期刊文献+
共找到283,634篇文章
< 1 2 250 >
每页显示 20 50 100
Inspires effective alternatives to backpropagation:predictive coding helps understand and build learning
1
作者 Zhenghua Xu Miao Yu Yuhang Song 《Neural Regeneration Research》 SCIE CAS 2025年第11期3215-3216,共2页
Artificial neural networks are capable of machine learning by simulating the hiera rchical structure of the human brain.To enable learning by brain and machine,it is essential to accurately identify and correct the pr... Artificial neural networks are capable of machine learning by simulating the hiera rchical structure of the human brain.To enable learning by brain and machine,it is essential to accurately identify and correct the prediction errors,referred to as credit assignment(Lillicrap et al.,2020).It is critical to develop artificial intelligence by understanding how the brain deals with credit assignment in neuroscience. 展开更多
关键词 ASSIGNMENT learning enable
下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data
2
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
下载PDF
Machine learning applications in healthcare clinical practice and research
3
作者 Nikolaos-Achilleas Arkoudis Stavros P Papadakos 《World Journal of Clinical Cases》 SCIE 2025年第1期16-21,共6页
Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligen... Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligence.Among its various applications,it has proven groundbreaking in healthcare as well,both in clinical practice and research.In this editorial,we succinctly introduce ML applications and present a study,featured in the latest issue of the World Journal of Clinical Cases.The authors of this study conducted an analysis using both multiple linear regression(MLR)and ML methods to investigate the significant factors that may impact the estimated glomerular filtration rate in healthy women with and without non-alcoholic fatty liver disease(NAFLD).Their results implicated age as the most important determining factor in both groups,followed by lactic dehydrogenase,uric acid,forced expiratory volume in one second,and albumin.In addition,for the NAFLD-group,the 5th and 6th most important impact factors were thyroid-stimulating hormone and systolic blood pressure,as compared to plasma calcium and body fat for the NAFLD+group.However,the study's distinctive contribution lies in its adoption of ML methodologies,showcasing their superiority over traditional statistical approaches(herein MLR),thereby highlighting the potential of ML to represent an invaluable advanced adjunct tool in clinical practice and research. 展开更多
关键词 Machine learning Artificial INTELLIGENCE CLINICAL Practice RESEARCH Glomerular filtration rate Non-alcoholic fatty liver disease MEDICINE
下载PDF
Recombinant chitinase-3-like protein 1 alleviates learning and memory impairments via M2 microglia polarization in postoperative cognitive dysfunction mice
4
作者 Yujia Liu Xue Han +6 位作者 Yan Su Yiming Zhou Minhui Xu Jiyan Xu Zhengliang Ma Xiaoping Gu Tianjiao Xia 《Neural Regeneration Research》 SCIE CAS 2025年第9期2727-2736,共10页
Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life ... Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction. 展开更多
关键词 Chil1 hippocampus learning and memory M2 microglia NEUROINFLAMMATION postoperative cognitive dysfunction(POCD) recombinant CHI3L1
下载PDF
Application of Student-centered Learning Approach to English Listening and Speaking Class in Vocational Schools
5
作者 江韵 《疯狂英语(教师版)》 2012年第3期84-87,共4页
Student-centered learning approach is focused on the students' demands and interests.Applying student-centered approach puts forward higher requirement to English teachers.This article first analyzes the theory of... Student-centered learning approach is focused on the students' demands and interests.Applying student-centered approach puts forward higher requirement to English teachers.This article first analyzes the theory of student-centered learning approach and compares teacher-centered approach with it.Based on the research information and teaching experience,the author summarizes four strategies about how to apply student-centered learning approach to English listening and speaking class in vocational schools. 展开更多
