络对数据进行扩充,并将Informer长时间序列预测模型应用于能见度预测。结果显示:当预测步长为1 d、2 d、3 d时,TimeGAN Informer的绝对误差(Mean Absolute Error,MAE)分别为2.42、3.13、3.57,比Informer分别降低了0.29、0.27、0.28,比长短时记忆网络(Long Short-Term Memory,LSTM)分别降低了0.28、0.49、0.63;均方根误差(Root Mean Square Error,RMSE)分别为3.03、3.7、4.09,比Informer分别降低了0.38、0.22、0.24,比长短时记忆网络(LSTM)分别降低了0.3、0.5、1.04;百分误差小于30%的分别占测试样本集的78.07%、70.68%、63.84%。尽管随着步长的增加预测效果变差,但在预测步长为3 d时,多数样本的预测误差仍小于30%,实现了对机场区域较为准确的长时能见度预测。 展开更多
关键词 安全工程 能见度预报 数据扩充 INFORMER 时间序列
下载PDF
The time‑varying causal relationship between the Bitcoin market and internet attention 被引量:1
13
作者 Xun Zhang Fengbin Lu +1 位作者 Rui Tao Shouyang Wang 《Financial Innovation》 2021年第1期1489-1507,共19页
The increasing attention on Bitcoin since 2013 prompts the issue of possible evidence for a causal relationship between the Bitcoin market and internet attention.Taking the Google search volume index as the measure of... The increasing attention on Bitcoin since 2013 prompts the issue of possible evidence for a causal relationship between the Bitcoin market and internet attention.Taking the Google search volume index as the measure of internet attention,time-varying Granger causality between the global Bitcoin market and internet attention is examined.Empirical results show a strong Granger causal relationship between internet attention and trading volume.Moreover,they indicate,beginning in early 2018,an even stronger impact of trading volume on internet attention,which is consistent with the rapid increase in Bitcoin users following the 2017 Bitcoin bubble.Although Bitcoin returns are found to strongly affect internet attention,internet attention only occasionally affects Bitcoin returns.Further investigation reveals that interactions between internet attention and returns can be amplified by extreme changes in prices,and internet attention is more likely to lead to returns during Bitcoin bubbles.These empirical findings shed light on cryptocurrency investor attention theory and imply trading strategy in Bitcoin markets. 展开更多
关键词 Bitcoin internet attention Google trends time-varying granger causality Multiple bubbles test
下载PDF
Internet of Things Enabled Energy Aware Metaheuristic Clustering for Real Time Disaster Management
14
作者 Riya Kumarasamy Santhanaraj Surendran Rajendran +1 位作者 Carlos Andres Tavera Romero Sadish Sendil Murugaraj 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1561-1576,共16页
Wireless Sensor Networks(WSNs)are a major element of Internet of Things(IoT)networks which offer seamless sensing and wireless connectivity.Disaster management in smart cities can be considered as a safety critical ap... Wireless Sensor Networks(WSNs)are a major element of Internet of Things(IoT)networks which offer seamless sensing and wireless connectivity.Disaster management in smart cities can be considered as a safety critical application.Therefore,it becomes essential in ensuring network accessibility by improving the lifetime of IoT assisted WSN.Clustering and multihop routing are considered beneficial solutions to accomplish energy efficiency in IoT networks.This article designs an IoT enabled energy aware metaheuristic clustering with routing protocol for real time disaster management(EAMCR-RTDM).The proposed EAMCR-RTDM technique mainly intends to manage the energy utilization of nodes with the consideration of the features of the disaster region.To achieve this,EAMCR-RTDM technique primarily designs a yellow saddle goatfish based clustering(YSGF-C)technique to elect cluster heads(CHs)and organize clusters.In addition,enhanced cockroach swarm optimization(ECSO)based multihop routing(ECSO-MHR)approach was derived for optimal route selection.The YSGF-C and ECSO-MHR techniques compute fitness functions using different input variables for achieving improved energy efficiency and network lifetime.The design of YSGF-C and ECSO-MHR techniques for disaster management in IoT networks shows the novelty of the work.For examining the improved outcomes of the EAMCR-RTDM system,a wide range of simulations were performed and the extensive results are assessed in terms of different measures.The comparative outcomes highlighted the enhanced outcomes of the EAMCRRTDM algorithm over the existing approaches. 展开更多