关键词 Student-centered learning Approach English listening and speaking class STRATEGIES
下载PDF
Regulator of G protein signaling 6 mediates exercise-induced recovery of hippocampal neurogenesis,learning,and memory in a mouse model of Alzheimer’s disease
6
作者 Mackenzie M.Spicer Jianqi Yang +5 位作者 Daniel Fu Alison N.DeVore Marisol Lauffer Nilufer S.Atasoy Deniz Atasoy Rory A.Fisher 《Neural Regeneration Research》 SCIE CAS 2025年第10期2969-2981,共13页
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode... Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease. 展开更多
关键词 adult hippocampal neurogenesis Alzheimer’s disease dentate gyrus EXERCISE learning/memory neural precursor cells regulator of G protein signaling 6(RGS6)
下载PDF
Interpretable Machine Learning-Assisted High-Throughput Screening for Understanding NRR Electrocatalyst Performance Modulation between Active Center and C-N Coordination
7
作者 Jinxin Sun Anjie Chen +7 位作者 Junming Guan Ying Han Yongjun Liu Xianghong Niu Maoshuai He Li Shi Jinlan Wang Xiuyun Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期263-271,共9页
Understanding the correlation between the fundamental descriptors and catalytic performance is meaningful to guide the design of high-performance electrochemical catalysts.However,exploring key factors that affect cat... Understanding the correlation between the fundamental descriptors and catalytic performance is meaningful to guide the design of high-performance electrochemical catalysts.However,exploring key factors that affect catalytic performance in the vast catalyst space remains challenging for people.Herein,to accurately identify the factors that affect the performance of N2 reduction,we apply interpretable machine learning(ML)to analyze high-throughput screening results,which is also suited to other surface reactions in catalysis.To expound on the paradigm,33 promising catalysts are screened from 168 carbon-supported candidates,specifically single-atom catalysts(SACs)supported by a BC_(3)monolayer(TM@V_(B/C)-N_(n)=_(0-3)-BC_(3))via high-throughput screening.Subsequently,the hybrid sampling method and XGBoost model are selected to classify eligible and non-eligible catalysts.Through feature interpretation using Shapley Additive Explanations(SHAP)analysis,two crucial features,that is,the number of valence electrons(N_(v))and nitrogen substitution(N_(n)),are screened out.Combining SHAP analysis and electronic structure calculations,the synergistic effect between an active center with low valence electron numbers and reasonable C-N coordination(a medium fraction of nitrogen substitution)can exhibit high catalytic performance.Finally,six superior catalysts with a limiting potential lower than-0.4 V are predicted.Our workflow offers a rational approach to obtaining key information on catalytic performance from high-throughput screening results to design efficient catalysts that can be applied to other materials and reactions. 展开更多
关键词 electrochemical nitrogen reduction feature engineering high-throughput screening machine learning
下载PDF
Predictive value of machine learning models for lymph node metastasis in gastric cancer: A two-center study
8
作者 Tong Lu Miao Lu +4 位作者 Dong Wu Yuan-Yuan Ding Hao-Nan Liu Tao-Tao Li Da-Qing Song 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第1期85-94,共10页
BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong t... BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong to nodule type and peripheral type,the application of imaging diagnosis is restricted.AIM To establish models for predicting the risk of lymph node metastasis in gastric cancer patients using machine learning(ML)algorithms and to evaluate their pre-dictive performance in clinical practice.METHODS Data of a total of 369 patients who underwent radical gastrectomy at the Depart-ment of General Surgery of Affiliated Hospital of Xuzhou Medical University(Xuzhou,China)from March 2016 to November 2019 were collected and retro-spectively analyzed as the training group.In addition,data of 123 patients who underwent radical gastrectomy at the Department of General Surgery of Jining First People’s Hospital(Jining,China)were collected and analyzed as the verifi-cation group.Seven ML models,including decision tree,random forest,support vector machine(SVM),gradient boosting machine,naive Bayes,neural network,and logistic regression,were developed to evaluate the occurrence of lymph node metastasis in patients with gastric cancer.The ML models were established fo-llowing ten cross-validation iterations using the training dataset,and subsequently,each model was assessed using the test dataset.The models’performance was evaluated by comparing the area under the receiver operating characteristic curve of each model.RESULTS Among the seven ML models,except for SVM,the other ones exhibited higher accuracy and reliability,and the influences of various risk factors on the models are intuitive.CONCLUSION The ML models developed exhibit strong predictive capabilities for lymph node metastasis in gastric cancer,which can aid in personalized clinical diagnosis and treatment. 展开更多
关键词 Machine learning Prediction model Gastric cancer Lymph node metastasis
下载PDF
Deep learning-based automatic pipeline system for predicting lateral cervical lymph node metastasis in patients with papillary thyroid carcinoma using computed tomography:A multi-center study
9
作者 Pengyi Yu Cai Wang +8 位作者 Haicheng Zhang Guibin Zheng Chuanliang Jia Zhonglu Liu Qi Wang Yakui Mu Xin Yang Ning Mao Xicheng Song 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2024年第5期545-561,共17页
Objective:The assessment of lateral lymph node metastasis(LLNM)in patients with papillary thyroid carcinoma(PTC)holds great significance.This study aims to develop and evaluate a deep learning-based automatic pipeline... Objective:The assessment of lateral lymph node metastasis(LLNM)in patients with papillary thyroid carcinoma(PTC)holds great significance.This study aims to develop and evaluate a deep learning-based automatic pipeline system(DLAPS)for diagnosing LLNM in PTC using computed tomography(CT).Methods:A total of 1,266 lateral lymph nodes(LLNs)from 519 PTC patients who underwent CT examinations from January 2019 to November 2022 were included and divided into training and validation set,internal test set,pooled external test set,and prospective test set.The DLAPS consists of an auto-segmentation network based on RefineNet model and a classification network based on ensemble model(ResNet,Xception,and DenseNet).The performance of the DLAPS was compared with that of manually segmented DL models,the clinical model,and Node Reporting and Data System(Node-RADS).The improvement of radiologists’diagnostic performance under the DLAPS-assisted strategy was explored.In addition,bulk RNA-sequencing was conducted based on 12 LLNs to reveal the underlying biological basis of the DLAPS.Results:The DLAPS yielded good performance with area under the receiver operating characteristic curve(AUC)of 0.872,0.910,and 0.822 in the internal,pooled external,and prospective test sets,respectively.The DLAPS significantly outperformed clinical models(AUC 0.731,P<0.001)and Node-RADS(AUC 0.602,P<0.001)in the internal test set.Moreover,the performance of the DLAPS was comparable to that of the manually segmented deep learning(DL)model with AUCs ranging 0.814−0.901 in three test sets.Furthermore,the DLAPSassisted strategy improved the performance of radiologists and enhanced inter-observer consistency.In clinical situations,the rate of unnecessary LLN dissection decreased from 33.33%to 7.32%.Furthermore,the DLAPS was associated with the cell-cell conjunction in the microenvironment.Conclusions:Using CT images from PTC patients,the DLAPS could effectively segment and classify LLNs non-invasively,and this system had a good generalization ability and clinical applicability. 展开更多