关键词 internet of things disaster management wireless sensor networks real time applications ROUTING CLUSTERING
下载PDF
Time to forge ahead:The Internet of Things for healthcare 被引量:1
15
作者 Denzil Furtado Andre F.Gygax +1 位作者 Chien Aun Chan Ashley I.Bush 《Digital Communications and Networks》 SCIE CSCD 2023年第1期223-235,共13页
Situated at the intersection of technology and medicine,the Internet of Things(IoT)holds the promise of addressing some of healthcare's most pressing challenges,from medical error,to chronic drug shortages,to over... Situated at the intersection of technology and medicine,the Internet of Things(IoT)holds the promise of addressing some of healthcare's most pressing challenges,from medical error,to chronic drug shortages,to overburdened hospital systems,to dealing with the COVID-19 pandemic.However,despite considerable recent technological advances,the pace of successful implementation of promising IoT healthcare initiatives has been slow.To inspire more productive collaboration,we present here a simple—but surprisingly underrated—problemoriented approach to developing healthcare technologies.To further assist in this effort,we reviewed the various commercial,regulatory,social/cultural,and technological factors in the development of the IoT.We propose that fog computing—a technological paradigm wherein the burden of computing is shifted from a centralized cloud server closer to the data source—offers the greatest promise for building a robust and scalable healthcare IoT ecosystem.To this end,we explore the key enabling technologies that underpin the fog architecture,from the sensing layer all the way up to the cloud.It is our hope that ongoing advances in sensing,communications,cryptography,storage,machine learning,and artificial intelligence will be leveraged in meaningful ways to generate unprecedented medical intelligence and thus drive improvements in the health of many people. 展开更多
关键词 internet of Things Healthcare Information Fog computing Artificial intelligence Machine learning Big data COVID-19 pandemic
下载PDF
基于TimeGAN数据增强的复杂过程故障分类方法
16
作者 杨磊 何鹏举 丑幸幸 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第9期1768-1780,共13页
针对传统基于重构的故障分类方法在故障样本稀疏或失衡情况下效果不佳、故障子空间区分能力弱的问题,提出基于TimeGAN数据增强的复杂过程故障分类方法.针对小子样故障,使用TimeGAN对历史故障数据进行数据增强,生成与历史数据分布相似的... 针对传统基于重构的故障分类方法在故障样本稀疏或失衡情况下效果不佳、故障子空间区分能力弱的问题,提出基于TimeGAN数据增强的复杂过程故障分类方法.针对小子样故障,使用TimeGAN对历史故障数据进行数据增强,生成与历史数据分布相似的虚拟故障样本;采用马氏距离评估虚拟样本的质量,剔除不可信样本,构造平衡的故障样本集.将故障样本映射到高维核空间,并在核空间中提取故障子空间.设计故障分类策略并定义4种故障分类性能评估指标以定量衡量算法的分类性能.Tennessee Eastman应用结果表明,所提数据增强方法可以有效扩充故障样本,进而提高故障重构率.与WGAN-GP和SMOTE方法进行对比,发现基于TimeGAN数据增强的故障分类方法具有更好的分类性能. 展开更多
关键词 故障分类 样本不平衡 数据增强 故障子空间 时间序列生成对抗网络
下载PDF
Brain Time Stack图像融合技术在CT中的应用
17
作者 史佩佩 张磊 +1 位作者 王芬 吴婷 《中外医学研究》 2024年第17期61-66,共6页
目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信... 目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信噪比(SNR)。比较四组图像主观质量评分。分析不同部位CT值、SD、SNR与图像主观质量评分的相关性。结果:B组的延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于A组;C组的延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值高于A组;D组延髓、额叶灰质、颞肌肌肉CT值明显低于A组,脑室、额叶白质、小脑外侧CT值明显高于A组;C组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于C组;D组脑室CT值明显高于C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值明显低于A组;C组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值均明显高于B组;C组额叶灰质SD明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、肌肉SD均明显低于B组、C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR均明显高于A组;C组、D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR值明显高于B组;C组、D组脑室SNR明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR明显高于C组,差异有统计学意义(P<0.05)。D组图像主观质量评分最高,差异有统计学意义(P<0.05)。延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧及颞肌肌肉SD与主观质量评分呈明显负相关,SNR与主观质量评分间呈明显正相关,差异有统计学意义(P<0.05)。结论:利用Brain Time Stack图像融合技术对头部CT扫描检查图像处理,动脉期结合前一期及后一期的图像数据在处理后具有更好的质量和更少的噪音。 展开更多
关键词 Brain time Stack 图像融合 头部CT 检查 扫描质量
下载PDF
Association of daily sitting time and leisure-time physical activity with body fat among U.S.adults 被引量:1
18
作者 Jingwen Liao Min Hu +4 位作者 Kellie Imm Clifton J.Holmes Jie Zhu Chao Cao Lin Yang 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第2期195-203,共9页
Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investi... Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investigated the independent and joint associations of daily sitting time and physical activity with body fat among adults.Methods:This was a cross-sectional analysis of U.S.nationally representative data from the National Health and Nutrition Examination Survey2011-2018 among adults aged 20 years or older.Daily sitting time and leisure-time physical activity(LTPA)were self-reported using the Global Physical Activity Questionnaire.Body fat(total and trunk fat percentage)was determined via dual X-ray absorptiometry.Results:Among 10,808 adults,about 54.6%spent 6 h/day or more sitting;more than one-half reported no LTPA(inactive)or less than 150 min/week LTPA(insufficiently active)with only 43.3%reported 150 min/week or more LTPA(active)in the past week.After fully adjusting for sociodemographic data,lifestyle behaviors,and chronic conditions,prolonged sitting time and low levels of LTPA were associated with higher total and trunk fat percentages in both sexes.When stratifying by LTPA,the association between daily sitting time and body fat appeared to be stronger in those who were inactive/insuufficiently active.In the joint analyses,inactive/insuufficiently active adults who reported sitting more than 8 h/day had the highest total(female:3.99%(95%confidence interval(95%CI):3.09%-4.88%);male:3.79%(95%CI:2.75%-4.82%))and trunk body fat percentages(female:4.21%(95%CI:3.09%-5.32%);male:4.07%(95%CI:2.95%-5.19%))when compared with those who were active and sitting less than 4 h/day.Conclusion:Prolonged daily sitting time was associated with increased body fat among U.S.adults.The higher body fat associated with 6 h/day sitting may not be offset by achieving recommended levels of physical activity. 展开更多
关键词 ADULTS Body fat distribution Physical activity Sitting time
下载PDF
Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network 被引量:3
19
作者 Xin Shao Qing Liu +3 位作者 Zicheng Xin Jiangshan Zhang Tao Zhou Shaoshuai Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期106-117,共12页
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ... The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter. 展开更多
关键词 basic oxygen furnace oxygen consumption oxygen blowing time oxygen balance mechanism deep neural network hybrid model
下载PDF
Prescribed Performance Tracking Control of Time-Delay Nonlinear Systems With Output Constraints 被引量:1
20
作者 Jin-Xi Zhang Kai-Di Xu Qing-Guo Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1557-1565,共9页
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ... The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings. 展开更多
关键词 Nonlinear systems output constraints prescribed performance reference tracking time delays
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部