关键词 Bulk RNA sequencing convolutional neural networks deep learning thyroid tumor lateral lymph node metastasis
下载PDF
Deep learning model based on primary tumor to predict lymph node status in clinical stage IA lung adenocarcinoma:a multicenter study
10
作者 Li Zhang Hailin Li +9 位作者 Shaohong Zhao Xuemin Tao Meng Li Shouxin Yang Lina Zhou Mengwen Liu Xue Zhang Di Dong Jie Tian Ning Wu 《Journal of the National Cancer Center》 2024年第3期233-240,共8页
Objective:To develop a deep learning model to predict lymph node(LN)status in clinical stage IA lung adeno-carcinoma patients.Methods:This diagnostic study included 1,009 patients with pathologically confirmed clinica... Objective:To develop a deep learning model to predict lymph node(LN)status in clinical stage IA lung adeno-carcinoma patients.Methods:This diagnostic study included 1,009 patients with pathologically confirmed clinical stage T1N0M0 lung adenocarcinoma from two independent datasets(699 from Cancer Hospital of Chinese Academy of Medical Sciences and 310 from PLA General Hospital)between January 2005 and December 2019.The Cancer Hospital dataset was randomly split into a training cohort(559 patients)and a validation cohort(140 patients)to train and tune a deep learning model based on a deep residual network(ResNet).The PLA Hospital dataset was used as a testing cohort to evaluate the generalization ability of the model.Thoracic radiologists manually segmented tumors and interpreted high-resolution computed tomography(HRCT)features for the model.The predictive performance was assessed by area under the curves(AUCs),accuracy,precision,recall,and F1 score.Subgroup analysis was performed to evaluate the potential bias of the study population.Results:A total of 1,009 patients were included in this study;409(40.5%)were male and 600(59.5%)were female.The median age was 57.0 years(inter-quartile range,IQR:50.0-64.0).The deep learning model achieved AUCs of 0.906(95%CI:0.873-0.938)and 0.893(95%CI:0.857-0.930)for predicting pN0 disease in the testing cohort and a non-pure ground glass nodule(non-pGGN)testing cohort,respectively.No significant difference was detected between the testing cohort and the non-pGGN testing cohort(P=0.622).The precisions of this model for predicting pN0 disease were 0.979(95%CI:0.963-0.995)and 0.983(95%CI:0.967-0.998)in the testing cohort and the non-pGGN testing cohort,respectively.The deep learning model achieved AUCs of 0.848(95%CI:0.798-0.898)and 0.831(95%CI:0.776-0.887)for predicting pN2 disease in the testing cohort and the non-pGGN testing cohort,respectively.No significant difference was detected between the testing cohort and the non-pGGN testing cohort(P=0.657).The recalls of this model for predicting pN2 disease were 0.903(95%CI:0.870-0.936)and 0.931(95%CI:0.901-0.961)in the testing cohort and the non-pGGN testing cohort,respectively.Conclusions:The superior performance of the deep learning model will help to target the extension of lymph node dissection and reduce the ineffective lymph node dissection in early-stage lung adenocarcinoma patients. 展开更多
关键词 Lung neoplasm ADENOCARCINOMA Clinical stage IA Deep learning Lymph node status
下载PDF
Efficacy of Student-Centered Conceptual Teaching Approach (SCCTA) on the Learning Skills of Nursing Students
11
作者 Rambe C. Ramel Jr. Khandy Lorraine G. Apsay 《Open Journal of Nursing》 2017年第11期1324-1334,共11页
Background: The BS-Nursing in the Philippines has an intensive curriculum at par with international standards to cater the learning needs of the students to make them globally competitive suitable for the demands of h... Background: The BS-Nursing in the Philippines has an intensive curriculum at par with international standards to cater the learning needs of the students to make them globally competitive suitable for the demands of health care jobs abroad. Objective: This study is intended to highlight an innovative student-centered teaching strategy termed as Student-Centered Conceptual Teaching Approach (SCCTA) believed to enhance the retention and critical thinking skills of nursing students compared to traditional teaching approach. Method: A Quantitative Methodology specifically Comparison Group Pre-test/ Post-test design was employed and both quantitative and qualitative data were gathered. These were analyzed using mean, standard deviation, and t test. Third year BS-Nursing students served as the participants of the study. Results: Findings show that the pretest score profile of the participants in the control and experimental group obtained a p value of less than 0.001 α = 0.05;thus, indicating that their learning skills are below average. Furthermore, the posttest score profile of the participants in the control group obtained a p value of less than 0.001 at α = 0.05 indicating that their skills are still below average. The post-test score profile of the participants in the experimental, conversely, obtained p values of less than 0.001, and 0.11935, respectively at α = 0.05, suggesting that the participants made significant improvements in their learning skills. Whereas, the mean gains of both groups obtained p values of less than 0.001 at α = 0.05. This means that the participants had considerable learning in the above mentioned skills. However, there is a significant difference in the mean gains between the two groups due to the fact that the p values in all aforementioned skills are less than 0.001 at α = 0.05. Conclusion: The significantly different responses between the groups show clearly that the participants of the experimental group learned better with the use SCCTA. 展开更多
关键词 PARTICIPANTS SKILLS learning
下载PDF
Classroom Observation Report Centered on Effective Learning——As a Case to Urumqi's School
12
作者 吴畏 《新东方英语(中英文版)》 2019年第11期129-129,共1页
The classroom,a physical space,serves as a place where teachers and students grow with ideas colliding.Only by tak-ing learning and understanding as key factors that affect themselves can we get a grasp of students... The classroom,a physical space,serves as a place where teachers and students grow with ideas colliding.Only by tak-ing learning and understanding as key factors that affect themselves can we get a grasp of students' study.Divided into such four di-mensions as student's learning,teacher's instruction,course nature,classrooms culture,LICC classroom observation made up of five perspectives respectively,developed by Choe Yunhuo,professor from ECNU.The report will be elaborated qualitatively. 展开更多
关键词 CLASSROOM OBSERVATION EFFECTIVE learning
下载PDF
构建适用于高职教育的“Learner-centered”教学模式研究
13
作者 乔洁 李红岩 马秀芳 《劳动保障世界》 2017年第11Z期77-77,81,共2页
当前,高职计算机学科的课堂存在着师生互动性欠缺,学生自主学习意识薄弱等明显的问题。在教育教学改革新动向、在线教育蓬勃发展新趋势的背景下,为了解决高职教育教学中存在的显著问题,我们提倡并研究"Learner Centered"教学... 当前,高职计算机学科的课堂存在着师生互动性欠缺,学生自主学习意识薄弱等明显的问题。在教育教学改革新动向、在线教育蓬勃发展新趋势的背景下,为了解决高职教育教学中存在的显著问题,我们提倡并研究"Learner Centered"教学模式.通过在相关计算机课程中的具体实施和问卷分析,总结"Learner-centered"教学模式对于高职教育的优势和可行性。 展开更多
关键词 learnER centered 教学模式 高职教育
下载PDF
基于改进Q-Learning的移动机器人路径规划算法
14
作者 王立勇 王弘轩 +2 位作者 苏清华 王绅同 张鹏博 《电子测量技术》 北大核心 2024年第9期85-92,共8页
随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的... 随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的问题,本研究提出一种改进的Q-Learning算法。该算法改进Q矩阵赋值方法,使迭代前期探索过程具有指向性,并降低碰撞的情况;改进Q矩阵迭代方法,使Q矩阵更新具有前瞻性,避免在一个小区域中反复探索;改进随机探索策略,在迭代前期全面利用环境信息,后期向目标点靠近。在不同栅格地图仿真验证结果表明,本文算法在Q-Learning算法的基础上,通过上述改进降低探索过程中的路径长度、减少抖动并提高收敛的速度,具有更高的计算效率。 展开更多
关键词 路径规划 强化学习 移动机器人 Q-learning算法 ε-decreasing策略
下载PDF
M-learning结合CBL在消化科规培教学中的探讨及应用
15
作者 洪静 程中华 +3 位作者 余金玲 王韶英 嵇贝纳 冯珍 《中国卫生产业》 2024年第2期203-205,共3页
目的探究移动学习平台(M-learning,ML)结合案例教学(Case-based Learning,CBL)在消化科住院医师规范化培训(简称规培)教学中的应用效果。方法选取2021年1月—2023年1月于上海市徐汇区中心医院消化科参加规培学习的80名医师作为研究对象... 目的探究移动学习平台(M-learning,ML)结合案例教学(Case-based Learning,CBL)在消化科住院医师规范化培训(简称规培)教学中的应用效果。方法选取2021年1月—2023年1月于上海市徐汇区中心医院消化科参加规培学习的80名医师作为研究对象,将其按照随机数表法分为研究组和对照组,每组40名。对照组给予传统讲授式教学法,研究组给予M-learning结合CBL教学法,对比两组医师的理论考试成绩、实践技能考试成绩和学习满意度。结果研究组的理论成绩和实践技能考试成绩均高于对照组,差异具有统计学意义(P均<0.05);研究组的学习满意度明显高于对照组,差异具有统计学意义(P<0.05)。结论将Mlearning结合CBL教学法应用于消化科规培教学中,不仅能够提升医师的理论考试成绩和实践技能考试成绩,还能够有效提高医师学习满意度。 展开更多
关键词 M-learning CBL 消化科 规培教学
下载PDF
基于Q-Learning的航空器滑行路径规划研究
16
作者 王兴隆 王睿峰 《中国民航大学学报》 CAS 2024年第3期28-33,共6页
针对传统算法规划航空器滑行路径准确度低、不能根据整体场面运行情况进行路径规划的问题,提出一种基于Q-Learning的路径规划方法。通过对机场飞行区网络结构模型和强化学习的仿真环境分析,设置了状态空间和动作空间,并根据路径的合规... 针对传统算法规划航空器滑行路径准确度低、不能根据整体场面运行情况进行路径规划的问题,提出一种基于Q-Learning的路径规划方法。通过对机场飞行区网络结构模型和强化学习的仿真环境分析,设置了状态空间和动作空间,并根据路径的合规性和合理性设定了奖励函数,将路径合理性评价值设置为滑行路径长度与飞行区平均滑行时间乘积的倒数。最后,分析了动作选择策略参数对路径规划模型的影响。结果表明,与A*算法和Floyd算法相比,基于Q-Learning的路径规划在滑行距离最短的同时,避开了相对繁忙的区域,路径合理性评价值高。 展开更多
关键词 滑行路径规划 机场飞行区 强化学习 Q-learning
下载PDF
Machine learning applications in stroke medicine:advancements,challenges,and future prospectives 被引量:3
17
作者 Mario Daidone Sergio Ferrantelli Antonino Tuttolomondo 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期769-773,共5页
Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning technique... Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning techniques have emerged as promising tools in stroke medicine,enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches.This abstract provides a comprehensive overview of machine learning’s applications,challenges,and future directions in stroke medicine.Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine.Machine learning models have demonstrated remarkable accuracy in imaging analysis,diagnosing stroke subtypes,risk stratifications,guiding medical treatment,and predicting patient prognosis.Despite the tremendous potential of machine learning in stroke medicine,several challenges must be addressed.These include the need for standardized and interoperable data collection,robust model validation and generalization,and the ethical considerations surrounding privacy and bias.In addition,integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care.Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis,tailored treatment selection,and improved prognostication.Continued research and collaboration among clinicians,researchers,and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care,ultimately leading to enhanced patient outcomes and quality of life.This review aims to summarize all the current implications of machine learning in stroke diagnosis,treatment,and prognostic evaluation.At the same time,another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease. 展开更多
关键词 cerebrovascular disease deep learning machine learning reinforcement learning STROKE stroke therapy supervised learning unsupervised learning
下载PDF
改进Q-Learning的路径规划算法研究
18
作者 宋丽君 周紫瑜 +2 位作者 李云龙 侯佳杰 何星 《小型微型计算机系统》 CSCD 北大核心 2024年第4期823-829,共7页
针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在... 针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在更新函数中设计深度学习因子以保证算法探索概率;融合遗传算法,避免陷入局部路径最优同时按阶段探索最优迭代步长次数,以减少动态地图探索重复率;最后提取输出的最优路径关键节点采用贝塞尔曲线进行平滑处理,进一步保证路径平滑度和可行性.实验通过栅格法构建地图,对比实验结果表明,改进后的算法效率相较于传统算法在迭代次数和路径上均有较大优化,且能够较好的实现动态地图下的路径规划,进一步验证所提方法的有效性和实用性. 展开更多
关键词 移动机器人 路径规划 Q-learning算法 平滑处理 动态避障
下载PDF
基于Q-learning的自适应链路状态路由协议
19
作者 吴麒 左琳立 +2 位作者 丁建 邢智童 夏士超 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第5期945-953,共9页
针对大规模无人机自组网面临的任务需求多样性、电磁环境复杂性、节点高机动性等问题,充分考虑无人机节点高速移动的特点,基于无人机拓扑稳定度和链路通信容量指标设计了一种无人机多点中继(multi-point relay,MPR)选择方法;为了减少网... 针对大规模无人机自组网面临的任务需求多样性、电磁环境复杂性、节点高机动性等问题,充分考虑无人机节点高速移动的特点,基于无人机拓扑稳定度和链路通信容量指标设计了一种无人机多点中继(multi-point relay,MPR)选择方法;为了减少网络路由更新时间,增加无人机自组网路由策略的稳定性和可靠性,提出了一种基于Q-learning的自适应链路状态路由协议(Q-learning based adaptive link state routing,QALSR)。仿真结果表明,所提算法性能指标优于现有的主动路由协议。 展开更多
关键词 无人机自组网 路由协议 强化学习 自适应
下载PDF
Significant risk factors for intensive care unit-acquired weakness:A processing strategy based on repeated machine learning 被引量:10
20
作者 Ling Wang Deng-Yan Long 《World Journal of Clinical Cases》 SCIE 2024年第7期1235-1242,共8页
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr... BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration. 展开更多
关键词 Intensive care unit-acquired weakness Risk factors Machine learning PREVENTION Strategies
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部